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Abstract
Recently, significant progress has been made in
the research of 3D object detection. However,
most prior studies have focused on the utilization
of center-based or anchor-based label assignment
schemes. Alternative label assignment strategies
remain unexplored in 3D object detection. We find
that the center-based label assignment often fails
to generate sufficient positive samples for training,
while the anchor-based label assignment tends to
encounter an imbalanced issue when handling ob-
jects with different scales. To solve these issues,
we introduce a dynamic cross label assignment
(DCLA) scheme, which dynamically assigns pos-
itive samples for each object from a cross-shaped
region, thus providing sufficient and balanced pos-
itive samples for training. Furthermore, to ad-
dress the challenge of accurately regressing ob-
jects with varying scales, we put forth a rotation-
weighted Intersection over Union (RWIoU) metric
to replace the widely used L1 metric in regression
loss. Extensive experiments demonstrate the gener-
ality and effectiveness of our DCLA and RWIoU-
based regression loss. The Code is available at
https://github.com/Say2L/DCDet.git.

1 Introduction
3D object detection plays a crucial role in enabling unmanned
vehicles to perceive and understand their surroundings, which
is fundamental for ensuring safe driving. Label assignment
is a key process for training 3D object detectors. The dom-
inant label assignment strategies in 3D object detection are
anchor-based [Shi et al., 2020a; Xu et al., 2022; Zheng et
al., 2021] and center-based [Ge et al., 2020; Hu et al., 2022;
Yin et al., 2021; Wang et al., 2021]. However, both of these
label assignment schemes encounter issues that limit the per-
formance of detectors.

The anchor-based label assignment generally encounters
an imbalanced problem when assigning positive samples to
objects with different scales. It employs the prior knowledge
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of spatial scale for each category to predefine fixed-size an-
chors on the grid map. By comparing the intersection over
union (IoU) between anchors and ground-truth boxes, posi-
tive anchors are determined to classify and regress objects.
Consequently, the anchor-based label assignment tends to ex-
hibit an uneven distribution of positive anchors across objects
of different sizes. For example, car objects typically have
a significantly higher number of positive anchors compared
to pedestrian objects. This imbalance poses a challenge dur-
ing training and leads to slow convergence for small objects.
Moreover, the anchor-based label assignment scheme neces-
sitates the recalculation of statistical data distribution for dif-
ferent datasets to obtain optimal anchor sizes. This require-
ment may reduce the robustness of a trained detector when
applied to datasets with distinct data distributions.

The center-based label assignment scheme often faces
challenges in providing adequate positive samples for train-
ing. This approach has recently been adopted by vari-
ous 3D object detectors [Ge et al., 2020; Hu et al., 2022;
Yin et al., 2021; Wang et al., 2021]. It focuses solely on ob-
ject centers as positive samples (similar to positive anchors).
As a result, the number of positive samples remains consis-
tent across objects of different scales, solving the issue of im-
balanced positive sample distribution encountered in anchor-
based label assignment. However, the center-based label as-
signment overlooks many potential high-quality positive sam-
ples, as only one positive sample per object is responsible
for regressing object attributes. This leads to an inefficient
utilization of training data and sub-optimal network perfor-
mance.

To simultaneously address the aforementioned challenges,
this paper introduces a dynamic cross label assignment
(DCLA), which aims to provide balanced and ample high-
quality positive samples for objects of different scales.
Specifically, DCLA dynamically assigns positive samples for
each object within a cross-shaped region. The size of this
region is determined by a distance parameter, which repre-
sents the Manhattan distance from the object’s center point.
Given the varying scale and potential missing points in point
clouds, a dynamic selection strategy is employed to adap-
tively choose positive samples from the cross-shaped region.
As a result, each object is assigned sufficient positive sam-
ples, and objects of different scales receive a similar number
of positive samples, effectively mitigating the issue of posi-
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tive sample imbalance.
Moreover, a rotation-weighted IoU (RWIoU) is introduced

to accurately regress objects. In the 2D domain, the IoU-
based loss [Rezatofighi et al., 2019; Zheng et al., 2020;
Zhang et al., 2022a] is confirmed to be better than the Lnorm

loss. However, in 3D object detection, the development of
the IoU-based loss lags behind its 2D counterpart. This chal-
lenge arises due to the increased degrees of freedom in the 3D
domain. The proposed RWIoU utilizes the idea of rotation
weighting, thus elegantly integrating the rotation and direc-
tion attributes of objects into the IoU metric. The RWIoU
loss can replace the Lnorm and direction losses to help detec-
tors achieve higher accuracy. Finally, a 3D object detection
framework dubbed DCDet is proposed which combines the
DCLA and RWIoU.

