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Abstract
Synthetic data-driven methods perform well on im-
age rain removal task, but they still face many chal-
lenges in real rainfall scenarios due to the com-
plexity and diversity of rainy patterns. In this pa-
per, we propose a new generic paradigm for real
image deraining from the perspective of synthe-
sizing data covering more rainy patterns and con-
structing image rain removal networks with strong
generalization performance. Firstly, instead of sim-
ply superimposing rain layers, we integrate various
rainy patterns and design a phenomenal pipeline
that incorporates multiple degradation types. Sec-
ondly, we construct a Patterns-aware Rain Re-
moval Network (PRRN), which learns from both
synthetic and real data simultaneously. In addi-
tion, to eliminate the inevitable distribution differ-
ences between synthetic and real data, we design a
new Multi-representation Inter-domain Alignment
Module (MIAM) in PRRN. By using multiple par-
allel submodules, MIAM achieves alignment of
data domains in multiple feature subspaces. Based
on several authoritative objective evaluation met-
rics, we successfully validate the effectiveness and
robustness of the proposed method in real scenarios
through extensive experiments carried out on five
challenging real datasets.

1 Introduction
Due to the variety and intricacy of real rainfall scenarios and
the ill-posed nature of rain removal problem, existing image
rain removal methods tend to focus on specific rainy patterns
only, and conduct research on a single or several synthetic
rain datasets. However, as shown in Figure 1, real rainfall
scenarios usually contain a variety of different rainy patterns,
such as rain streak, rain drop, rain haze and rain block, and
there is still a large research gap in the current work address-
ing multiple rainy patterns. Next, we comprehensively intro-
duce some representative work in existing rain removal meth-
ods according to different types of supervision, as well as the
main contributions made by this paper.
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Figure 1: Multiple rainy patterns in real scenarios. (a)-(d) show four
common rainy patterns, namely, rain streak, rain drop, rain haze and
rain block, and deraining results of both PRRN and MUSS [Huang
et al., 2023] methods on different rainy patterns.

1.1 Related Work
Synthetic Data-driven Method. Based on supervised
learning of synthetic data pairs, image rain removal meth-
ods have achieved good deraining performance by design-
ing elaborate network structures [Fu et al., 2017b; Li et al.,
2018] and combining relevant priors [Chen and Hsu, 2013;
Sun et al., 2014] of rain images.

Depending on whether deraining results are generated di-
rectly or not, researchers subdivide synthetic data-driven rain
removal methods into end-to-end methods [Guo et al., 2022;
Jiang et al., 2022] and rain image model-based methods [Hu
et al., 2019; Gao et al., 2023]. End-to-end methods utilise
deep neural networks to extract and separate key features of
the rain and background layers separately, enabling the gener-
ation of clean derained images directly from the background
features. Model-based methods obtain the final derained im-
age by designing a model close to the composition of real rain
images and generating components that make up the model
one by one.
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Figure 2: The new generic real image rain removal paradigm comprises two parts: the multi-degradation type data synthesis pipeline and the
Patterns-aware Rain Removal Network (PRRN). The blue box depicts the overall framework of the data generation pipeline, consisting of
both a haze generation stage and a rain layer superposition stage. The green box represents the Multi-representation Inter-domain Alignment
Module (MIAM) in the PRRN, which is comprised of four parallel submodules with different receptive field sizes.

The deraining performance of these fully supervised meth-
ods depends largely on the synthesized dataset used. Al-
though they have achieved excellent performance on synthe-
sized data, their effectiveness is greatly compromised when
there is a large data distribution difference between the used
data and the real data.

Real Data-driven Method. In response to the inability of
synthetic rain datasets to cover a wide range of complex rainy
patterns, researchers have begun to introduce real data to en-
hance the generalization ability of image rain removal meth-
ods. According to whether synthetic data is used in the train-
ing process, real data-driven rain removal methods can be di-
vided into semi-supervised methods [Cui et al., 2022; Huang
et al., 2023] and unsupervised methods [Li et al., 2019a;
Wei et al., 2021].

Semi-supervised methods often first learn an initial net-
work based on a large amount of synthetic data, and then
improve the generalization performance of the network by
introducing real data and reducing the difference in feature
distribution between different types of data. Unsupervised
methods mostly employ the idea of generative adversarial
networks [Radford et al., 2015; Jin et al., 2018]. The gen-
erator can not only obtain the derained image from the rain
image, but also generate the corresponding rain image from
the clean background to enrich the network’s training data.
Subsequently, the discriminator leverages the evaluation re-
sult to guide the generator’s optimization direction.

