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Abstract
Text-driven 3D indoor scene generation holds
broad applications, ranging from gaming and smart
homes to AR/VR applications. Fast and high-
fidelity scene generation is paramount for ensuring
user-friendly experiences. However, existing meth-
ods are characterized by lengthy generation pro-
cesses or necessitate the intricate manual specifica-
tion of motion parameters, which introduces incon-
venience for users. Furthermore, these methods of-
ten rely on narrow-field viewpoint iterative genera-
tions, compromising global consistency and overall
scene quality. To address these issues, we propose
FastScene, a framework for fast and higher-quality
3D scene generation, while maintaining the scene
consistency. Specifically, given a text prompt, we
generate a panorama and estimate its depth, since
the panorama encompasses information about the
entire scene and exhibits explicit geometric con-
straints. To obtain high-quality novel views, we
introduce the Coarse View Synthesis (CVS) and
Progressive Novel View Inpainting (PNVI) strate-
gies, ensuring both scene consistency and view
quality. Subsequently, we utilize Multi-View Pro-
jection (MVP) to form perspective views, and ap-
ply 3D Gaussian Splatting (3DGS) for scene re-
construction. Comprehensive experiments demon-
strate FastScene surpasses other methods in both
generation speed and quality with better scene con-
sistency. Notably, guided only by a text prompt,
FastScene can generate a 3D scene within a mere
15 minutes, which is at least one hour faster than
state-of-the-art methods, making it a paradigm for
user-friendly scene generation.

1 Introduction
3D models have a wide range of applications in video pro-
duction, gaming, AR/VR, and other fields. However, gener-
ating high-quality 3D models typically requires professional
designers to utilize specialized software with a considerable
amount of time, which is inconvenient for those seeking fast
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3D model generation. The development of generative models
makes Text-to-3D object generation [Poole et al., 2022], [Lin
et al., 2023] possible and impressive. However, the genera-
tion of 3D scenes still presents significant challenges, requir-
ing large-scale scene reconstruction, multi-view images, and
the assurance of scene realism and consistency.

Recently, some works attempt to tackle the 3D scene gen-
eration challenges. Set-the-Scene [Cohen-Bar et al., 2023]
applies global-local training from text prompts and 3D ob-
ject proxies, while generating controllable scenes. However,
the quality and resolution of the generated scenes are unsat-
isfactory due to the lack of corresponding geometry. Sce-
neScape [Fridman et al., 2024] generates long-range views,
producing diverse styles. However, its view quality decreases
over time due to the inpainting and depth estimation er-
ror accumulation. Text2Room [Höllein et al., 2023] and
Text2NeRF [Zhang et al., 2024] gradually generate perspec-
tive novel views. Nevertheless, their incremental local oper-
ations hardly ensure scene consistency and coherence. Ctrl-
Room [Fang et al., 2023] fine-tunes ControlNet [Zhang et al.,
2023] for editable panorama generation, and then performs
mesh reconstruction. However, Ctrl-Room tends to flatten the
3D model with limited scene quality, since it hardly generates
multi-view images.

As one of the 3D representation techniques, the radi-
ance fields methods, exemplified by Neural Radiance Fields
(NeRF) [Mildenhall et al., 2020], have made significant
breakthroughs. Since most NeRF-based methods suffer from
slow rendering speed [Mildenhall et al., 2020], [Barron et al.,
2022], rendering process acceleration becomes an important
issue. Recently, 3D Gaussian Splatting (3DGS) [Kerbl et al.,
2023] has achieved success in the rendering speed with high-
quality. However, the typical 3DGS only takes regular images
as the input. It faces challenges when handling panoramas,
which are difficult to handle with existing Structure-from-
Motion (SFM) [Snavely et al., 2006] methods.