The contributions of this work are summarized as follows:

• We thoroughly investigate the current widely used label
assignment strategies and analyze their pros and cons.
Based on experimental observations, we introduce a new
label assignment strategy called dynamic cross label as-
signment (DCLA).

• We propose a rotation-weighted IoU (RWIoU) to better
measure the proximity of two rotation boxes compared
to the L1 metric. RWIoU takes rotations and directions
of 3D objects into consideration simultaneously.

• A 3D object detector dubbed DCDet is proposed which
combines the DCLA and RWIoU. Extensive experi-
ments on the Waymo Open [Sun et al., 2020] and KITTI
[Geiger et al., 2012] datasets demonstrate the effective-
ness and generality of our methods.

2 Related Work
2.1 3D Object Detection
VoxelNet [Zhou and Tuzel, 2018] encodes voxel features us-
ing PointNet [Qi et al., 2017a], and then extracts features
from 3D feature maps through 3D convolutions. SECOND
[Yan et al., 2018] efficiently encodes sparse voxel features
by proposed 3D sparse convolution. PointPillars [Lang et al.,
2019] divides a point cloud into pillar voxels, avoiding the
use of 3D convolution and achieving high inference speed.
3DSSD [Yang et al., 2020] significantly improves inference
speed by discarding upsampling layers and refinement net-
works commonly used in point-based methods. PointRCNN
[Shi et al., 2019] produces proposals from raw points us-
ing PointNet++ [Qi et al., 2017b], and then refines bound-
ing boxes in the second stage. PV-RCNN [Shi et al., 2020a]
uses features of internal points to refine proposals. Voxel R-
CNN [Deng et al., 2021] replaces the features of raw points
in the second-stage refinement with 3D voxel features in the
3D backbone.

2.2 Label Assignment
Label assignment, which is fundamental to 2D and 3D ob-
ject detection, significantly influences the optimization of a
network. Its development is more mature in 2D object de-
tection, with RetinaNet [Lin et al., 2017] assigning anchors
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Figure 1: Cross-shaped region for different grid cell sizes.

on the output grid map, FCOS [Tian et al., 2019] designat-
ing grid points within the range of ground truth boxes as
positive samples, and CenterNet [Zhou et al., 2019b] iden-
tifying center points of ground truth boxes as positive sam-
ples. ATSS [Zhang et al., 2020] and AutoAssign [Zhu et
al., 2020] propose adaptive strategies for dynamic thresh-
old selection and dynamic positive/negative confidence ad-
justment, respectively. YOLOX [Ge et al., 2021] introduces
the SimOTA scheme for dynamic positive sample selection.
Conversely, 3D object detection label assignment is less de-
veloped, grappling with unique challenges such as maintain-
ing a balance of positive samples across various object sizes.
Current methods in 3D object detection typically use either
anchor-based [Yan et al., 2018; Lang et al., 2019; Deng et
al., 2021] or center-based [Yin et al., 2021; Ge et al., 2020;
Hu et al., 2022] label assignment schemes. However, these
schemes have drawbacks: the anchor-based label assignment
often results in unbalanced assignments, and the center-based
label assignment may overlook high-quality samples. To si-
multaneously overcome the above two drawbacks, we pro-
pose the dynamic cross label assignment (DCLA). Details
about the DCLA are described in the methodology section.

2.3 IoU-based Loss
IoU-based losses [Rezatofighi et al., 2019; Zheng et al., 2020;
Zhang et al., 2022a] without rotation have been well stud-
ied in 2D object detection. These methods not only ensure
consistency between the training objective and the evalua-
tion metric but also normalize object attributes, leading to
enhanced performance compared to the Lnorm loss. Due
to their success in 2D object detection, some 3D object de-
tection methods [Zhou et al., 2019a; Sheng et al., 2022;
Shi et al., 2022] incorporate IoU-based losses. 3DIoU [Zhou
et al., 2019a] extends IoU calculation from 2D to 3D by
considering rotation. However, the optimization direction of
3DIoU-based loss can be opposite to the correct direction. To
address this, RDIoU [Sheng et al., 2022] decouples rotation
from 3DIoU. It considers rotation as an attribute similar to ob-
ject location, but it doesn’t consider object direction. A direc-
tion loss is needed for classifying object directions. ODIoU
[Shi et al., 2022] combines L1 metric and axis-aligned IoU to
regress objects. Our proposed RWIoU incorporates both ro-
tation and direction into the IoU metric, eliminating the need
for Lnorm and direction losses. Details of RWIoU will be
explained in the next section.
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Figure 2: The overall framework of our DCDet. The dynamic cross label assignment scheme is only used in the training phase.

3 Methodology
This section will describe the dynamic cross label assignment
(DCLA) and the rotation-weighted IoU (RWIoU) in detail.
The overall framework is illustrated in Figure 2.

