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Abstract
Rapid advancements in neuroimaging techniques,
such as magnetic resonance imaging (MRI), have
facilitated the acquisition of the structural and func-
tional characteristics of the brain. Brain network
analysis is one of the essential tools for explor-
ing brain mechanisms from MRI, providing valu-
able insights into the brain’s organization, and stim-
ulating the understanding of brain cognition and
pathology of neurodegenerative diseases. Graph
Neural Networks (GNNs) are commonly used for
brain network analysis, but they are limited by the
scarcity of medical data. Although Graph Con-
trastive Learning methods have been developed to
address this, they often involve graph augmenta-
tions that distort the anatomical brain structures.
To address these challenges, an augmentation-free
contrastive learning method, named Self-Promoted
Clustering-based Contrastive Learning(SPCCL), is
proposed in this paper. Specifically, by introduc-
ing a clustering-based contrastive Learning loss and
a self-promoted contrastive pairs creation scheme,
the proposed SPCCL can be pre-trained from addi-
tional healthy subjects’ data that are relatively eas-
ier to acquire than disorder ones. The proposed
SPCCL leverages these additional data with re-
spect to the integrity of the original brain structure,
making it a promising approach for effective brain
network analysis. Comprehensive experiments
are conducted on an open-access schizophrenic
dataset, demonstrating the effectiveness of the pro-
posed method.

1 Introduction
The rapid development of neuroimaging techniques, such as
magnetic resonance imaging (MRI), has considerably facili-
tated the acquisition of the brain’s structural (i.e., white mat-
ter tracts) and functional (i.e., blood oxygen level-dependent
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signal) connections, which paves the way for more com-
prehensive studies into brain cognition and behavior [Her-
messi et al., 2021; Salama et al., 2018; Zhang et al., 2020].
One of the essential tools to conduct these investigations
is the brain network, which represents the underlying topo-
logical organization of the brain as a graph at the macro-
scale [Ahmedt-Aristizabal et al., 2021; Cui et al., 2022;
Hu et al., 2021; Ma et al., 2022]. In the graph, nodes
correspond to anatomical brain regions, while edges illus-
trate the structural or functional connections between them.
Graph theories and methods can then be applied to these
brain networks, which allows researchers to mathematically
quantify and explore the organization and interaction of the
brain regions [Bullmore and Sporns, 2009; Cao et al., 2023;
Gordon et al., 2016]. Consequently, brain network anal-
ysis has become an emerging research field with numer-
ous downstream applications, such as brain disorder diagno-
sis and disease progression forecasting [Huang et al., 2020;
Zhu et al., 2022].

Over the past few years, Graph Neural Networks (GNN)
have been proven to be a promising tool for brain network
analysis, which integrates graph theories with deep learn-
ing techniques, creating a paradigm that is capable of han-
dling the complex relationships inherent in graph data [Li et
al., 2022; Peng et al., 2022b; Zhou et al., 2020]. The ver-
satility and scalability allow GNNs to handle the complex-
ity of brain networks, making them a powerful tool for ex-
ploring the brain’s structure and function, including early di-
agnosis and prognosis of brain disorders, understanding the
progression of various diseases, and personalizing treatments
based on individual brain network structures [Ma et al., 2020;
Peng et al., 2022a; Tanveer et al., 2020; Young et al., 2018].

Despite the tremendous potential, several challenges per-
sist in applying GNNs to brain network analysis [Zhang et
al., 2024; Lin et al., 2024]. One key challenge is that the
GNNs usually demand large amounts of labeled data to train
effectively [Cao et al., 2023; Cui et al., 2022]. However, as
MRI scans are often costly, brain network data is naturally
scarce, especially in the context of disease-related studies. To
address this challenge, Graph Contrastive Learning (GCL)
has surfaced as a promising solution [Tong et al., 2021;
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Figure 1: The Brain Networks and Graph Augmentations. Structural
MRI defines the topology of the brain network reflecting the brain’s
anatomical structure from the white matter tracts. Functional MRI
defines the node features from the blood oxygen level-dependent
signal. If the graph augmentation adds a random edge (red line),
it will mislead the learning model with an energy-efficient shortcut.
Or, if it deletes an edge between A and B, there will be no short
connection between A and C. Either will damage the topology of
the real brain.

