
Where Elegance Meets Precision: Towards a Compact, Automatic, and Flexible
Framework for Multi-modality Image Fusion and Applications

Jinyuan Liu1 , Guanyao Wu2 , Zhu Liu2 , Long Ma2 , Risheng Liu2 , Xin Fan2∗

1School of Mechanical Engineering, Dalian University of Technology
2School of Software Technology, Dalian University of Technology

atlantis918@hotmail.com, rollingplainko@gmail.com, {rsliu, xin.fan}@dlut.edu.cn

Abstract
Multi-modality image fusion aims to integrate im-
ages from multiple sensors, producing an image
that is visually appealing and offers more compre-
hensive information than any single one. To en-
sure high visual quality and facilitate accurate sub-
sequent perception tasks, previous methods have
often cascaded networks using weighted loss func-
tions. However, such simplistic strategies strug-
gle to truly achieve the “Best of Both Worlds”,
and the adjustment of numerous hand-crafted pa-
rameters becomes burdensome. To address these
challenges, this paper introduces a Compact, Au-
tomatic and Flexible framework, dubbed CAF, de-
signed for infrared and visible image fusion, along
with subsequent tasks. Concretely, we recast the
combined problem of fusion and perception into a
single objective, allowing mutual optimization of
information from both tasks. Then we also uti-
lize the perception task to inform the design of fu-
sion loss functions, facilitating the automatic iden-
tification of optimal fusion objectives tailored to
the task. Furthermore, CAF can support seam-
less integration with existing approaches easily, of-
fering flexibility in adapting to various tasks and
network structures. Extensive experiments demon-
strate the superiority of CAF, which not only pro-
duces visually admirable fused results but also re-
alizes 1.7 higher detection mAP@.5 and 2.0 higher
segmentation mIoU than the state-of-the-art meth-
ods. The code is available at https://github.com/
RollingPlain/CAF IVIF.

1 Introduction
With the increasing complexity of application scenarios in in-
telligent systems, the drawbacks of single-type sensors have
become apparent. They are incapable of providing a precise
and comprehensive description of scenes or targets, leading
to difficulties in accomplishing tasks in real-world challeng-
ing environments [Ma et al., 2019a]. To address this, image
fusion technology has emerged, which aims to conduct com-
prehensive analysis and processing of information from dif-
ferent sources, achieving a consistent description of the ob-

served scenes or targets. Among these, infrared and visible
sensors play a crucial role in the perception process of intelli-
gent systems. However, both infrared and visible images have
their own limitations in diverse scenes [Zhang and Demiris,
2023]. Therefore, fusing the infrared and visible images can
intelligent systems maintain stable perception in dynamically
changing environments.

Drawing on strong non-linear fitting ability of Convolu-
tional Neural Networks (CNNs) [Liu et al., 2023c; Liu et
al., 2023b], extensive learning-based Infrared and Visible Im-
age Fusion (IVIF) approaches have been proposed and ap-
plied well [Ma et al., 2019b; Liu et al., 2022a; Xu et al.,
2020a]. A naive way to solve IVIF and its downstream tasks
is to cascade dual networks with weighted mean functions,
with achieving certain performance improvement [Liu et al.,
2022a; Sun et al., 2022; Cao et al., 2023]. However, such
a direct alternative optimization process make the dual net-
works incline to focus on only one task, thus bringing im-
balanced performance across the dual tasks. Besides, the
joint loss function still relies on empirical designing, and the
tuning hypter-parameter is laborious, placing an obstacle to
achieve high perception accuracy while generating favorable
fused images for human inspection.