3.1 Dynamic Cross Label Assignment
The label assignment schemes used in existing 3D object de-
tection methods are generally based on prior information such
as spatial ranges or object scales to manually select positive
samples. For example, the anchor-based label assignment
uses object scales to set the sizes of anchors and then uses
anchors with IoU greater than a certain threshold as posi-
tive samples. The anchor-based label assignment generally
produces unbalanced positive samples for different-scale ob-
jects, causing the model to prioritize large-scale objects. The
center-based label assignment usually takes the center points
of grounding truths as positive samples. This can result in a
large number of good-quality samples being discarded, leav-
ing inefficient utilization of training data.

The above label assignment schemes have a common prop-
erty, they all use static prior information as the selection cri-
teria. And the prior information is determined by human ex-
perience. Dynamic label assignment schemes [Zhang et al.,
2020; Zhu et al., 2020; Ge et al., 2021] have shown their ad-
vantages in 2D object detection. However, directly transfer-
ring these schemes to 3D object detection is not trivial. There
are some challenges: 1) There is no space to dynamically
select positive samples for small objects (e.g. pedestrians).
Because small objects generally cover one or two grid points
on the output map; 2) The coverage of objects with different
scales varies greatly. This easily results in an imbalance of
positive samples between different scale objects.

To dynamically select sufficient high-quality positive sam-
ples while maintaining the balance between different scale
objects, we propose a dynamic cross label assignment
(DCLA) scheme. Specifically, it limits the positive sampling
range in a cross-shape region for each object. Typically, an
object’s center region on a feature map contains enough fea-
tures to identify it [Tian et al., 2019], and objects in point
clouds have regular shapes. Therefore, we only use the center

point and its surrounding points for positive sampling in the
DCLA scheme. We refer to this sampling range as the cross
region. It can be adjusted by a parameter r to adapt to outputs
with different grid cell sizes as illustrated in Figure 1. r is the
Manhattan distance away from the center point. When r = 1,
the cross region covers the center and its top, down, left, and
right neighbors. And when r = 0, the DCLA degenerates to
the center-based label assignment.

The implementation steps of the DCLA are described in
detail next. Given a ground truth bt and positions P in its
cross region, calculate the selection cost as follows:

cj = Lcls
j + λregL

reg
j , j ∈ P, (1)

where the Lcls
j and Lreg

j are the classification loss and regres-
sion loss between the ground truth bt and j-th prediction bo

j
respectively, and λreg is the weight of regression loss. Then,
sort the predictions in the cross region according to the selec-
tion costs. Next, sum the IoUs between the ground truth bt

i
and predictions bo

j , j ∈ P :

k = max(b
∑
j∈P

IoU(bt,bo
j)c, 1). (2)

We utilize k as the number of positive samples for ground
truth bt. Finally, select the top k predictions as positive sam-
ples. And the rest predictions are negative samples.

Specifically, given a point cloud input and the ground truth
boxes {bt

1,b
t
2, · · · ,bt

n}, we assume that f(bt
i,b

o
ij) repre-

sents the regression loss function, where bt
i and bo

ij denote
the i-th ground truth box and its j-th predicted box, respec-
tively. Therefore, the regression loss ` for the point cloud is
calculated as follows:

` =
1

N

n∑
i=1

ki∑
j=1

f(bt
i,b

o
ij),

N =
n∑

i=1

ki∑
j=1

1,

(3)
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where N represents the total number of positive samples in
the input point cloud, and ki denotes the number of positive
samples assigned for the ground truth bt

i. Notably, ki is cal-
culated independently for each ground truth, as in Eq. (2). It
is related to the number of high-quality samples in the cross
region and is not dependent on the ground truth scale. How-
ever, in the anchor-based label assignment, ki varies signifi-
cantly with the ground truth scale, resulting in a bias towards
large-scale objects in the loss. For the center-based label as-
signment, ki is always equal to 1, leading to inefficient uti-
lization of training data.

We adopt the heatmap target for the classification task. The
weights of positive samples are set to 1, and the weights of
negative samples in cross regions are set to the values of IoU
between predicted boxes and ground-truth boxes. As for the
rest negative samples, the weights are all set to 0.

3.2 Rotation-Weighted IoU
In general, different object categories exhibit significant scale
variations, and various attributes such as location, size, and
rotation also possess scale differences. Many existing meth-
ods employ the Lnorm loss as the regression loss. However,
this loss function renders the model sensitive to differences in
both object and attribute scales. Consequently, large objects
and attributes dominate the total loss. The IoU metric can
normalize object attributes, making it immune to scale differ-
ences. Moreover, the optimization objective of the IoU-based
loss aligns with the evaluation metrics of detection models.
Therefore, substituting the Lnorm loss with the IoU-based
loss often yields accuracy improvement [Zheng et al., 2020;
Rezatofighi et al., 2019; Sheng et al., 2022].