You et al., 2020; Zhao et al., 2023]. GCL is a representation
learning technique that learns to differentiate between similar
and dissimilar data instances through contrastive pairs [Lee
et al., 2022; Lin et al., 2022; Zhang et al., 2020]. The GCL
model is trained to maximize the agreement, or similarity,
between positive pairs while simultaneously minimizing the
agreement between negative pairs. Usually, these contrastive
pairs are created either from data augmentation or extracted
from the training set. This pairwise organization of training
data provides a valuable mechanism to alleviate the issue of
data scarcity. By maximizing the utility of each data point,
GCL enhances the training signal and allows for more effec-
tive learning from limited datasets.

Although GCL has achieved significant success in many
fields, it still has a notable limitation when dealing with
brain network data. One essential step in GCL is creat-
ing contrastive pairs, and most of the GCL methods focus
on designing graph augmentation schemes [Lin et al., 2022;
Liu et al., 2022a], which involve perturbing the graph struc-
tures, such as randomly adding or deleting nodes or edges of
the original graph. As shown in Figure 1, this kind of graph
augmentation scheme may not be appropriate for brain net-
works because the brain networks are derived from MRI im-
ages, which neurologically reflect the physical brain wiring
(structural brain network) or functional brain region corre-
spondence (functional brain network) [Bullmore and Sporns,
2009]. As such, any arbitrary change or perturbation of
the brain network risks creating misleading graph represen-
tations. Learning from distorted contrastive pairs cannot help
GCL models explore the brain mechanisms and could nega-
tively impact the models’ performance.

Additionally, it is important to note that brain network data
is typically accompanied by experts’ annotations, which is
due to the fact that MRI is both a technique and cost-intensive
procedure requiring the oversight of medical professionals
[Chu et al., 2018]. Furthermore, it is obvious that acquiring
brain network data from healthy subjects is relatively easier
than disorder ones in disease-related studies, as healthy indi-
viduals are the majority of the population. Thus, utilizing the

extra brain network data from healthy individuals to pre-train
the model is a promising way to partially alleviate the scarce
issue.

In response to the aforementioned challenges and unique
characteristics of brain network data, a Self-Promoted
Clustering-based Contrastive Learning (SPCCL) method is
proposed, aiming to help the model effectively learn in-
stinctive graph representations from the brain network data.
Specifically, extra healthy subjects are added to the training
set, creating a data pool. The initial contrastive pairs are
extracted from this pool. The pairs from the same group
(marked by the data label) are positive pairs, whereas the
pairs from different groups are negative pairs. After initial-
izing the contrastive pairs, a Siamese Graph Convolutional
Network (GCN) framework is utilized to extract graph-level
representations from them [Liu et al., 2022b]. Then, a self-
supervised readout mechanism is proposed to refine the graph
representations, ensuring they accurately reflect the underly-
ing structural and functional characteristics of the brain net-
works. After that, a supervised clustering-based contrastive
learning loss is adapted and integrated to ensure the clustering
consistency with the data labels. Then, a self-promoted con-
trastive pairs creation scheme is proposed, which utilizes the
cluster centroids as the prototype of each group. The samples
that are far from their corresponding prototype are promoted
to create contrastive pairs for the next round of training. So, in
the final pre-trained contrastive representation space, the sam-
ples from the same group are tied closely together, whereas
the distance between the prototypes is far away from each
other. After the pre-training, the additional healthy subjects’
data are removed from the training set, and the classification
is performed inside this pre-trained contrastive representation
space.

To test the effectiveness of the proposed SPCCL method,
we conduct comprehensive experiments on an open-access
schizophrenic dataset [Vohryzek et al., 2020], which contains
two modalities named structural and functional connectomes
from 27 schizophrenic patients and 27 healthy adults. An
additional dataset with 70 healthy adults is included in the
pre-training phrase [Griffa et al., 2019]. The details of the
dataset can be found in the Experiments section.