To address the above issues, we propose a novel Text-to-3D
scene framework, called FastScene, which aims at fast gen-
erating consistent and authentic scenes with high-quality. As
shown in Figure 1, our approach primarily comprises three
stages. 1) In the first stage, given a text prompt, we gen-
erate a panorama by utilizing the pre-trained Diffusion360
[Feng et al., 2023]. Panorama is selected due to its abil-
ity to capture the global information and exhibit explicit ge-
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Figure 1: The framework of our FastScene. Given the text prompt, we first generate a panorama and estimate its depth. Then, we iteratively
generate multi-view panoramas through PNVI. We introduce MVP for perspective projection and use 3DGS for scene reconstruction.

ometric constraints, which is advantageous in overcoming
the scene inconsistency issue of perspective view. Then, we
adopt EGformer [Yun et al., 2023] for panorama depth esti-
mation. 2) In the second stage, we propose Coarse View Syn-
thesis (CVS) to generate novel panoramic views with holes
for specific camera poses. Since large-distance novel views
generation results in numerous holes, which is not conducive
to inpainting, we propose Progressive Novel View Inpaint-
ing (PNVI) to gradually fill the holes within a small distance.
Nevertheless, we experimentally find that caused by cumu-
lative distortion errors, directly inpainting panorama usually
results in edge blurring and distortion. Instead, we pro-
pose to perform inpainting in cubemap, and utilize Cube-to-
Equirectangular (C2E) to obtain the corresponding inpainted
panorama. We then replace non-hole pixels in the inpainted
panorama with their original values. Furthermore, we syn-
thesize a dataset that aligns with our hole distribution, and
retrain AOT-GAN [Zeng et al., 2022] for inpainting. 3) Af-
ter acquiring multi-view panoramas, we employ 3DGS for
fast scene reconstruction. However, the original COLMAP
[Schonberger and Frahm, 2016] only supports perspective
views, making it challenging to obtain point clouds from
panoramas. Therefore, we introduce Multi-View Projection
(MVP), which divides the panorama into perspective views,
enabling feeding into 3DGS for reconstruction. MVP as a
plug-and-play module can be easily applied without requiring
additional computational resources. Extensive experiments
validate that our method can fast generate high-quality 3D
scenes while ensuring scene consistency.

Our contributions can be summarized as follows:

1) We propose a novel Text-to-3D indoor scene framework
FastScene, enabling fast and high-quality scene gen-

eration, while ensuring scene consistency. Addition-
ally, given the text prompt, there is no need to pre-
design complex camera parameters or motion trajecto-
ries, which makes FastScene a user-friendly scene gen-
eration paradigm.

2) We propose a novel panoramic view synthesis method
PNVI, which adopts CVS to generate novel views with
holes, and performs precision-controllable progressive
inpainting to generate refined views. Additionally, to
improve the inpainting quality, we synthesize a large-
scale distribution-based spherical mask dataset.

3) To the best of our knowledge, we are the first to
solve panoramic 3DGS from a single panorama, and
the proposed FastScene is highly adaptable to existing
panoramic data for reconstruction.

The rest of this paper is organized as follows. Section 2
briefly reviews the related works of this paper. Section 3
introduces the design details of the proposed FastScene. Sec-
tion 4 provides experimental results for comparisons and ab-
lation study. Conclusions are summarized in Section 5.

2 Related Works
2.1 Text-Driven 3D scene Generation
Recently, there has been considerable focus on 3D scene gen-
eration. Set-the-Scene [Cohen-Bar et al., 2023] introduces
an agent-based global-local framework to synthesize control-
lable 3D scenes, while enabling diverse scene editing options.
However, it suffers from shortcomings in the quality and reso-
lution of generation scenes without corresponding geometry.
While SceneScape [Fridman et al., 2024] generates consis-
tent views by introducing a pre-trained text-to-image model
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[Rombach et al., 2022], and possesses the capability to gen-
erate scenes in various styles. However, the view quality
of SceneScape is reliant on geometric priors and diminishes
over time due to the inpainting and depth error accumulation.
More recently, both Text2Room [Höllein et al., 2023] and
Text2NeRF [Zhang et al., 2024] rely on incremental frame-
works to generate new perspectives on a per-image basis.
However, their incremental local operations can hardly guar-
antee scene consistency and coherence. Later on, Ctrl-Room
[Fang et al., 2023] proposes to encode text input and convert
scene code into a 3D bounding box for editing. Subsequently,
it generates panoramas by fine-tuning ControlNet [Zhang et
al., 2023], and reconstructs mesh through Possion reconstruc-
tion [Kazhdan et al., 2006] and MVS-texture [Waechter et
al., 2014]. However, Ctrl-Room struggles to generate high-
quality 3D models, and tends to flatten the 3D model due to
the limited number of generated views.