In the realm of IVIF, there is no ground truth for gener-
ating expected fused images. Consequently, the design of
the loss function plays a pivotal role in determining the final
outcome. That is to say, devising a formulation that seam-
lessly integrates the two tasks is a fundamental methodology
for achieving superior fusion and perception results. Follow-
ing this observation, this study addresses these critical issues
by consolidating the fusion and perception tasks into a single
objective, culminating in a Compact, Automatic and Flexi-
ble Framework, dubbed CAF. Specifically, we formulate the
fusion and perception tasks from a coupling constraint opti-
mization prospective, wherein each component is tailored to
its respective loss function. Then, we optimize the dual tasks
by introducing a new loss searching scheme. By allowing the
perception task to guide the entire search process, the fusion
loss function can be automatically derived, and the key fea-
tures from both tasks are mutually reinforced and optimized.

Furthermore, the proposed CAF can be seamlessly inte-
grated into existing fusion network architectures, outperform-
ing them in terms of results, thereby showcasing the flexibil-
ity and generalization capability of our CAF.
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The main contribution can be distilled as three main as-
pects as follows:

• Compact Formulation. From a new aspect, we em-
brace the image fusion and perception in a coupling con-
straint optimization. By constructing corresponding loss
functions at different levels, the dual tasks mutually con-
strain each other, thereby achieving a tightly integration.

• Automatic Optimization. Considering the need to re-
duce the burden of laborious parameter tuning and opti-
mize the dual tasks, we employ the guidance of higher-
level tasks to automatically optimize and search for suit-
able fusion loss functions. To the best of our knowledge,
this is the first time that loss function searching has been
introduced to the IVIF community.

• Flexible Framework. It is worth mentioning that CAF
is a “ready-to-use” framework. We have extended it to
several existing state-of-the-art fusion network architec-
tures, achieving remarkable progress in both fusion and
perception performance compared to their original ver-
sions. This demonstrates the flexibility and generaliz-
ability of our proposed CAF.

Our method achieves superior fused results on par with ex-
isting state-of-the-art methods and yields significant improve-
ments for perception tasks (1.7 higher mAP@.5 in detection
and 2.0 higher mIoU in segmentation).

2 Related Works
Deep learning has achieved significant results in the field of
IVIF [Liu et al., 2023a; Zhao et al., 2023a; Zhao et al., 2023b;
Liu et al., 2023d; Liu et al., 2022b] due to its powerful fea-
ture extraction capability based on neural networks. As a task
without ground truth, numerous loss functions have been pro-
posed and widely used. In early methods focused on visual
effects, Li et al. [Li and Wu, 2018] made a preliminary at-
tempt at deep learning, with a loss function composed of two
parts to constrain at both the pixel and structural levels. Ma
et al. [Ma et al., 2019b] introduced adversarial constraint loss
between the fused image and the visible image; furthermore,
they [Ma et al., 2020] adjusted the strategy of adversarial loss
to estimate the distribution of the visible and infrared domains
simultaneously, achieving significant contrast and rich texture
details. However, these methods all involve laborious manual
design of losses and adjustment of weights. Xu et al. [Xu et
al., 2020b] introduced an image quality detection mechanism
to dynamically control the weights between different parts of
the loss, creating a versatile fusion framework. Besides, Xu
et al. [Xu et al., 2020a] introduced information fidelity to dy-
namically balance the impact of the two source images on the
loss function, which somewhat reduced the burden of param-
eter tuning. However, these attempts could not eliminate the
need for designing the loss function itself.

Nowadays, adjusting the loss functions between different
tasks has become an main means of adapting fusion meth-
ods [Wu et al., 2024] to perception tasks. For object de-
tection, Liu et al. [Liu et al., 2022a] proposed a dual-level
adversarial learning network, while Sun et al. [Sun et al.,
2022] proposed a detection-driven network; both of which

cascade networks for different tasks to merge their respective
loss functions. For semantic segmentation, Tang et al. [Tang
et al., 2022] also followed a similar approach, using semantic
loss to guide the fusion network to acquire more high-level
semantic information. However, this kind of weighting of
task losses is difficult to achieve a perfect balance to ‘Best of
Both Worlds’.

3 The Proposed Method
In this section, we first given a compact formulation to model
the relationship of the dual tasks. Then we employ the high-
level tasks to automatically optimize model in a loss-free
manner. In the end, the hierarchical training is developed to
achieve “Best of Both Worlds”.