Existing semi-supervised and unsupervised methods facil-
itate the task of image rain removal by effectively capturing
rain information from real data. However, the insufficient
amount of data mining has resulted in mediocre performance
of these methods in rain removal.

1.2 Our Contributions
Faced with the problems of insufficient generalization ability
under real scenarios and the inability to process diverse rainy
patterns in existing image rain removal methods, we propose
to explore them from both data and network levels. Our pro-
posed method not only achieves effective response to multiple
complex rainy patterns, but also achieves good generalization
performance under multiple types of real scenarios. Our main
contributions can be summarized as follows.

• We reconstruct a degradation model for real rain images,
and propose a phenomenological degradation pipeline to
simulate rain-world images in real scenes. The newly
constructed synthetic dataset not only contains multiple
rainy patterns, but also accounts for a variety of influ-
ences such as illumination and noise.

• A patterns-aware rain removal network is designed to
fully leverage the global feature extraction capability of
the self-attention mechanism and the local spatial explo-
ration capability of the convolutional operation. Our net-
work achieves effective alignment between the synthetic
data domain and the real data domain at the feature level.
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• A new generic paradigm for rain removal in real images
is proposed. Extensive experiments on five challenging
real-world datasets fully confirm the effectiveness and
stability of our proposed approach in dealing with mul-
tiple rain patterns in real scenarios.

2 Data Preparation
Redesigning a more comprehensive data generation pipeline
has proven to be an effective approach in multiple low-level
vision tasks [Wang et al., 2021; Meng et al., 2023]. There-
fore, we propose to construct a new real rain image degrada-
tion pipeline to solve the image rain removal problem at data
level. The pipeline takes full account of multiple rainy pat-
terns such as rain streak and rain drop produced by rainfall,
as well as indirect effects of rainy weather on the global light
and noise levels in the surrounding environment. Based on
this pipeline, we synthesize a complex rain dataset MPRain
which contains multiple rainy patterns.

As shown in the blue box in Figure 2, the data synthesis
pipeline consists of a haze generation stage based on the at-
mospheric light scattering model and a rain layer superpo-
sition stage based on the rain image model. We separately
describe each of these two stages below.

2.1 Haze Generation
In rainy weather, the increase of surface moisture and the de-
crease of temperature often form haze. Therefore, we first
take into account the effect of haze when synthesizing rain
images. Formula (1) shows the traditional atmospheric light
scattering model for haze synthesis.

H = I0t+A(1− t), (1)

where I0, H, t, and A denote the input image, the generated
haze image, the transmission map and the global atmospheric
light value, respectively. On this basis, as shown in formula
(2), we synthesize the haze image on the classical RESIDE
dataset [Li et al., 2017] by introducing tiny variables and con-
sidering environmental factors.

Iγ = γ(I0t+A(1− t) +N), (2)

here Iγ , N, and γ(·) indicate the generated haze image, am-
bient noise and Gamma correction operation respectively.
Transmission map t = e−βd reflects the proportion of light
that reaches the imaging device after particle attenuation, in
which β is the haze density control parameter, d is the depth
map obtained by the depth estimation method proposed in
[Zhang et al., 2023]. The specific details of haze image syn-
thesis are shown below.

Transmission Map. During the construction of haze im-
ages, to control the general concentration of the haze, we ini-
tialize β to a constant 2 and add a disturbance factor β1 with
a variation range of [-0.5, 0.5) to change the intensity of the
haze between different images. The adjusted expression for t
is shown below:

t = e−(2+β1)d, β1 ∈ [−0.5, 0.5). (3)

Multi-interference Environment. Taking into account
that rainy weather brings about cloud accumulation in the at-
mosphere, humidity rise, and water splashes, causing dim-
mer brightness and higher noise levels, we incorporate ran-
dom noise N and Gamma correction into our data construc-
tion process to mimic these factors’ effects on the imaging
of hazy images. Since most of the natural noise is Gaussian
noise, we first introduce Gaussian noise N with mean 0 and
standard deviation 0.2 into the haze image, and then adjust
the global color level of the image by Gamma correction.