Utilizing IoU-based loss in 3D object detection poses sev-
eral challenges. Firstly, calculating traditional IoU requires
the computation of polyhedron volumes, which is a complex
and computationally expensive task. Secondly, the traditional
IoU-based loss, due to its tight coupling with rotation, can
lead to misdirection in optimization, resulting in training in-
stability [Sheng et al., 2022]. Lastly, integrating the tradi-
tional IoU metric with object directions is not trivial. There-
fore, the inclusion of L1 loss or direction loss becomes nec-

essary to aid models in classifying object directions.
To tackle the aforementioned challenges, we propose a

rotation-weighted IoU (RWIoU). It thoroughly decouples the
rotation from the IoU calculation, making the computation
similar to the axis-aligned IoU computation. RWIoU can be
implemented with just a few lines of code. By integrating
sine and cosine values of rotations of objects into a rotation
weighting item, our RWIoU can penalize rotation and direc-
tion errors simultaneously.

The RWIoU calculation process is shown in Figure 3. It
first considers two rotation boxes B1 and B2 as axis-aligned
boxes, and then calculates the intersecting volume of the two
axis-aligned boxes as follows:

sL =max (x1 − l1/2, x2 − l2/2) ,
sR =min (x1 + l1/2, x2 + l2/2) ,

sB =max (y1 − w1/2, y2 − w2/2) ,

sT =min (y1 + w1/2, y2 + w2/2) ,

sD =max (z1 − h1/2, z2 − h2/2) ,
sU =min (z1 + h1/2, z2 + h2/2) ,

Vinter =max (sR − sL, 0)×max (sT − sB , 0)
×max (sU − sD, 0) ,

(4)

where (xi, yi, zi), i ∈ {1, 2} denote the locations of box cen-
ters, (li, wi, hi), i ∈ {1, 2} represent the sizes of boxes, and
Vinter denotes the intersecting volume of two axis-aligned
boxes. Then, we update the Vinter according to the rotation
difference of the two boxes as follows:

Vweighted =ωVinter,

ω =ωsωc,

ωs =(1− α |sinθ2 − sinθ1|
2

),

ωc =(1− α |cosθ2 − cosθ1|
2

),

(5)

where θ1 and θ2 represent rotations of two boxes, ωs and ωc

denote the sine and cosine rotation error factor respectively
that are all normalized to the range of [0, 1], ω represents the
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rotation weighting item, Vweighted is the rotation-weighted
value of Vinter, α ∈ [0, 1] is a hyper-parameter which is used
to control the contribution of rotation to the RWIoU. If α =
0, the RWIoU degrades to axis-aligned IoU. After obtaining
Vweighted, the value of RWIoU can be calculated as follows:

Vunion = V1 + V2 − Vweighted ,

RWIoU =
Vweighted

Vunion
,

(6)

where V1 and V2 represent the volumes of two boxes, respec-
tively. The gradient analysis of the RWIoU is in Appendix.

3.3 Loss Function
Single-stage detectors typically encounter misalignment be-
tween classification confidence and localization accuracy. To
solve the misalignment problem, we follow Zheng et al. to
introduce an extra IoU prediction branch. The classification
loss Lcls and IoU prediction loss Liou are the same as those
of CIA-SSD [Zheng et al., 2021].

The regression loss Lreg is based on the RWIoU. It is cal-
culated as follows:

Lreg =
1

N

N∑
i=1

1−RWIoUi + (
Di

Diagi
)2, (7)

where N is the total number of positive samples, RWIoUi

and Di represent the RWIoU value and the L2 distance of
centers, respectively. Additionally, Diagi denotes the diago-
nal length of the minimal enclosing rectangle of the i-th pre-
dicted box and its ground truth. The term Di

Diagi
is used to

optimize the prediction of center locations. Since our RWIoU
incorporates sine and cosine functions to represent the rota-
tion angle of a bounding box, the need for a direction loss is
eliminated. The overall loss function is calculated as follows:

L = λclsLcls + λregLreg + λiouLiou, (8)

where λcls, λreg , and λdir are the weight of classification,
regression, and direction losses, respectively.

4 Experiments
In this section, we evaluate models on widely-used 3D object
detection benchmark datasets including Waymo Open [Sun et
al., 2020] and KITTI [Geiger et al., 2012].

4.1 Implementation Setup
Data Preprocessing
For the Waymo Open dataset, the detection range is
[−74.88, 74.88]m for the X and Y axes and [−2, 4]m for
the Z axis, the voxel size is set to (0.08, 0.08, 0.15)m. For
the KITTI dataset, the detection range is [0, 70.4]m for the X
axis, [−40, 40]m for the Y axis, and [−5, 3]m for the Z axis,
the voxel size is set to (0.05, 0.05, 0.1)m.