3.1 Problem Formulation
Given a pairs of aligned infrared and visible images, our goal
is to generate a visual-appealing fused image, along with high
perception accuracy. The infrared, visible and fused images
are all gray-scale with the size of m × n, denoted as column
vectors Iir, Ivis, and If ∈ Rmn×1, respectively. We for-
mulate the dual tasks into one goal, in which the respected
parameters are mutually interacted. The coupling constraint
formulation can be written as:

min
ωt

Lt(T (If ,ωt)
)
, s.t.

{
If = F(Ivis, Iir;ω

∗
f ),

ω∗
f ∈ argminωf L

f
(
F(Ivis, Iir;ωf )

)
.

(1)
where Lt is the task-specific training loss, and T denotes a
perception task network with learnable parameters ωt. Lf is
the fusion loss, and F represents fusion network with learn-
able parameters ωf. The fusion process can be symbolized as
If = F(Ivis, Iir;ωf). For the perception task, the objective
is to generate an output based on If, incorporating its own
loss function to guide the training process.

Compared to previous methods focused primarily on vi-
sual effects, our proposed model delineates a distinct relation-
ship, capturing the inherent correspondence between the two
tasks. The performance of If hinges on defining the training
loss, shaped by meticulously crafted hyper-parameters. How-
ever, selecting the appropriate loss type and adjusting weight
hyper-parameters pose considerable challenges. To address
this,e present a pioneering strategy to navigate these intrica-
cies associated with loss selection and labor-intensive tuning.

3.2 Automatic Loss Search
As aforementioned, Lf plays a significant role to investigate
the complementary modal characteristics for diverse percep-
tion tasks. To overcome the core obstacle, we present the au-
tomatic design scheme to identify task-specific weights that
guide the fusion process. Denoting these weighted parame-
ters as β, the aggregated losses based on Lf can be expressed
as Lf =

∑n
i=1 βiLi. Specially, we utilize the bi-level formu-

lation to elucidate the automatic search process, which can be
written as following:

min
β

Lt
val

(
β; T (F(Ivis, Iir;ω

∗
f );ωt)

)
,

s.t. ω∗
f ∈ argmin

ωf

Lf
train

(
F(Ivis, Iir;ωf);β

)
,

(2)
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where “train” and “val” denote the losses on the train-
ing and validation datasets, respectively. The upper-level ob-
jective seeks to minimize the weighted parameters, gauging
them against the measurements of perception tasks derived
from the fused images. Conversely, the lower-level optimiza-
tion aims to ascertain the optimal fusion parameters in the
context of the provided β. We contend that this formulation
aptly achieves task-specific image fusion. On the one hand,
the image fusion constraint aids the perception task in pre-
cisely assessing the impact of β. On the other hand, feed-
back from downstream perception tasks can encourage ad-
justments in β to further refine the fusion process.

However, solving the bi-level optimization in Eq. (2) has
been demonstrated as a challenging task, which acquires the
massive computation resource to address the nested opti-
mization [Liu et al., 2021c; Liu et al., 2021d]. In order to
effectively solve Eq. (2), inspired by the remarkably suc-
cess of differentiable architecture search [Liu et al., 2019],
we adopt the one-step truncated approximation strategy. To
simplify the representation, we utilize the Ltval(β;ω∗

f ) and
Lftrain(β;ωf) to concisely describe the upper and lower
objectives in Eq. (2). In detail, the gradient of upper-
level objective can be approximated as ∇βLtval(β;ω∗

f ) ≈
∇βLtval(β;ωf − η∇ωf

Lftrain(β;ωf)), where η denotes the
learning rate of fusion. In this way, ω∗

f can be approximated
by the one-step gradient of image fusion. Moreover, in or-
der to address the hessian matrix, we further utilize the finite
difference approximation to solve this second-order gradient,
which can describe the intrinsic latent relationship between β

and ωf. Denoted ωf − η∇ωf
Lftrain(β;ωf) as ω

′

f, the finite
difference approximation can be written as

∇2
β,ωf

Lt
val∇ω

′
f
Lf
train ≈

∇βLf
train(β;ω

+
f )−∇βLf

train(β;ω
−
f )