2.2 Rain Layer Superimposition
In addition to inducing haze, rainfall also distorts images by
introducing diverse rainy patterns with varying shapes, in-
cluding rain streak, raindrop, rain block and so on. In the
rain layer superposition stage, we adopt two rainy patterns
generation approaches, convolution and rendering. The rain
image generation process satisfies the rain image model [Hu
et al., 2019] in formula (4).

I2 = Iγ(1−R/q) + αR, (4)
in which I2, Iγ , and R indicate the output rain image, the
input haze image, and the rain layer with values in the range
[0, 255], respectively. Both q and α are luminance control
factors for the rain layer. Rain layer R = Rp · tr, here Rp

denotes rain pattern layer containing multiple rainy patterns,
tr represents rain layer transmission map. The value of tr is
affected by the depth of the scene, as shown in formula (5),
when the depth of the scene is greater than d0, rainy patterns
in the image are gradually blurred with the increase of depth.

tr = e−cmax{d0,d}, (5)
here c and d0 are both constants that control the transparency
of the R and the minimum depth at which blurring occurs,
severally. The details of the synthesis of Rp are shown below.
Convolution Generation. Convolution operation com-
bined with Gaussian filtering can synthesize sharp rain
streaks with largely controllable factors such as position,
length, width and direction. Combined with the observation
that rain streaks are also denser in regions with greater depth
of scene, we generate the rain streak layer Rs by stacking the
rain streak layer by layer based on the depth map.

Rs =
K∑
k

Streak(x) ·mask(k, x), (6)

where Streak(x) is the sub-rain-streak layer randomly gen-
erated based on the convolutional approach, K represents the
number of superimposed sub-rain-streak layers and the value
is a random integer of [1, 3], and mask(k, x) is the mask
of the kth sub-rain-streak layer. As shown in formula (7),
mask(·, x) achieves a tight correlation between the density
of rain streaks and the depth of the scene by gradually in-
creasing the minimum depth at which rain streaks appear in
the sub-rain-streak layer.

mask(k, x) =

{
0, d(x) < dk,

1, d(x) ≥ dk,
(7)

in which dk = max{d(x)}/K ∗ k, k ∈ [1,K] denotes the
minimum depth at which rain streaks appear in the kth sub-
rain-streak layer.
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Dataset Streak Haze Noise LR DV

Rain200L ✓ × × 1.05 1,800/200
Rain200H ✓ × × 1.52 1,800/200
Rain14000 ✓ × × 1.11 12,600/1,400
Rain-render ✓ ✓ × 1.48 9,432/1,188

MPRain ✓ ✓ ✓ 0.90 10,305/492

Table 1: Comparison of synthetic datasets. The table provides a de-
tailed comparison of rainy patterns, environmental factors and data
volumes across multiple synthetic datasets.

Render Generation. To ensure the similarity between syn-
thesized rainy patterns and real rainy patterns, we also syn-
thesize rainy patterns using the realism rendering method pro-
posed in [Yang et al., 2016]. The final rain pattern layer Rp

is obtained by superimposing many different rendered rainy
patterns at multiple scales and combining them with the con-
volutional synthetic rain streak layer Rs.

2.3 Dataset Comparison
Table 1 provides a detailed comparison of differences in
rainy patterns, environmental factors, and data volumes be-
tween MPRain and other four synthetic datasets: Rain200L,
Rain200H [Yang et al., 2016], Rain14000 [Fu et al., 2017a],
and Rain-render [Tremblay et al., 2020]. The Luminance Ra-
tio (LR) represents the brightness comparison between the
rain image and the Ground Truth (GT) in the test set, while
the Data Volume (DV) signifies the ratio between the number
of training images and test images in the dataset.

As can be seen in Table 1, MPRain not only contains many
rainy patterns, but also integrates a variety of factors such as
noise and light in the environment. Compared with the GT,
the synthetic rain image in the MPRain has a lower bright-
ness, which is not only more in line with people’s visual feel-
ing on rainy days, but also prompts methods using MPRain
to generate clearer and brighter deraining results.

3 Patterns-aware Rain Removal Network
To cope with distributional differences between synthetic and
real data, we innovatively design a Patterns-aware Rain Re-
moval Network, which employs a semi-supervised learning
strategy and exhibits strong deraining performance on a wide
range of types of real data. The overall framework of PRRN is
shown in Figure 2, which primarily consists of three compo-
nents: the self-attentive feature mapping module, the multi-
representation inter-domain alignment module and the high-
precision image reconstruction module, which are used for
the extraction of image features, the feature alignment be-
tween different data domains and the reconstruction of de-
rained images, respectively. Below, we introduce these three
modules and the training process of PRRN in detail.