2.2 Text-Driven Panorama Generation
Unlike 2D images, panoramas cover the 360° × 180° field of
view, which provides more 3D scene information. Text2Light
[Chen et al., 2022] synthesizes panorama images from text in-
put via a multi-stage auto-regressive generative model. How-
ever, it ignores the boundary continuity of the panorama, re-
sulting in an open-loop content. MVDiffusion [Tang et al.,
2023] generates high-resolution panoramas by fine-tuning a
pre-trained text-to-image diffusion model. However, arti-
facts usually appear on the “sky” and “floor” views, which
decreases the realism of generated scenes. StitchDiffusion
[Wang et al., 2024b] crops the left and right sides of the
panorama to maintain the scene continuity. However, the
cracks at the seams are still noticeable. Diffusion360 [Feng
et al., 2023] proposes a circular blending strategy to main-
tain the geometry continuity, which generates high-resolution
boundary-continuous panoramas.

2.3 Novel View Synthesis
Novel view synthesis is a popular area of significant inter-
est. Early methods rely on multi-view images and attempt
to incorporate the knowledge from epipolar geometry to per-
form smooth interpolation between the different views [Chen
and Williams, 1993], [Debevec et al., 1996]. Some methods
synthesize novel views by deep networks from a few images
[Sajjadi et al., 2022], [Mirzaei et al., 2023]. In contrast, [Gu
et al., 2023], [Shen et al., 2023] allow for generating novel
views from a single image.

A significant breakthrough in novel view synthesis is NeRF
[Mildenhall et al., 2020] and its derivative works [Barron et
al., 2021], [Barron et al., 2022], [Chen et al., 2023]. The ren-
dering speed of most radiance-based methods is slow, accel-
erating rendering becomes an important but challenging prob-
lem, with representative works such as Instant-NGP [Müller
et al., 2022] and 3DGS [Kerbl et al., 2023]. Some NeRF-
based works [Wang et al., 2024a], [Chen et al., 2024] at-
tempt to synthesize panoramic novel views. However, since
SFM struggles to handle panoramas due to its unique struc-
ture [Snavely et al., 2006], it is difficult to utilize original
3DGS for panorama rendering.

3 Method
3.1 Overview
As shown in Figure 1, given a text prompt P , we first use
Diffusion360 [Feng et al., 2023] to generate the correspond-
ing panorama S0, and then employ EGformer [Yun et al.,
2023] to estimate the depth map D0. Thereafter, given a new
camera pose Pn, we perform CVS to obtain the corrupted
panorama Sn with holes. To fill these holes, we propose
PNVI, which gradually inpaints perspective cubemap views
Sni

(i = 0, 1, ...5) rather than directly inpaints the panorama.
Subsequently, these clean cubemap images are reprojected
equidistantly to obtain the clean panorama. We then replace
non-hole pixels in the inpainted panorama with their origi-
nal values to obtain the novel panorama Sn. Similarly, iter-
ating PNVI multiple times results in numerous novel clean
panoramic views. As COLMAP [Schonberger and Frahm,
2016] does not support panoramic inputs, we employ MVP
to generate the corresponding perspective views, followed by
3DGS to implement the 3D scene reconstruction.

3.2 Text-Driven Panorama Generation and CVS
Compared to perspective views, a key geometric characteris-
tic of panorama is the continuity of the boundaries. Addition-
ally, the panorama encompasses information about the entire
scene and exhibits explicit geometric constraints, which is
beneficial for our subsequent processing. Thus, we utilize
Diffusion360 [Feng et al., 2023] for text-to-panorama gen-
eration, which adopts the blending strategy to maintain the
geometry continuity. After that, we estimate the depth map
using EGformer [Yun et al., 2023] to capture the spatial in-
formation of the scene. Then, we propose CVS to obtain a
new panoramic view under a given camera pose, as shown
in Figure 2. According to the theory of equidistant projec-
tion on the spherical panorama, we can project a 2D image
of size 1024 × 512 onto a sphere, where the latitude range is
180◦ and the longitude range is 360◦. The calculation for the
latitude angle θa and longitude angle ϕa are as follows:

θa = πya

H , (1)

ϕa = 2πxa

W , (2)
where xa and ya represent the image coordinates of coordi-
nate system a, while W and H represent the width and height
of the panorama, respectively. We then utilize the triangle
transformation to obtain the spherical basis coordinates:

ax = cosθa · cosϕa , (3)
ay = sinθa , (4)

az = − cosθa · sinϕa , (5)
afterward, we multiply the depth d by the 3D coordinates
ax, ay, az to initial the spherical coordinates Ca:

Ca = (d · ax, d · ay, d · az). (6)
Given a new camera pose Pn, we take it as the origin of

the new spherical coordinate system n, and subtract the orig-
inal coordinates Ca from the new origin Pn to get the new
spherical coordinates:

Cn = (nx, ny, nz) =
Ca − Pn

|Ca − Pn|
. (7)
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Figure 2: Given a new camera pose Pn, the calculation for move-
ment in spherical coordinates.

Then, we reproject the coordinates Cn to the new coordi-
nate system n:

θn = arctan
ny√

nx
2 + nz

2
, (8)

ϕn = arctan
−nz

nx
, (9)

xn =
ϕn

2π
W, (10)

yn =
θn
π
H, (11)

where θn and ϕn denote the latitude and longitude of the
novel view, and xn and yn represent the image coordinates
of coordinate system n.

We summarize equations (1) to (11) as a mapping F from
(xa, ya) to (xn, yn):

(xn, yn) = F (xa, ya). (12)

Therefore, we only need to determine if the mapped pixels
(xn, yn) lie within the panorama. If they are inside, we keep
the normal RGB values, otherwise we set them as holes with
a value 255:

Sn =

{
normal, if (xn ≤ W, yn ≤ H, dn > 0)

255, otherwise
(13)

Correspondingly, we can obtain the mask image Mn (with
value 0 for normal regions and 1 for unseen) for inpainting:

Mn =

{
0, if (Sn = normal)

1, otherwise
(14)

3.3 Progressive Novel View Inpainting
After CVS, we obtain multi-view panoramas with holes. To
reconstruct the scene using 3DGS, we need to fill these holes.
To this end, we propose the PNVI to obtain clean novel views.
Due to the lack of indoor panoramic datasets with mask in-
formation to retrain the inpainting network, we construct a
new dataset, as detailed in Section 4.2. We endeavored to
conduct direct panorama inpainting, yet observed that with
an increasing distance of movement, a plethora of spurious
shadows manifested along the peripheries of the panorama.
Therefore, E2C is utilized to obtain six cubemap images from

𝑃0 𝑃𝑛𝑃𝑛−2 𝑃𝑛−1𝑃1 𝑃2
…

… …
𝑃0 𝑃2 𝑃𝑛

Figure 3: Illustration of progressive inpainting and movement.

one panorama, and cubemap inpainting is conducted using
the retrained AOT-GAN [Zeng et al., 2022]. After that, C2E
is utilized to form the panorama. Finally, we replace non-hole
pixels in the inpainted panorama with their original values to
obtain the novel panorama Sn.

However, when directly moving the camera to large poses,
the hole-to-image area ratios become extensive, raising diffi-
culties for inpainting, irrespective of the model training qual-
ity. To address the aforementioned issue, we propose a pro-
gressive inpainting mode, as shown in Figure 3, which en-
ables inpainting in large camera poses. Specifically, assum-
ing we move the camera along the X-axis by a distance of
0.33 meters, the hole-to-image area ratio of the novel view
image increases to 64.3%, which means more than half of the
images are with holes, as reported in Table 1. Therefore, we
decide to divide the long distance into small moves (e.g., 0.02
meters per move) to relieve the long distance inpainting dif-
ficulty. In this way, the hole-to-image ratio is only 15% at
each move. By progressively moving from P0 to Pn, we can
obtain a clean view at the endpoint.