2δ
,

(3)
where δ is a constant and we define ω±

f = ωf ±
δ∇ω

′
f
Ltval(β;ω

′

f). Thus, we obtain the efficiency approxi-
mated gradient update of upper-level objective to perform the
automatic search for Lf. We also elaborately illustrate the
search procedure in Algorithm 1.

Algorithm 1 Automatic Loss Function Search

Require: The loss functions Lt, Lf, and other necessary
hyper-parameters.

Ensure: The optimal parameters β∗.
1: while not converged do
2: % Optimizing the perception task weights ωt;
3: ωt ← ωt −∇Lttrain(If;ωt);
4: % Optimizing the image fusion network;
5: ωf ← ωf −∇Lftrain(Ivis, Iir;ωf,β);
6: % Optimizing the hyper-parameter β using first-order

approximation;
7: β ← β − ∇βLtval(Ivis, Iir;β,ωf −

η∇ωf
Lftrain(β;ωf)));

8: end while
9: return β∗.

Figure 1: The search space of fusion loss functions.

3.3 Loss Search Space
We introduce 4 distinct loss functions: pixel-level loss (com-
prising L1 and LMSE), structural similarity loss LSSIM, gradi-
ent loss Lgrad, and perceptual loss Lper. Each function is
tailored to measure specific image characteristics. Detailed
formulations of loss functions are presented in Figure 1.

• Pixel-wise similarity loss, including L1 and LMSE, are
introduced, which aim to ensure that the pixel inten-
sity of the fused image is consistent with reference im-
ages with p = {1, 2}. L1 has been proven to be
effective in previous fusion work[Huang et al., 2022;
Liu et al., 2022a; Sun et al., 2022; Ma et al., 2021],
while LMSE has also widely applied[Xu et al., 2020a;
Liu et al., 2021a]. Specifically, we consider there candi-
date references, including source images (Ivis and Iir),
pixel intensity maximum (max(Ivis, Iir)), and visual
saliency guidance (M(Ivis, Iir)), calculated by [Liu et
al., 2022a]. M denotes the aggregation operation based
on saliency mask, which can be written as Mask⊗ Iir +
(1− Mask)⊗ Ivis.

• Structural similarity (SSIM) [Wang et al., 2004] has
been widely used in the field of image fusion[Zhao et
al., 2020; Xu et al., 2020a; Liu et al., 2022a; Liu et al.,
2021b]. It considers the similarity in brightness, con-
trast, and structure, which can better reflect human per-
ception of image quality.

• Gradient loss is added into the search space, which fo-
cuses on the details and local edge information of the
image, widely used in [Zhang and Ma, 2021; Wang et
al., 2022; Sun et al., 2022; Ma et al., 2021].

• Perceptual loss, compared with others, focuses more on
the perceptual quality and visual effects of images[Ledig
et al., 2017], which is widely used in the fields of image
fusion, generation, and restoration[Wang et al., 2022;
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Han et al., 2022]. In the formulation, φl denotes the
l-th layer in VGG-16 and L = {1, 3, 5, 9, 13}.

3.4 Hierarchical Training
After obtaining the optimal combination β for the LF, we can
further solve the major objective Eq. (1) with the hierarchical
training. Due to the huge gradient computation of parame-
ters for this nested formulation, instead of utilizing the exact
solutions and above approximation directly, we introduce the
stage-wise gradual learning to hierarchically address this ob-
jective. In details, we first optimize the constraint to obtain
the optimal parameters of fusion (i.e., ω∗

f ). Then we conduct
the optimization for the upper-level objective to obtain the de-
sired parameters of perception. Owing to the link and guid-
ance that the proposed CAF established between the task and
the fusion network during the searching, we can employ the
training for fusion and perception separately. This strategy
not only circumvents the potential negative influence of task
loss on the fusion network parameters but also obviates the
rigid demand for labeled data intrinsic to cascaded networks.
Importantly, this approach realizes ”Best of Both Worlds”,
fulfilling the inherent requirements of the image fusion and
perception tasks.