Training Details
The backbone of our DCDet is the same as that of CenterPoint
[Yin et al., 2021]. Following PillarNeXt [Li et al., 2023],
we use a feature upsampling in the detection head of DCDet,
which increase the output resolution with only a little over-
head. All models are trained from scratch in an end-to-end
manner with the Adam optimizer and a 0.003 learning rate.
And the parameter α used in Eq. (4) is set to 0.5. The pa-
rameters λcls and λiou used in Eq. (7) are all set to 1. And
the parameter λreg used in Eq. (1) and Eq. (7) is set to 3.
For the Waymo Open and KITTI datasets, the parameter r
used in DCLA is set to 1 and 3, respectively. On the Waymo
Open and KITTI datasets, models are trained for 30 epochs
with a batch size of 24 and 80 epochs with a batch size of 8,
respectively. Hyper-parameters analysis is in Appendix.

4.2 Comparison with State-of-the-Art Methods
The baseline models presented in Table 1 primarily utilize
either center-based or anchor-based label assignment. More-
over, they commonly employ Lnorm regression loss. As de-
picted in Table 1, the center-based label assignment demon-
strates a significant advantage over the anchor-based label
assignment on the Waymo Open dataset. Nevertheless, our
DCDet, featuring a lightweight single-stage network, sur-
passes the state-of-the-art center-based method DSVT, which
employs a heavy backbone network. Notably, even our
DCDet model trained on only 20% of the training samples
outperforms both the center-based and anchor-based methods
trained on the entire dataset. These results demonstrate the
superior performance of our DCDet framework which em-
ploys DCLA and RWIoU-based regression loss.

We also evaluated our DCDet on the Waymo Open test set
by submitting the results to the official server. The perfor-
mance comparisons are presented in Table 2, revealing that
our DCDet surpasses previous state-of-the-art methods sig-
nificantly. Particularly, in the case of small-scale categories
such as pedestrians and cyclists, our method demonstrates a
substantial advantage due to the balanced and sufficient posi-
tive samples provided by DCLA.

4.3 Effect on Different Backbone Networks
To assess the generality of our DCLA and RWIoU, we con-
duct experiments by incorporating them into several widely
used backbone networks, namely SECOND, PillarNet, and
DSVT. All models are reproduced using the OpenPCDet
[Team, 2020] codebase. We train these models using both
20% and 100% of the training data from the Waymo Open
dataset and present the results in Table 3. As evident from the
table, the integration of our DCLA and RWIoU yields signifi-
cant improvements across all model groups. This underscores
the generality and effectiveness of our proposed DCLA and
RWIoU techniques. Notably, the DCLA and RWIoU-based
regression loss belong to the learning strategies of models,
resulting in cost-free improvements. Even when trained on
only 20% of the training data, the models integrated with
our DCLA and RWIoU techniques either surpass or catch
up to the performance of models trained on the entire train-
ing data without these enhancements. This demonstrates that
our learning strategies enhance the utilization of training data,
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Method Stages LEVEL 2 LEVEL 1 LEVEL 2
mAP/mAPH Vehicle Pedestrian Cyclist Vehicle Pedestrian Cyclist

LiDAR R-CNN (a) [Li et al., 2021] 2 65.8/61.3 76.0/75.5 71.2/58.7 68.6/66.9 68.3/67.9 63.1/51.7 66.1/64.4
Part-A2-Net (a) [Shi et al., 2020b] 2 66.9/63.8 77.1/76.5 75.2/66.9 68.6/67.4 68.5/68.0 66.2/58.6 66.1/64.9

Voxel R-CNN† (a) [Deng et al., 2021] 2 68.6/66.2 76.1/75.7 78.2/72.0 70.8/69.7 68.2/67.7 69.3/63.6 68.3/67.2
PV-RCNN† (c) [Shi et al., 2020a] 2 69.6/67.2 78.0/77.5 79.2/73.0 71.5/70.3 69.4/69.0 70.4/64.7 69.0/67.8

PV-RCNN++† (c) [Shi et al., 2023] 2 71.7/69.5 79.3/78.8 81.8/76.3 73.7/72.7 70.6/70.2 73.2/68.0 71.2/70.2
FSD [Fan et al., 2022b] 2 72.9/70.8 79.2/78.8 82.6/77.3 77.1/76.0 70.5/70.1 73.9/69.1 74.4/73.3