3.1 Self-attention Feature Mapping Module
The self-attentive feature mapping module consists of two
parts: the shallow feature mapping part only uses a convo-
lutional operation with kernel size of 3 × 3, and the deep
feature extraction part contains four basic blocks connected

in series. Considering the excellent performance of the self-
attention mechanism [Feng et al., 2023; Chen et al., 2023b] in
feature extraction, the multi-receptive field feature extraction
module based on self-attention proposed in [Liu et al., 2021;
Liang et al., 2022] is selected as the basic block. In addition,
skip connections are used between basic blocks to ensure the
correct transfer of shallow features in the network.

3.2 Multi-representation Inter-domain Alignment
Module

The specific structure MIAM is shown as Figure 3, which
comprises four parallel submodules. Four submodules are
composed of 1, 1, 2 and 3 convolutional layers with ker-
nel sizes of 1×1, 3×3, 5×5 and 7×7, respectively. The out-
puts of parallel submodules are simultaneously subjected to
(1) average pooling and concatenation operations to obtain
the hidden-layer code for feature alignment, and (2) con-
catenation and convolution operations to obtain the multi-
representation output feature for image reconstruction. By
employing a meticulous design of multiple submodules,
MIAM effectively extracts multi-scale information from in-
put features across various receptive fields. This not only
enables the network to capture local information of variable
sizes in diverse rainy patterns, but also ensures precise feature
alignment in multiple feature subspaces.

3.3 High-precision Image Reconstruction Module

The high-precision image reconstruction module first pro-
cesses the multi-representation output features using a 3×3
convolution layer. It then adds the resulting outputs to shal-
low features, and finally employs another 3×3 convolution
layer to restore the added features to 3 channels, thus obtain-
ing the final derained image. The addition of shallow features
further ensures that the initially extracted important informa-
tion is not lost during the propagation of the network. What is
more, throughout the processing flow of PRRN, feature maps
remain the same size as the original image, which effectively
avoids information loss due to up and down sampling.
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layer Code (HC) and the multi-presentation output feature (Fout),
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Method DDN-SIRR IVIPC DQA MPID SPA NTU
- Brisque↓ Entropy↑ Brisque↓ Entropy↑ Brisque↓ Entropy↑ Brisque↓ Entropy↑ Brisque↓ Entropy↑

Original 31.53 7.434 29.25 7.444 31.78 7.547 35.36 7.189 28.66 7.291
PReNet 24.63 7.418 26.09 7.411 29.26 7.547 31.29 7.156 24.72 7.322
MRFAN 28.61 7.422 25.91 7.426 30.45 7.545 30.49 7.157 25.18 7.288

IDT 27.80 7.413 26.89 7.426 30.98 7.544 31.81 7.154 24.97 7.312
DRS 27.80 7.401 26.00 7.307 31.73 7.538 33.47 7.053 27.34 7.288

AMRR 31.66 7.462 28.16 7.373 27.93 7.532 32.32 7.216 26.11 7.410
TRNR 26.15 7.413 25.48 7.413 29.99 7.544 30.92 7.157 24.08 7.344
UDR 32.38 7.338 35.79 7.357 35.33 7.512 38.60 7.093 28.31 7.302
SIRR 25.39 7.409 24.42 7.353 26.14 7.484 29.08 7.088 23.75 7.351

Syn2real 27.51 7.319 26.00 7.307 30.74 7.464 31.75 7.084 24.40 7.271
MOSS 27.17 7.378 28.89 7.392 30.57 7.523 32.64 7.127 25.57 7.340

SSID-KD 25.93 7.401 26.62 7.403 30.12 7.533 32.96 7.145 25.00 7.324
MUSS 26.26 7.229 26.39 7.302 29.94 7.465 30.66 7.088 26.63 7.355

Ours-teacher 27.00 7.558 24.94 7.544 25.40 7.682 29.47 7.359 25.98 7.593
Ours-student 24.57 7.596 23.71 7.536 24.86 7.707 29.24 7.404 19.70 7.627

Table 2: The performance of the proposed method is compared with several existing state-of-the-art rain removal methods on five real rain
datasets. The evaluation metrics use non-reference metrics Brisque and Entropy. By comparison, red markers indicate the best performance,
while blue markers indicate the second best performance.