Discussion. We argue that our framework has two signif-
icant characteristics, including model-irrelevant generaliza-
tion and task-related flexibility. Firstly, our framework is
generic enough to replace the arbitrary fusion networks and
discover suitable loss combination for improve perception
and visual quality. Secondly, due to the flexible formulation
(Eq. (1)) and effective task-guided loss search (Eq. (2)), our
framework is effective to address various multi-modality se-
mantic perception tasks, without introducing redundant aux-
iliary learning mechanisms (i.e., feature interaction). The re-
lated experimental details are reported below.

4 Experiments
4.1 Implementation Details
Search configurations. We employed labeled datasets
M3FD [Liu et al., 2022a] and MFNet [Ha et al., 2017] for
searching, with the former being randomly partitioned and
the latter using the standard division. The fusion network
F is simply composed of three dense blocks, without any
specific design. We selected state-of-the-art perceptual task
methods (YOLOv51 for detection, and Segformer [Xie et al.,
2021] for segmentation) as the task network T to integrate
into the framework, adopting the provided s/mb1 models and
maintaining their original loss functions. During the search
for the fusion hyper-parameters matrix β, we used the Adam
optimizer with an initial learning rate of 5e-2 for 10 epochs
of iterations, and adopted a step learning rate decay strategy
at a rate of 0.998.

Training configurations. With the searched loss func-
tion Lf, we optimize ωf on 1k image blocks collected from
M3FD, TNO [Toet, 2017], and RoadScene [Xu et al., 2020a],
using the Adam optimizer with a learning rate of 1e-4 for 100

1https://github.com/ultralytics/yolov5

epochs. After training the fusion network F , the generated
fusion images are fed into the task network for fine-tuning
to test task performance. Except for the training rounds (100
epochs for detection, 4k iterations for segmentation), all other
settings remain unchanged as per the original source code.
All search and training experiments are performed on two
NVIDIA Tesla V100 GPUs within PyTorch framework.

In the following, we compared with 7 SOTA competitors,
including DIDFuse [Zhao et al., 2020], SDNet [Zhang and
Ma, 2021], UMFusion [Wang et al., 2022], DeFusion [Liang
et al., 2022], ReCoNet [Huang et al., 2022], U2Fusion [Xu et
al., 2020a], and TarDAL [Liu et al., 2022a]2.

4.2 Evaluation in Object Detection
Qualitative detection comparisons. We visualize some
results of object detection in Figure 2. The first set of images
are daytime road scenes, in which pedestrians are basically
invisible in the visible images, while the infrared images have
significant target information. The methods in the first row
of red area fail to fully retain useful information from both
modalities, and their low-contrast fusion results do not sup-
port high-precision detection. Benefiting from the detection-
favorable loss obtained through searching, our method signif-
icantly outperforms the SOTA method TarDAL, in the detec-
tion performance of this scene. The second set of images fea-
tures small targets in overcast, bright night scenes. Similarly,
our method achieves the highest detection accuracy. How-
ever, TarDAL misses the car in the lower right corner due to
excessive contrast.

Quantitative detection comparisons. Table 1 presents
the object detection results of various fusion methods on
the M3FD and Multispectral [Takumi et al., 2017] datasets,
which are measured by average precision (AP) and mean av-
erage precision (mAP). The former includes a variety of chal-
lenging road scenes, while the latter mostly comprises low-
resolution campus scenes. The two source image modali-
ties show particularly notable results in the categories of peo-
ple and motorcycle, where other methods focusing on visual
effects cannot maintain consistent superior detection perfor-
mance. The SOTA method TarDAL, achieves second best
in multiple categories, but its overall performance still has a
considerable gap compared to our method on both datasets.
That also verifies that our search framework can effectively
provide a task-appropriate loss to boost performance.