SECOND* (a) [Yan et al., 2018] 1 61.0/57.2 72.3/71.7 68.7/58.2 60.6/59.3 63.9/63.3 60.7/51.3 58.3/57.0
PointPillars* (a) [Lang et al., 2019] 1 62.8/57.8 72.1/71.5 70.6/56.7 64.4/62.3 63.6/63.1 62.8/50.3 61.9/59.9
IA-SSD (a) [Zhang et al., 2022b] 1 66.8/63.3 70.5/69.7 69.4/58.5 67.7/65.3 61.6/61.0 60.3/50.7 65.0/62.7

SST* (a) [Fan et al., 2022a] 1 67.8/64.6 74.2/73.8 78.7/69.6 70.7/69.6 65.5/65.1 70.0/61.7 68.0/66.9
CenterPoint‡ (c) [Yin et al., 2021] 1 68.2/65.8 74.2/73.6 76.6/70.5 72.3/71.1 66.2/65.7 68.8/63.2 69.7/68.5

VoxSet (c) [He et al., 2022] 1 69.1/66.2 74.5/74.0 80.0/72.4 71.6/70.3 66.0/65.6 72.5/65.4 69.0/67.7
PillarNet (c) [Shi et al., 2022] 1 71.0/68.5 79.1/78.6 80.6/74.0 72.3/66.2 70.9/70.5 72.3/66.2 69.7/68.7
AFDetV2 (c) [Hu et al., 2022] 1 71.0/68.8 77.6/77.1 80.2/74.6 73.7/72.7 69.7/69.2 72.2/67.0 71.0/70.1

CenterFormer (c) [Zhou et al., 2022] 1 71.1/68.9 75.0/74.4 78.6/73.0 72.3/71.3 69.9/69.4 73.6/68.3 69.8/68.8
SwinFormer (c) [Sun et al., 2022] 1 -/- 77.8/77.3 80.9/72.7 -/- 69.2/68.8 72.5/64.9 -/-

PillarNeXt (c) [Li et al., 2023] 1 71.9/69.7 78.4/77.9 82.5/77.1 73.2/72.2 70.3/69.8 74.9/69.8 70.6/69.6
DSVT (Pillar) (c) [Wang et al., 2023] 1 73.2/71.0 79.3/78.8 82.8/77.0 76.4/75.4 70.9/70.5 75.2/69.8 73.6/72.7

DCDet (20%) (ours) 1 74.0/71.5 79.2/78.7 83.8/77.6 77.4/76.3 71.0/70.6 76.2/70.2 74.8/73.7
DCDet (ours) 1 75.0/72.7 79.5/79.0 84.1/78.5 79.4/78.3 71.6/71.1 76.7/71.3 76.8/75.7

Table 1: Performance comparisons on the Waymo Open validation set. The results of AP/APH are reported. *: reported by [Fan et al.,
2022b]. †: reported by [Shi et al., 2023]. ‡: reported by [Wang et al., 2023]. ‘a’ and ‘c’ denote the anchor-based and center-based label
assignment, respectively. ‘20%’ denotes only 20% training samples are used.

Method LEVEL 2 LEVEL 1 LEVEL 2
mAP/mAPH Vehicle Pedestrian Cyclist Vehicle Pedestrian Cyclist

CenterPoint [Yin et al., 2021] - 80.2/79.7 78.3/72.1 - 72.2/71.8 72.2/66.4 -
PV-RCNN [Shi et al., 2020a] 71.2/68.8 80.6/80.2 78.2/72.0 71.8/70.4 72.8/72.4 71.8/66.1 69.1/67.8
PillarNet-18 [Shi et al., 2022] 71.3/68.5 81.9/81.4 80.0/72.7 68.0/66.8 74.5/74.0 74.0/67.1 65.5/64.4

AFDetV2 [Hu et al., 2022] 72.2/70.0 80.5/80.0 79.8/74.4 72.4/71.2 73.0/72.6 73.7/68.6 69.8/68.7
PV-RCNN++ [Shi et al., 2023] 72.4/70.2 81.6/81.2 80.4/75.0 71.9/70.8 73.9/73.5 74.1/69.0 69.3/68.2

DCDet (ours) 75.7/73.3 82.2/81.7 83.4/77.8 77.3/76.1 74.8/74.4 77.5/72.1 74.7/73.5

Table 2: Performance comparisons on the Waymo Open test set by submitting to the official test evaluation server. The results are achieved
by using single point cloud frames. No test-time augmentations are used.

which is particularly valuable considering the high cost asso-
ciated with labeling 3D bounding boxes.

4.4 Ablation Study
To further study the influence of each component of DCDet,
we perform a comprehensive ablation analysis on the Waymo
Open and KITTI datasets. For the Waymo Open dataset, fol-
lowing prior works [Shi et al., 2020a; Wang et al., 2023],
models are trained on 20% training samples and evaluated on
the whole validation samples. For the KITTI dataset, models
are trained on the train set and evaluated on the val set.