In summary, the contributions of this paper are:
1. A Self-Promoted Clustering-based Contrastive Learn-

ing (SPCCL) method is proposed for brain network
pre-training, which addresses the challenges and unique
characteristics of brain network data.

2. A self-supervised readout mechanism is proposed to re-
fine the graph representations, ensuring they accurately
reflect the underlying structural and functional charac-
teristics of the brain networks.

3. A self-promoted contrastive pairs creation scheme is
proposed, which utilizes the cluster centroids as the pro-
totype and promotes the samples far from their corre-
sponding prototype as the candidates to form contrastive
pairs.

4. Comprehensive experiments are conducted on the real
schizophrenic dataset, demonstrating the effectiveness
of the proposed method.
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2 Related Works
2.1 Graph Contrastive Learning
Graph Contrastive Learning (GCL) is a powerful technique
that leverages Graph Neural Networks (GNNs) to distinguish
between similar and dissimilar instances in complex graph
data [Lu et al., 2021]. Over the past few years, significant
advancements have been made in this field, focusing on data
augmentation, pretext task designs, and contrastive objectives
[Liu et al., 2022a].

One of the notable works in this area is Deep Graph In-
fomax (DGI), which maximizes the mutual information be-
tween local and global graph features, adapting the idea from
Deep InfoMax to graphs for node representation learning
[Veličković et al., 2018]. Similarly, InfoGraph extends this
concept to learn graph-level representations by maximizing
agreements between the representations of entire graphs and
their various scaled substructures. Contrastive Multi-View
Representation Learning on Graphs (MVGRL) is another sig-
nificant contribution that maximizes mutual information from
different structural views of graphs [Xu et al., 2022]. Di-
rected Graph Contrastive Learning (DiGCL) extends the con-
trastive paradigm to directed graphs, aiming at learning from
abundant views while retaining the original structure infor-
mation [Tong et al., 2021]. Graph Contrastive Learning
with Augmentation presents a new perspective on graph con-
trastive learning by introducing a novel augmentation strat-
egy, which leverages both node-level and graph-level aug-
mentations to enhance the performance of graph contrastive
learning [You et al., 2020].

Last year, AFGRL, an augmentation-free self-supervised
learning framework for graphs, was proposed to generate an
alternative view of a graph by discovering nodes that share
the local structural information and the global semantics with
the graph [Lee et al., 2022]. This method has shown supe-
riority in various node-level tasks, including node classifica-
tion, clustering, and similarity search on various real-world
datasets. However, since it focuses on node-level represen-
tation, AFGRL cannot be extended to graph-level contrastive
learning for brain network analysis.

These advancements in GCL have significantly expanded
our understanding and capabilities in handling complex graph
data, paving the way for more sophisticated applications.
However, it’s important to note that these methods often re-
quire careful consideration of augmentation techniques and
negative sampling strategies to ensure the preservation of the
underlying semantics of the graph data, which may distort the
anatomical brain structure and be extremely risky when doing
brain network analysis.

2.2 Clustering-based Contrastive Learning
Clustering-based Contrastive Learning (CCL) has emerged as
a contrastive learning method that leverages clustering tech-
niques to structure the learning process [Deng et al., 2018;
Li et al., 2021; Sharma et al., 2020]. In the learned represen-
tation space by CCL, the samples from the same group are
pulled together, while different groups are pushed away from
each other [Cheng et al., 2014].

In the past few years, various CCL works have been pro-
posed. The Supervised Contrastive (SupCon) method uses
label information to pull together clusters of points belong-
ing to the same class and push apart clusters of samples
from different classes [Khosla et al., 2020]. This method
has shown robustness to natural corruptions and stability to
hyperparameter settings, demonstrating its potential in var-
ious datasets. Prototypical Contrastive Learning (PCL) is
an unsupervised representation learning method that com-
bines contrastive learning with clustering to encode seman-
tic structures into the learned embedding space [Li et al.,
2020]. PCL uses prototypes as latent variables to find the
maximum-likelihood estimation of network parameters in an
Expectation-Maximization framework.