Pose X (m) 0.33 0.27 0.21 0.15 0.09 0.03 -0.02
Mask (%) 64.3 58.7 51.9 43.2 33.2 17.7 14.9

Pose Y (m) 0.20 0.16 0.12 0.09 0.05 0.02 -0.02
Mask (%) 28.9 24.2 19.6 15.3 11.2 7.1 7.6

Pose Z (m) 0.33 0.27 0.21 0.15 0.09 0.03 -0.02
Mask (%) 62.2 56.7 50.0 41.9 31.5 16.7 16.0

Table 1: The camera movement from the current pose along different
axes and their corresponding hole-to-image area ratios, Mask (%).
Sign ‘-’ indicates moving towards the negative direction of axis.

3.4 Panoramic 3D Gaussian Splatting
The original inputs for 3DGS are multiple RGB perspective
views. Following the COLMAP [Schonberger and Frahm,
2016] pipeline, sparse point clouds and camera parameters
are obtained. Nevertheless, algorithms within COLMAP per-
taining on perspective views exclusively exhibit inadequacies
when confronted with panoramic perspectives, leading to a
disorderly reconstruction outcome. As shown in Figure 4a,
assuming the camera moves along x, y, andz axes, the adop-
tion of the original COLMAP fails to produce accurate point
clouds and camera poses. This arises from the distinctive
distortions and intricacies inherent in panoramas, making the
application of conventional SFM arduous in the endeavor to
align spatial information across diverse viewpoints.

Therefore, we introduce MVP to solve the aforemen-
tioned problem. Specifically, given the panorama S with
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(a) COLMAP Output (b) MVP + COLMAP (Ours)

Figure 4: The visual comparison of the original COLAMP output
and our projection for panoramic input. It is evident that our method
is capable of obtaining accurate point clouds and camera poses.

size W × H and the requirements for n perspective im-
ages (V1, V2, ..., Vn) with size R × R. Firstly, we calculate
the rotation matrix Ri for each camera. For each perspec-
tive view Vi(1 ≤ i ≤ n), we define a projection mapping
function P (S, Vi), which maps the pixels of the panorama
to the perspective view. By projecting the panoramic pixels
(m, q), (0 ≤ m < W, 0 ≤ q < H), new projected coordi-
nates (j, k), (0 ≤ j, k < R) for the perspective view can be
obtained. Then, we send the multi-view perspective images
to COLMAP to obtain the point clouds required by 3DGS.
As shown in Figure 4b, for multi-view panoramic inputs, our
method enables the generation of accurate point clouds and
camera poses, thereby allowing for seamless processing us-
ing 3DGS. The loss function L is defined as the weighted
sum of L1 and LD−SSIM [Wang et al., 2004]:

L = (1− λ)L1 + λLD−SSIM , (15)

we follow [Kerbl et al., 2023] to set λ = 0.2.

4 Experiments
4.1 Implementations Details
We implement our method on PyTorch. We use the pre-
trained Diffusion360 [Feng et al., 2023] and EGformer [Yun
et al., 2023] for panorama generation and depth estimation,
respectively. We retrain the AOT-GAN [Zeng et al., 2022]
on our synthesized dataset for inpainting, described in Sec-
tion 4.2. We choose CLIP Score [Hessel et al., 2021], Natu-
ral Image Quality Evaluator (NIQE) [Mittal et al., 2012b],
and Blind/Referenceless Image Spatial Quality Evaluator
(BRISQUE) [Mittal et al., 2012a] to evaluate the rendering
quality in an unsupervised manner. It takes about 15 min-
utes to generate a complete scene on a single NVIDIA RTX
A6000 GPU with 49G memory. Specifically, panorama gen-
eration takes 10 seconds, the PNVI process takes approx-
imately 2 minutes, acquiring 3DGS training data requires
around 3 minutes, and scene generation takes 10 minutes.

4.2 Panoramic Inpainting Dataset
Due to the absence of panoramic datasets with our mask dis-
tribution, it is essential to generate a corresponding dataset.

Specifically, we select the synthetic dataset Structured3D
[Zheng et al., 2020], which comprises 21k photorealis-
tic panoramic scenes. We select 14k images with com-
plete scenes that are more realistic. Subsequently, for each
panorama, we generate 16 types of masks using equations
(12) to (14), corresponding to eight movement directions on
the coordinate axis, with two movement units of 0.02m and
0.04m for each direction. Then we perform E2C projection
for each panorama and mask image. Finally, there are a total
of 84k perspective RGB images and 1344k masks. After ob-
taining the dataset, we retrain AOT-GAN [Zeng et al., 2022],
with all training and testing sizes set as 512 × 512.