Effect of RWIoU and DCLA
The baseline model adopts center-based label assignment and
L1 regression loss. To evaluate the effectiveness of our pro-
posed methods, we systematically integrate RWIoU-based re-
gression loss and DCLA into the baseline model. The abla-
tion results are presented in Table 4. We observe a notable
performance improvement when incorporating RWIoU-based
regression loss, as demonstrated by the results in the 1st and
2nd rows of Table 4. This suggests that the proposed loss
function is better suited for the task of 3D object detection
compared to the traditional L1 loss. Furthermore, models

trained with DCLA consistently achieve significantly better
performance than the baseline, as illustrated in the 1st and
3rd rows of Table 4. This indicates that DCLA facilitates
improved utilization of the available training data, thus en-
hancing the overall model performance. Notably, when both
RWIoU-based regression loss and DCLA are used, the model
achieves the highest performance among all evaluated mod-
els. These findings validate the effectiveness of our proposed
methods and highlight the importance of carefully designing
the loss function and label assignment for improving the per-
formance of 3D object detectors.

Comparison with Other Regression Losses
Table 5 provides a comparison of different regression losses.
All models utilize the DCLA scheme and the same backbone
network. The results in the 1st, 2nd, and 3rd rows of Ta-
ble 5 reveal marginal differences between the L1, RDIoU-
based [Sheng et al., 2022], and ODIoU-based [Shi et al.,
2022] regression losses. However, our RWIoU-based loss
exhibits a significant performance improvement compared
to the other regression losses, as demonstrated in the 4th

row of Table 5. These results highlight the effectiveness of
our RWIoU, which decouples the rotation from IoU calcula-
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Method Training Data LEVEL 1 LEVEL 2
mAP/mAPH Vehicle Pedestrian Cyclist mAP/mAPH Vehicle Pedestrian Cyclist

SECOND 20% 64.8/60.4 70.9/70.3 65.8/54.8 57.8/56.2 58.7/54.7 62.6/62.0 57.8/48.0 55.7/54.2
SECOND* 20% 73.4/70.0 74.0/73.3 77.0/69.1 69.2/67.7 67.1/64.0 65.7/65.2 68.7/61.3 66.9/65.4

Improvement ↑ N/A +8.6/+9.6 +3.1/+3.0 +11.2/+14.3 +11.4/+11.5 +8.4/+9.3 +3.1/+3.2 +10.9/+13.3 +11.2/+11.2
PillarNet 20% 71.6/68.0 72.9/72.3 73.0/64.1 68.9/67.6 65.6/62.3 64.9/64.4 65.3/57.2 66.5/65.2

PillarNet* 20% 75.1/70.9 75.6/75.0 78.1/67.7 71.7/70.0 69.0/65.1/ 67.8/67.3 70.0/60.4 69.2/67.6
Improvement ↑ N/A +3.5/+2.9 +2.7/+2.7 +5.1/+3.6 +2.8/+2.4 +3.4/+2.8 +2.9/+2.9 +4.7/+3.2 +2.7/+2.4

DSVT 20% 78.3/75.3 78.1/77.6 82.3/74.8 74.6/73.5 72.2/69.3 69.8/69.3 74.7/67.7 72.0/71.0
DSVT* 20% 79.8/76.5 79.2/78.7 83.6/75.3 76.5/75.4 73.7/70.6 71.1/70.7 76.2/68.3 73.9/72.8

Improvement ↑ N/A +1.5/+1.2 +1.1/+1.1 +1.3/+0.5 +1.9/+1.9 +1.5/+1.3 +1.3/+1.4 +1.5/+0.6 +1.9/+1.8
SECOND 100% 67.2/63.1 72.3/71.7 68.7/58.2 60.6/59.3 61.0/57.2 63.9/63.3 60.7/51.3 58.3/57.1

SECOND* 100% 74.2/71.0 74.4/73.8 78.4/70.8 69.9/68.5 68.0/65.1 66.3/65.9 70.2/63.2 67.5/66.1
Improvement ↑ N/A +7.0/+7.9 +2.1/+2.1 +9.7/+12.6 +9.3/+9.2 +7.0/+11.9 +2.4/+2.6 +9.5/+12.9 +9.2/+9.0

PillarNet 100% 73.4/70.0 74.0/73.5 75.3/66.9 70.8/69.6 67.4/64.3 66.2/65.7 67.7/60.0 68.3/67.1
PillarNet* 100% 75.7/71.9 75.8/75.3 79.1/69.7 72.2/70.7 69.7/66.1 68.2/67.6 71.1/62.4 69.8/68.4

Improvement ↑ N/A +2.3/+1.9 +1.8/+1.8 +3.8/+2.8 +1.4/+1.1 +2.3/+1.8 +2.0/+1.9 +3.4/+2.4 +1.5/+1.3
DSVT 100% 80.1/77.4 79.1/78.6 82.7/76.3 78.4/77.3 73.8/71.3 70.9/70.5 75.0/68.9 75.6/74.6