For the graph data, the Graph Contrastive Clustering
(GCC) method is proposed for image clustering tasks, which
in-corporates category information to perform contrastive
learning at both the instance and cluster levels, resulting
in more discriminative and clustering-friendly features and
more compact clustering assignments [Zhong et al., 2021;
Zhang and He, 2023]. The Multilayer Graph Contrastive
Clustering Network (MGCCN) method integrates a clustering
objective with graph representation learning to better capture
the graph’s semantic structures from multilayer graphs [Liu
et al., 2022a]. To address the issue of imbalanced prototype
assignments that can arise from directly using K-means, the
Prototypical Graph Contrastive Learning (PGCL) approach
was proposed, which adds a constraint that prototype assign-
ments must be partitioned into equally sized subsets and for-
mulates it as an optimal transport problem [Lin et al., 2022].
It also tackles the sampling bias by sampling negatives from
clusters differing from the query cluster and reweighting neg-
ative samples according to their prototype distances.

Although these methods achieved great success, they still
rely on graph data augmentations that are inappropriate for
brain network analysis. Furthermore, because of the tech-
nique and cost-intensive nature of the brain network data,
brain networks are always accompanied by expert annota-
tions. Thus, it is not necessary to follow the unsupervised
or semi-supervised setting.

3 The Proposed Method
In this paper, the brain networks are presented as graphs, with
G = {Gi, Xi, yi}N , where N is the total number of the
brain networks, Gi is the graph topology, Xi is the nodes’
features, and yi is the corresponding label of the brain net-
work. yi = 1, if the brain network is from the healthy group,
whereas yi = 0, if it is from the group with disease. Each
graph is a set of nodes and edges, Gi = (Vi, Ei), where
Vi =

{
vi1, ..., v

i
P

}
is the nodes set and Ei =

{
ei1, ..., e

i
Q

}
is the edge set. Note that, the number of nodes is the same
across all the brain networks, as the nodes represent the
anatomical brain regions, and everyone should have the same
anatomical brain structure. Whereas, the number of edges
may vary from individual to individual, as everyone has their
own brain connections that are formed by genes and/or per-
sonal experiences.

The overall goal is to train a model to classify the brain
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Figure 2: The overview of the proposed Self-Promoted Clustering-based Contrastive Learning (SPCCL) method’s structure. The SPCCL
has four modules: (a) a Siamese GCN module to process the contrastive pairs; (b) a self-supervised readout module to create graph-level
representations from the nodes embeddings; (c) a contrastive clustering module to do the supervised contrastive clustering; (d) a self-promoted
contrastive pair creation module to promote the contrastive pairs for the next round of training (see Figure 3) for details.

networks into the correct group corresponding to their labels.
However, due to the scarce issue and the characteristics of the
brain network data, we will pre-train the model with the pro-
posed Self-Promoted Clustering-based Contrastive Learning
(SPCCL) method without distorting the brain networks. As
shown in Figure 2, the proposed SPCCL has four modules: 1)
A Siamese GCN module to process the contrastive pairs; 2)
A self-supervised readout module to create graph-level repre-
sentations from the node embeddings; 3) A contrastive clus-
tering module to do the supervised contrastive-based cluster-
ing, which will form the; 4) A clustering-based contrastive
pair creation module to promote the contrastive pairs for the
next round of training. We will introduce them one by one in
the rest of this section.

3.1 Siamese GCN Module
As mentioned in the Introduction Section, the contrastive
pairs are initialized from a pool incorporating the training
data and additional healthy subjects. The Siamese Graph
Convolutional Network (GCN) module aims to extract graph-
level representations from these contrastive graph pairs. It
contains two identical subnetworks with sharing weights.
This is a common setting in contrastive learning. The GCN
here is a standard Graph Convolutional Network with the
Chebyshev polynomial [Kipf and Welling, 2016]. In this
work, we use two GCN layers to process the graph data. The
topology of the graph data Gi is derived from the structural
MRI images, and the node features Xi for each node are ex-
tracted from the functional MRI images. Through this, two
modalities are integrated into the Siamese GCN to extract
node embeddings. The output node embeddings from this
module are a mix of brain network structures and brain func-
tional signals. Thus, we will need a readout module to convert
the node embeddings into graph embedding [Buterez et al.,

2022]. This is done by our proposed self-supervised readout
module in the next section.