4.3 Evaluation in Semantic Segmentation
Qualitative segmentation comparisons. Figure 3 dis-
plays the visual effects of segmentation, where the labels are
embedded in the source images. In both daytime and night-
time scenarios, infrared and visible images exhibit comple-
mentary segmentation expressions characteristic of their own
modalities. Notably, the proposed method effectively with-
stands the interference from infrared to segment thermally
insensitive objects (e.g., the car in the night scene). On the
other hand, other fusion-based methods cannot correctly pre-
dict thermally sensitive objects (e.g., the pedestrian in the

2The version guided by detection is selected for comparision
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Method Source
M3FD dataset Multispectral dataset

People Car Bus Lamp Motor Truck mAP@.5:.95 mAP@.5 Person Car Bike Cone CStop mAP@0.5:.95 mAP@.5

Infrared - 31.6 50.5 58.6 17.1 25.6 43.3 37.8 65.3 35.3 40.2 28.5 12.8 27.6 28.9 57.0
Visible - 21.1 50.3 55.2 25.0 29.0 42.8 37.2 65.4 27.5 41.9 26.3 20.0 30.8 29.3 58.9
DIDFuse IJCAI’20 28.1 50.9 57.8 24.1 25.3 45.1 38.6 66.3 32.8 42.1 26.7 19.9 29.6 30.2 61.3
SDNet IJCV’21 29.8 52.3 57.3 24.3 24.8 43.6 38.7 67.2 34.3 41.6 26.5 18.6 28.9 30.0 61.7
UMFusion IJCAI’22 29.9 52.2 58.4 23.5 26.1 42.8 38.8 64.9 31.9 41.3 26.8 19.3 30.2 39.9 61.4
DeFusion ECCV’22 30.3 52.3 59.3 26.1 25.7 45.5 39.9 67.8 34.6 41.5 25.4 19.4 30.8 30.3 61.1
ReCoNet ECCV’22 28.6 52.4 58.1 25.8 24.1 43.6 38.8 67.3 34.2 42.0 24.8 18.5 31.2 30.1 61.4
U2Fusion TPAMI’22 29.3 51.3 58.7 25.7 26.1 44.4 39.3 65.9 31.5 41.7 26.5 20.1 30.4 30.0 61.3
TarDAL CVPR’22 29.9 52.4 60.1 23.2 28.1 45.6 39.9 67.9 34.8 42.9 27.6 20.4 32.1 31.6 61.7
Ours Proposed 31.5 53.6 60.6 26.4 24.6 46.1 40.5 69.6 35.3 43.7 27.4 20.8 31.6 31.8 62.4

Table 1: Quantitative results of object detection. Red: best; blue: 2nd best.

Figure 2: Qualitative demonstrations of different approaches on the M3FD dataset.

Figure 3: Qualitative demonstrations of different approaches on the MFNet dataset.

daytime scene), demonstrating that our result is capable of
making full use of infrared information.

Quantitative segmentation comparisons. Table 2
presents the quantitative results of various fusion methods
on the MFNet dataset, measured by Intersection-over-Union
(IoU) and Accuracy (ACC). The proposed method achieves

the highest numerical performance in multiple categories
with the fusion loss obtained from search. Furthermore,
fusion schemes with pleasant visual effects struggle to
produce excellent segmentation performance, which also
validates the effectiveness of the proposed framework that
compactly integrates the two tasks.
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Method Source
Unlabel Car Person Bike Curve Guardrail Cone Bump