DSVT* 100% 81.5/78.7 80.4/79.9 84.5/77.4 79.7/78.6 75.7/72.9 72.6/72.1 77.2/70.4 77.2/76.2
Improvement ↑ N/A +1.4/+1.3 +1.3/+1.3 +1.8/+1.1 +1.3/+1.3 +1.9/+1.6 +1.7/+1.6 +2.2/+1.5 +1.6/+1.6

Table 3: Effect on different backbone networks. The results of AP/APH on the Waymo Open validation set are reported. ‘*’ represents that
our DCLA and RWIoU-based regression loss are applied.

RWIOU DCLA Vehicle Pedestrian Cyclist
69.2/68.7 73.4/68.5 72.6/71.5

X 69.9/69.3 74.3/68.5 74.1/73.1
X 70.5/70.0 75.2/69.7 74.4/73.3

X X 71.0/70.5 75.9/70.1 75.1/74.0

Table 4: Effect of different components of DCDet. RWIoU and
DCLA denote RWIoU-based regression loss and dynamic cross la-
bel assignment, respectively. The LEVEL 2 AP/APH results on the
Waymo Open validation set are reported.

tion by introducing rotation weighting. Notably, the RDIoU-
based loss necessitates an additional direction classification
loss, and the ODIoU-based loss requires an extra L1 loss.
In contrast, our RWIoU-based loss is a pure IoU-based loss
without any auxiliary losses. This simplification allows our
approach to achieve superior performance without introduc-
ing additional complexity.

Comparison with Other Label Assignment Schemes
Table 6 compares different label assignment schemes with all
models using the RWIoU-based regression loss and the same
backbone network. As depicted in the 1st and 3rd rows of
Table 6, both anchor-based and box-based label assignment
exhibit subpar performance when it comes to small objects
like pedestrians and cyclists. This is mainly due to the un-
balanced assignment of positive samples for objects with dif-
ferent scales. On the other hand, the center-based label as-
signment, as shown in the 2nd row of Table 6, achieves good
results on the Waymo Open dataset but performs poorly on
the KITTI dataset. We argue that this discrepancy arises from
overlooking a large number of excellent samples, resulting
in an insufficient number of positive samples for training on
small-scale datasets like KITTI. Moreover, the poor perfor-
mance of simOTA [Ge et al., 2021] in 3D object detection, as
demonstrated in the 4th row of Table 6, highlights the chal-
lenges of directly transferring methods from the 2D domain to
the 3D domain. However, our DCLA outperforms these base-
line label assignment schemes on both the Waymo Open and

Regression Loss Vehicle Pedestrian Cyclist
L1 70.3/69.8 75.0/69.6 74.0/73.0

RDIoU-based 70.2/69.7 74.8/69.3 74.3/73.2
ODIoU-based 70.5/70.0 75.2/69.7 74.4/73.3
RWIoU-based 71.0/70.5 75.9/70.1 75.1/74.0

Table 5: Comparison results of different regression losses. The
LEVEL 2 AP/APH results on the Waymo Open validation set are
reported.

Lable Assignment Waymo KITTI
Vehicle Pedestrian Cyclist Mod. Car

Anchor-based 67.8/67.3 63.4/55.5 67.7/66.5 85.37
Center-based 69.9/69.3 74.3/68.5 74.1/73.1 75.49
Box-based 67.8/67.4 66.2/61.4 69.9/69.0 85.32
simOTA 68.7/68.3 67.8/63.1 72.2/71.2 85.45
DCLA 71.0/70.5 75.9/70.1 75.1/74.0 85.82

Table 6: Comparison results of different label assignment schemes.
The LEVEL 2 AP/APH results on the Waymo Open validation set
and moderate APR40 results on the KITTI val are reported.

KITTI datasets, as illustrated in the last row of Table 6. This
confirms that our DCLA can adapt to datasets of different
scales by enabling balanced and adequate positive sampling.

5 Conclusion
In this paper, we propose a dynamic cross label assignment
(DCLA), which dynamically assigns positive samples from
a cross-shaped region for each object. The DCLA scheme
mitigates the imbalanced issue in the anchor-based assign-
ment and the loss of high-quality samples in the center-based
assignment. Thanks to the balanced and adequate positive
sampling, DCLA effectively adapts to different scale datasets.
Moreover, a rotation-weighted IoU (RWIoU), which consid-
ers the rotation and direction in a weighting way, is intro-
duced to measure the proximity of two rotation boxes. Exten-
sive experiments conducted on various datasets demonstrate
the generality and effectiveness of our methods.
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