4.3 Comparisons with Other Methods

To validate the effectiveness of our method, we conduct
quantitative and qualitative comparisons with previous indoor
scene generation methods, including Text2Room [Höllein et
al., 2023], Set-the-Scene [Cohen-Bar et al., 2023], and Sce-
neScape [Fridman et al., 2024]. We render 30 images of each
scene for evaluation.

Quantitative Comparison. By giving an identical text
prompt input, we test the generative performance of differ-
ent methods. Since conventional image quality assessment
metrics, such as PSNR and SSIM, are not applicable to our
task, we adopt unsupervised evaluation metrics.

As reported in Table 2, Text2Room performs modestly due
to the lack of global consistency. SceneScape suffers from
decreased image quality caused by accumulated errors dur-
ing long-distance movements. Set-the-Scene exhibits limited
perceptual performance due to its lower resolution and tex-
ture quality. On the contrary, our method not only achieves
superior performance in terms of CLIP Score, NIQE, and
BRISQUE metrics, but also demonstrates the fastest gener-
ation speed. A fast generation process is important, since it is
an obvious advantage for user-friendly tasks.

Qualitative Comparison. Furthermore, to comprehen-
sively validate the performance of our FastScene, we present
the qualitative comparison results with other scene generation
methods. We provide the same text prompt, such as com-
mon indoor scenes: bedroom, living room, dining room, etc.,
and then obtain the generation results of different methods.
As shown in Figure 5, Text2Room [Höllein et al., 2023] can
generate faithful local views, but it fails to ensure consistency
across the entire scene. SceneScape [Fridman et al., 2024]
has the ability to generate long-range immersive views. How-
ever, as the distance increases, the accumulation of errors re-
sults in a detrimental loss of details. Set-the-Scene [Cohen-
Bar et al., 2023] possesses the ability to generate editable
scenes. However, its rendered images are blurry and texture
quality is inadequate to meet perceptual needs. In compari-
son, our method generates high-quality scenes in a fast way,
and ensures the scene consistency as well. More scene gener-
ation results can be found in our Supplementary Material.

In conclusion, both quantitative and qualitative comparison
experiments confirm that our method can rapidly and effec-
tively generate globally consistent scenes with high-quality.
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Text Prompt : A baroque dining room

Text Prompt : A cozy living room with sofa, table 

(a) Text2Room (b) SceneScape

Text Prompt: A bedroom with a king-size bed

(c) Set-the-Scene (d) Ours

Figure 5: Qualitative comparisons with other methods. For each methods, we show the rendering views for the 1st and 5th frames. Our
method generats high-quality scenes from the same text prompts, while maintaining the scene consistency well.

Methods CLIP ↑ NIQE ↓ BRISQUE ↓ Time(min/scene)

Text2Room 28.1 5.4 28.4 70
Set-the-Scene 23.8 9.3 51.6 155
SceneScape 24.7 4.4 32.3 110

Ours 29.0 3.9 20.6 15

Table 2: Quantitative comparison with other methods, with all re-
sults tested on the same hardware device.

4.4 Extension Experiments on Panoramic Datasets
To validate the adaptability of our PNVI and MVP on existing
panoramas for 3DGS, we conduct extension experiments on
the Matterport3D 1k, 2k [Chang et al., 2017], and Replica360
4K [Straub et al., 2019] datasets, containing panoramas at
resolutions of 1K, 2K, and 4K, respectively. As shown in
Figure 6, our method is capable of reconstructing 3D scenes
from panoramas at different resolutions.

(a) Matterport3D, 1K (b) Replica360, 4K

Figure 6: The reconstruction results of indoor panoramic datasets,
validating that our method can effectively transfer to 360° datasets.