3.2 Self-Supervised Readout Module

The proposed Self-supervised readout module exploits a Bi-
directional Long Short Term Memory (LSTM) model to pro-
cess the output node embeddings from the Siamese GCN
module. In this case, the output node embeddings are consid-
ered as a sequence of all the nodes. Each extracted node em-
bedding is processed step by step through the bi-directional
LSTM. The Bi-directional LSTM used here is to partially
eliminate the bias from the node order in the sequence. The
last hidden states of the Bi-directional LSTM can be consid-
ered as a latent representation encrypting all the nodes’ fea-
tures and topology, which will be used as the Query of the
attention mechanism, while the keys and values are the hid-
den states of each step. The attention score is calculated by
the standard attention equation:

Attention = softmax(
(QWQ(KWK)T )√

(dk)
)VWV (1)

where Q,K, V are Qurey, Keys and Values, and
WQ,WK ,WV are the corresponding learnable weight matri-
ces

The output of the attention is the weighted sum of all the
hidden states. Through the attention mechanism, the output
readout vector is refined by the context of node embeddings,
which will comprehensively explore the underlying structural
and functional brain networks and emphasize the most dis-
criminative parts of the node embeddings into the readout
vector zi of the graph.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1167



3.3 Contrastive Clustering Module
The readout vector zi of each brain network will first be fed
into the Supervised Contrastive Loss, Losssup, to get the
loss value of each contrastive pair [Khosla et al., 2020]. The
Losssup aims to effectively leverage label information from
the contrastive pairs. Two samples coming from the same
label group are called positive pairs, whereas two samples
coming from different groups are called negative pairs.

Losssup =
∑

i∈Pairs

− log
1

|P |
∑
p∈P

exp((zizp)/τ)∑
a∈A exp((ziza)/τ)

(2)
where P is the positive pair set and A is the negative pair

set, i is the contrastive pair from the contrastive pair set.
In this way, the label information is implicitly exploited

into the contrastive loss, where the positive pairs are pulled
together, and negative pairs are pushed away from each other.

After each epoch, all the readout vectors are put together to
do the contrastive clustering. The number of clusters is prede-
fined by the data labels. In our case, there are two clusters: the
healthy group vs. the disorder group. The consistency loss is
equipped to ensure the clustering consistency corresponding
to the sample labels [Lin et al., 2022].

Lossconsist =
∑

i∈Pairs

[l(pi, qi′) + l(pi′ , qi)] (3)

where l(pi, qi′) =
∑

y∈Y q(y|zi′) log p(y|zi), i is the con-
trastive pair from the contrastive pair set, zi and zi′ are
two readout vectors from one contrastive pair, p(y|zi) =
softmax(zi) illustrates the probability of zi belonging to
group y. Similarly, q(y|zi′) illustrates the probability of zi′
belonging to group y.

The final training loss can be written as:

Loss = Losssup + λLossconsist

where λ is a hyperparameter balancing the two terms.

3.4 Self-Promoted Contrastive Pairs Creation
Module

As shown in Figure 3, the prototype of each group is cho-
sen as the centroid of each cluster. Then, the samples of each
group will be sorted by the distance to their prototype. We se-
lect the top 50% of the samples from each group to form the
candidate set. The new contrastive pairs for the next train-
ing epoch will be randomly sampled from this candidate set.
The total number of contrastive pairs can be predefined as a
fixed number, or all the possible combinations of the candi-
date set. The pairs that have the same labels are considered
positive pairs, whereas the pairs that have different labels are
considered negative pairs.

In this way, the difficult samples of each label group are
promoted into the candidate set. Our model will then be
trained on the contrastive pairs created from this difficult sam-
ple set in the next epoch. For each epoch, the candidate set is
updated by the clustering results. With the help of Losssup
and Lossconsist, the learned readout vector will be updated
accordingly, which will make the learned graph-level repre-
sentations more discriminative.