mAcc mIoU
Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU

Infrared - 98.7 96.3 74.8 67.0 65.6 56.1 53.5 44.2 38.2 30.2 7.2 1.3 23.8 18.9 58.3 43.9 49.7 41.3
Visible - 99.4 97.2 86.1 81.0 53.2 46.6 64.1 56.4 28.5 22.9 33.9 7.4 40.1 36.8 31.7 30.5 50.5 43.9
DIDFuse IJCAI’20 99.3 97.2 85.1 79.0 66.5 57.1 65.4 55.3 23.4 19.9 1.6 0.8 38.3 34.6 25.8 25.0 48.3 43.7
SDNet IJCV’21 99.2 97.5 88.7 80.9 75.0 62.8 65.0 57.5 35.3 28.9 17.0 3.3 46.0 40.7 18.6 18.3 51.6 45.3
UMFusion IJCAI’22 99.1 97.3 88.3 80.6 69.6 58.4 66.2 56.4 24.1 20.2 0.4 0.1 43.3 37.9 40.3 35.8 50.6 45.3
DeFusion ECCV’22 99.2 97.4 87.8 80.5 71.2 59.5 64.3 56.1 41.5 32.8 13.0 3.0 44.3 36.7 33.9 31.4 52.6 45.9
ReCoNet ECCV’22 99.4 97.2 84.5 78.6 62.2 54.5 63.5 55.3 17.6 15.8 18.4 7.5 40.0 36.5 30.7 29.4 48.8 43.9
U2Fusion TPAMI’22 99.3 97.3 84.6 79.2 65.9 56.0 67.8 57.8 26.1 22.5 0.6 0.2 44.9 39.6 45.2 39.3 50.1 45.2
TarDAL CVPR’22 99.1 97.4 88.3 80.4 72.0 60.5 68.8 57.1 38.2 29.8 0 0 40.6 37.1 29.0 28.4 50.6 45.3
Ours Proposed 99.2 97.5 86.1 81.2 75.0 62.5 67.4 57.9 44.0 32.5 23.1 4.1 46.4 40.6 41.5 39.7 55.6 47.9

Table 2: Quantitative results of semantic segmentation. Red: best; blue: 2nd best.

Figure 4: Qualitative demonstrations of different approaches from
pre-trained Deeplab-V3+.

Validation through a pretained basedline. Besides the
fine-tuned model, Deeplab-V3+ [Chen et al., 2018] trained
on the Cityscapes dataset [Cordts et al., 2016] is also lever-
aged to measure various approaches. Source and fused im-
ages from MFNet are directly input into Deeplabv3+, respec-
tively, and their visualized results are reported in Figure 4.
In the complex lower region, our method nearly flawlessly
segments the terrain, people, and the black fence. The re-
sults demonstrate that the loss function searched from the
proposed framework are task-informative and accommodate
various scenarios of the perception task.

4.4 Analysis of Image Fusion
Influence of different tasks. We first analyze the impact of
different tasks on the search results when they are integrated
into the framework. Figure 5 shows the final search results,
with the visualization on the left and main parts of the final
searched loss function on the right. It is quite apparent that
different tasks generate different interests in the components
within the search space: compared to the segmentation task,
the detection loss is more abstract, so it pays more attention to
the loss at semantic feature level. In contrast, the segmenta-
tion task corresponds to the pixel level and prefers to capture
the most interesting parts of the image through constraints on
the maximum pixel of the source image. Reflected in the vi-
sualization effect, the result guided by segmentation tends to
be closer to the visible image (as shown in the green boxes),
with lower contrast and limited preservation of scene details;
whereas, the result guided by detection incorporates more in-
frared features, and the content within the salient pedestrians
have richer contours (as shown in the red box).

Figure 5: Results of different application tasks set on CAF.