Furthermore, to demonstrate the effectiveness of our
method, we compare the performance with panoramic novel
views synthesis works on Replica360 4K: DS-NeRF [Deng
et al., 2022], SinNeRF [Xu et al., 2022], DietNeRF [Jain et

al., 2021], 360FusionNeRF [Kulkarni et al., 2023], and PERF
[Wang et al., 2024a]. These NeRF-based methods inherently
lack the ability to infer occluded content and have insufficient
geometric constraints for panoramic structures. As a result,
they suffer from varying degrees of blurriness and reduced
quality, as shown in Figure 7 and Table 3. Among them,
PERF exhibits relatively satisfactory results, but it lacks con-
sideration of panoramic geometric information, and there is
a certain degree of quality degradation. On the contrary, we
design PNVI and MVP to fully consider the constraints of
the panoramic structure, while employing 3DGS rather than
NeRF architecture, resulting in higher rendering quality in
both quantitative and qualitative performance.

The extension experiments further demonstrate that our
method can be extended to existing panoramas and perform
high-quality novel view synthesis.

Methods PSNR ↑ SSIM ↑ LPIPS ↓
DS-NeRF 23.29 0.834 0.265
SinNeRF 22.70 0.826 0.251
DietNeRF 23.24 0.836 0.291

360FusionNeRF 21.54 0.833 0.245
PERF 23.49 0.838 0.244
Ours 23.52 0.841 0.245

Table 3: Quantitative comparisons on Replica360 dataset. Our
FastScene achieves better quantitative evaluation results than other
views rendering methods.

4.5 Ablation Studies
To validate the necessity of our inpainting mode and the ef-
fectiveness of the progressive inpainting strategy in PNVI,
we design two corresponding ablation studies for different in-
painting modes:
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(f) Ours(b) Sin-NeRF (c) Diet-NeRF (e) PERF(d) 360FusionNeRF(a) DS-NeRF

Figure 7: The extension experiments for existing panoramic datasets. It is clear that our rendering quality surpasses other methods, validating
our FastScene can effectively transfer to different panoramas.

Directly inpainting panorama. We first retrain the AOT-
GAN on our synthesized panoramic dataset, and then directly
perform inpainting on panoramas. We find the performance is
ideal for small-distance movements, as shown in Figure 8(a).

However, as the movement distance increases, noticeable
distortion and edge-blurring artifacts appear, as shown in Fig-
ure 8(b). This is due to the accumulated errors in depth es-
timation and the projection errors in the inpainting process.
Additionally, due to discrepancies between the truth depth
values in the dataset and our estimations, the distribution of
holes is not entirely consistent between the training and infer-
ence stages.

Inpainting for a large distance. To validate the effec-
tiveness of our progressive inpainting strategy, we perform
inpainting on novel views with large camera poses, rather
than incrementally moving. According to Figure 8(c), it is
evident that directly inpainting large poses results in serious
artifacts, which affects subsequent processing. When there
is a large hole-to-image ratio, it becomes challenging to en-
sure the generation quality, thus affecting the consistency of
the overall scene. By progressively inpainting the cubemap
images, our PNVI strategy can address distortion and edge-
blurring issues, as shown in Figure 8(a).

Table 4 reports the quantitative comparisons of different
inpainting modes, where our FastScene achieves the best per-
formance in scene generation. In summary, the ablation stud-
ies further demonstrate the effectiveness of our method.

Methods CLIP ↑ NIQE ↓ BRISQUE ↓ TIME(min)

Directly 27.3 6.8 45.1 14
Large-distance 25.7 7.4 42.3 11

Ours 29.0 3.9 20.6 15

Table 4: Ablation studies for directly, large-distance, and cubemap
inpainting. We retrain AOT-GAN on our synthetic dataset.

5 Conclusion
We propose a fast Text-to-3D indoor scene generation frame-
work FastScene, exhibiting satisfactory scene quality and

(a) Small movement (b) Directly inpainting

(c) Inpainting large poses (d) Ours

Figure 8: Different inpainting modes. Directly inpainting results in
distortion and edge blurring, and inpainting at large poses leads to
content artifacts. Our cubemap inpainting addresses these issues.

consistency. For users, FastScene only requires a text prompt
without designing motion parameters, and provide a complete
high-quality 3D scene in only 15 minutes. The proposed
PNVI with CVS can generate consistent novel panoramic
views, while MVP projects them into perspective views, facil-
itating 3DGS reconstruction. Extensive experiments demon-
strate the effectiveness of our method. FastScene provides
a user-friendly scene generation paradigm, and we believe it
has wide-ranging potential applications. In future work, we
will focus on 3D scene editing and multimodal learning.
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