Clustering

Prototypes

Promotes

Candidate setCluster Centroids

Figure 3: The Self-Promoted Contrastive pairs creation procedure,
in which the difficult samples are promoted into the candidate set to
create contrastive pairs for the next training epoch. In our case, there
are two clusters: the healthy group vs. the disorder group.

Algorithm 1 SPCCL pre-training
Data pool: Mix training set and extra healthy subjects.
Input: Random select M contrastive pairs.
Output: Graph representations

1: Let t = 0.
2: while t < T or not converge do
3: for pairs in M do
4: do Siamese GCN
5: do Self-supervised readout
6: end for
7: do Contrastive clustering
8: backpropagate with Loss = Losssup + λLossconsist
9: promote M contrastive pairs with the centroids.

10: end while
11: return Graph representations of data

3.5 Classification
The pre-training process can be found in Algorithm 1. It

will loop through the 4 modules until it converges or reaches
a given number of epochs. After pre-tained by the proposed
SPCCL model, we remove all the auxiliary modules and only
use the readout vectors as the graph-level representation of
brain networks. These representations then train a simple
multilayer perceptron network to do the final classification.
The detailed experimental settings and results are reported in
the next section.

4 Experiments
4.1 Dataset
The schizophrenic dataset utilized in this study is from an
open-access dataset that includes two types of brain network
modalities: structural and functional connectomes. It con-
sists of MRI data acquired from 27 schizophrenic patients,
and 27 matched healthy adults [Vohryzek et al., 2020]. An
additional 70 healthy adults’ MRI data are used to do the pre-
training [Griffa et al., 2019], which reflects the characteristic
of the brain network data that it is relatively easier to acquire
healthy samples than the samples with diseases. All the data
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Method KNN Logistic Reg. K-Means SVC GCBN SPCCL

ACC 59.2±5.2 71.3±3.8 52.6±6.1 70.9±3.4 73.1 ± 4.6 85.2±3.8
SENS 69.1±8.3 70.4±7.3 50.3±6.5 72.5±7.7 78.2 ± 5.8 88.1±5.8
SPEC 56.2±8.2 73.2±4.6 56.7±8.9 70.7±6.3 68.1 ± 8.1 83.7±3.2
PPV 62.4±6.2 71.6±7.2 55.7±4.6 73.4±5.1 71.5 ± 5.3 84.3±4.6
NPV 67.2±8.7 72.7±5.1 52.4±8.5 74.6±5.2 74.5 ± 5.1 83.2±7.0
F1 0.619 0.717 0.533 0.716 0.728 0.858

Table 1: Comparison of classification results.

used in this study was collected at the Service of General Psy-
chiatry at the Lausanne University Hospital. The diagnosis
of schizoaffective disorders for the patients was established
based on their fulfillment of the DSM-IV criteria. The con-
trol subjects (healthy adults), on the other hand, had no pre-
vious history of neurological disorders, ensuring a compar-
ison between healthy individuals and those with schizophre-
nia. All subjects underwent scanning using a 3 Tesla Siemens
Trio scanner equipped with a 32-channel head coil. The data
collection protocol involved three distinct imaging modali-
ties. Firstly, a magnetization-prepared rapid acquisition gra-
dient echo (MPRAGE) sequence was employed to capture
white/gray matter contrast, with a high resolution of 1-mm
in-plane resolution and 1.2-mm slice thickness. Secondly,
a Diffusion Spectrum Imaging (DSI) sequence was utilized,
comprising 128 diffusion-weighted volumes and a single b0
volume. This sequence utilized a maximum b-value of 8,000
s/mm² and had a voxel size of 2.2x2.2x3.0 mm. Finally, a
gradient echo EPI sequence sensitive to BOLD contrast was
employed, resulting in 280 images per participant. This se-
quence had an in-plane resolution and slice thickness of 3.3-
mm with a 0.3-mm gap, TE 30 ms, and TR 1,920 ms. For
the structural connectivity analysis, deterministic streamline
tractography was performed on the reconstructed DTI data.
The tractography pipeline initiated 32 streamline propaga-
tions per diffusion direction per white matter voxel. Fiber
density, representing the number of streamlines normalized
by the average streamline length and surface area of the re-
gions, was computed to measure the structural connectiv-
ity between pairs of regions of interest (ROIs). To estimate
functional connectomes, the blood oxygen level-dependent
(BOLD) time series from fMRI data was utilized. Specifi-
cally, the absolute value of the Pearson correlation was com-
puted between the time courses of individual brain regions,
enabling the assessment of functional connectivity across the
brain.