Qualitative comparisons. Figure 6 presents visual com-
parison of various methods. In the smoggy scene, our ap-
proach perfectly retains the rich details from the visible im-
age (leaves shown in the red box) and also preserves non-
prominent information from the infrared image (the bushes
on the right side of the person in green box). In the tunnel
scene, we retain information from darker areas that is closest
to the intensity of infrared (the area in the red box), a feat
that most other methods struggle to achieve; moreover, we
effectively preserve the visible content at the exit. All in all,
our method achieves a fusion effect that surpasses the current
state-of-the-art in terms of visual appeal.
Quantitative comparisons. Besides, we make compar-
isons on three datasets using four objective metrics, includ-
ing Mutual Information (MI) [Qu et al., 2002], Standard De-
viation (SD), Visual Information Fidelity (VIF) [Han et al.,
2013], and Sum of Correlation Differences (SCD) [Aslan-
tas and Bendes, 2015]. As shown in Figure 7, our results
demonstrate consistent advantages in these statistical metrics.
Specifically, higher MI and SCD indicate that we are able
to significantly preserve the correlated information between
source images. Excellent SD and VIF suggest that our results
possess higher contrast and are in line with visual perception.

4.5 Analysis of the Proposed Framework
Model-irrelevant generality. In essence, CAF represents
a generalized learning paradigm that can potentially be di-
rectly applied to existing works. It effectively introduce the
responses/guidance from percetion tasks by the bi-level opti-
mization, enabling the adaptive search for loss functions that
are tailored to the current network. This approach enhances
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Figure 6: Qualitative demonstrations of different approaches on the M3FD dataset.

Figure 7: Qualitative demonstrations of different approaches, where
the triangles represent the mean, while the lines indicate the median.

the understanding of model characteristics at the level of loss
functions, facilitating better alignment with downstream per-
ception tasks. In this regard, we explore the application of
our CAF using representative works including U2Fusion, Re-
CoNet, and UMFusion as the fusion network F .

Table 3 presents the quantitative results of fusion visual
metrics and task-specific metrics before and after (with P)
employing our CAF for adaptive search. They all achieved
consistent improvements, both in terms of fusion quality and
performance on perception tasks, which highlight the flexibil-
ity and strong model-irrelevant generality of our framework.

Effectiveness of automatic loss function search. To ver-
ify the effectiveness of the proposed framework, we con-
structed several variants that discard the search process (H/R/A
represent handcrafting/random/average initialization of β).
The last three rows of Table 3 present the related results.
Specifically, the manually designed variant introducing prior
knowledge exhibited some effectiveness than policy-free ini-
tialization. It is evident that results of CAF are far superior to

Model
Fusion Detection Segmentation

MI VIF People Car Person Car mIoU

UMFusion 1.263 0.881 29.4 51.7 58.4 80.6 45.3
UMFusionP 1.242 0.923 30.8 52.1 59.1 80.7 47.5

ReCoNet 1.089 0.978 28.3 52.0 54.5 78.6 43.9
ReCoNetP 1.275 0.955 29.9 52.5 56.6 79.2 45.2

U2Fusion 1.139 0.918 29.8 51.7 57.9 80.7 46.6
U2FusionP 1.315 0.931 30.7 52.9 58.7 81.0 47.0

OursH 1.244 0.933 26.3 51.6 56.3 77.2 43.9
OursR 1.075 0.815 22.4 50.5 52.1 72.9 42.0
OursA 1.091 0.867 25.8 51.1 53.4 75.5 42.8
Ours 1.432 0.983 31.5 53.6 62.5 81.2 47.9

Table 3: Evaluating of generality and effectiveness of CAF on
M3FD & MFNet datasets.

any other variants in both fusion and task performance.

5 Conclusion and Remark
In this paper, we established a compact, automatic, and flex-
ible framework for infrared and visible image fusion and ap-
plications. We not only conducted an in-depth exploration
to demonstrate the exceptional characteristics of CAF, but
also performed comprehensive experiments to affirm our su-
perior performance in both image fusion and its follow-up
high-level tasks.

Broader impacts. From the task perspective, CAF pro-
vides a solution paradigm to better understand the relation-
ship between fusion and subsequent tasks. In terms of method
design, as a highly universal learning search framework, CAF
is capable of being inspiringly applied to existing methods
and providing reference and guidance for the manual design
of loss functions.
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