4.2 Experiment Setup
To ensure unbiased performance evaluation, we employ a
6-fold cross-validation strategy during the training process.
This involves randomly dividing the dataset into three equal
parts, where one-third of the samples from each class are
selected as the testing set, while the remaining two-thirds
serve as the training set. To evaluate the classification perfor-
mance, we employ six distinct metrics: accuracy (ACC), sen-
sitivity (SENS), specificity (SPEC), positive predictive val-
ues (PPV), negative predictive values (NPV), and F1 score.

Figure 4: The view of the top 20 important nodes on the brain. The
size and color indicate the importance of the node. The bigger size
and warmer color mean the more important the node is.

By employing these metrics, we gain comprehensive insights
into the performance of our classification method. Further-
more, we compare the classification performance of our ap-
proach with three commonly used learning-based methods:
K-nearest neighbor (KNN), logistic regression, and K-means
clustering. By conducting these comparisons, we can gauge
the effectiveness and superiority of our proposed method.
Lastly, we benchmark our method against the state-of-the-
art approach for schizophrenia classification reported in the
literature [Ghosh et al., 2023], called Graph Convolution on
Brain Network (GCBN), which utilized the Graph Convolu-
tional Networks to do the schizophrenia classification task.
In GCBN, a data augmentation process is proposed to create
new artificial data by inducing artificial perturbation to the
available data set, which may downgrade the model perfor-
mance as the perturbation may distort the brain’s anatomical
structures. These experimental settings enable us to ascertain
the advancements and contributions of our proposed method
in relation to existing methodologies.

4.3 Discussion
In order to evaluate the performance of our proposed SPCCL
method, we compared it against baseline and competing ap-
proaches using six distinct quality metrics, with higher values
signifying superior classification performance. The summary
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of our experimental results can be seen in Table 1, where
we report the mean and standard deviation for each metric
over the 6-fold cross-validation. The results unequivocally
demonstrate that our proposed Self-Promoted Clustering-
based Contrastive Learning (SPCCL) method outperforms
the other methods in terms of classification accuracy. No-
tably, a higher F1 score is achieved by our method, indicating
its superior capabilities. The improvements were especially
marked when compared to the GCBN method tailored for
schizophrenia analysis, underscoring the value of the SPCCL
approach for brain network analysis. As shown in Figure
4, the brain regions that have the highest attention scores
throughout the patients’ data are identified, such as the tem-
poral gyrus, frontal gyrus, insula, and amygdala. These iden-
tified regions are consistent with the findings reported by neu-
roscience papers [Henkel et al., 2022; Huckins et al., 2019;
Rubinov and Bullmore, 2013].

5 Conclusion
In the field of cognitive and behavioral neuroscience, employ-
ing Graph Neural Networks (GNN) for brain network anal-
ysis is often challenging due to the scarcity of labeled data
from both technique and cost intensive MRI scans. This pa-
per proposed a Self-Promoted Cluster-ing-based Contrastive
Learning (SPCCL) method to address these limitations with
respect to the unique characteristics of brain network data
that its topology should be strictly aligned with the brain’s
anatomical brain structure. The proposed SPCCL employs
a Siamese Graph Convolutional Network (GCN) framework
for extracting graph-level representations, a self-supervised
readout mechanism to refine the representations, a super-
vised clustering-based contrastive learning module for clus-
tering consistency, and then a self-promoted contrastive pair
creation scheme to fully explore the dataset without distort
the brain networks. It overcomes the limitations of existing
Graph Contrastive Learning methods and enhances model ro-
bustness. Tested on an open-access schizophrenia dataset,
SPCCL demonstrates significant potential in advancing the
diagnosis and prognosis of brain disorders.
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