3.4 Training Strategy and Loss Function
The teacher-student network [Su et al., 2021; Cui et al., 2022]
is widely used in the field of image restoration due to its pow-
erful ability to integrate synthetic and real data information.
Based on the idea of the teacher-student network, PRRN is
trained in two stages to obtain a teacher model and a student
model, respectively, both of which share the same network
architecture.
Stage 1. In the first stage, PRRN uses pairs of synthetic data
to pretrain a teacher network. The network is trained on our
proposed MPRain dataset for 520 epochs to achieve stable
image restoration performance. The loss function Lteacher

for the teacher network during training is defined as the struc-
ture similarity loss LSSIM between the derained image and
the GT, as indicated in formula (8).

LSSIM (x, y) = 1− SSIM(x, y)

= 1− (2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
,

(8)

where x, and y denote the GT and the derained image, µx,
µy and σx, σy denote means and standard deviations of the
GT and the derained image, severally. Both of C1 and C2 are
constants taken as 0.0001 and 0.0009.
Stage 2. In the second stage, PRRN first initializes a student
network using the trained teacher network. In the following
training steps, the student network not only utilizes the syn-
thetic data in the MPRain dataset, but also introduces 516 un-
paired real rain images to improve the network’s adaptability
to real rainfall scenarios.

For the learning of synthetic data, the student network em-
ploys the same structural similarity loss LSSIM as the teacher
network. For the learning of real data, we design a new inter-
domain alignment loss LDA based on MIAM. As indicated in
formula (9), the computation of LDA is performed in each of
four submodules of MIAM. Firstly, the KL divergence [Hou
et al., 2020] between the synthetic feature and the real fea-
ture in each submodule is independently calculated. Subse-

quently, LDA is obtained by combining these individual cal-
culations in equal proportion. The introduction of LDA en-
ables multi-scale alignment of synthetic and real data in mul-
tiple feature subspaces.

LDA =

4∑
i=1

KL(HC(syn, i), HC(real, i)), (9)

here HC(·, i), i ∈ [1, 4] denotes the hidden-layer code ex-
tracted from the ith submodule of MIAM for the synthetic or
real data. As in formula (10), the overall loss Lstudent of the
student network consists of structural similarity loss LSSIM

of the synthesized data and inter-domain alignment loss LDA

of the real data. The network is trained for 20 epochs under
the dual guidance of these losses.

Lstudent = λ1LSSIM + λ2LDA, (10)

in which λ1 and λ2 are constants, taken as 20 and 0.001, sev-
erally. Eventually, the total loss Ltotal of PRRN is repre-
sented in formula (11).

Ltotal = Lteacher + Lstudent. (11)

4 Experimental Results
The experiment is structured into two parts. The first part
compares the deraining performance of the proposed method
with existing state-of-the-art rain removal methods across
various real-world rainfall scenarios. It comprehensively
verifies the effectiveness and generalization of the proposed
method in authentic conditions. In the second part, ablation
experiments are conducted on the individual modules and loss
function of the proposed method. This analysis aims to vali-
date the efficacy of each module as well as the design of the
loss function.

4.1 Implementation Details
The network is trained on RTX 4090 with initial learning
rates of 0.0005 for the teacher network and 0.0001 for the
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Figure 4: Comparison of deraining performance with existing state-of-the-art rain removal methods under multiple real rainy patterns.

student network. The learning rates are adjusted using Mul-
tiStepLR and the Adam optimizer with default settings is
used to optimize network parameters. During training, im-
ages are cropped to sizes of 128×128, and data augmentation
is achieved through random rotation and flipping.

Benchmarks Descriptions and Metrics. Experiments are
conducted on five publicly available real datasets, DDN-
SIRR [Wei et al., 2018a], IVIPC DQA [Wu et al., 2019],
MPID [Li et al., 2019b], SPA [Wang et al., 2019] and NTU
[Chen et al., 2018]. These datasets contain 147, 206, 185,
146, and 103 images, respectively. Among them, only the
rain streak part of images are selected in the MPID dataset,
and only 103 frames from the real rain video are randomly
selected in the NTU dataset. Experimental performance is
evaluated using two non-reference metrics Brisque [Mittal et
al., 2012] and Entropy [González et al., 2006].

Comparison Methods. Comparison methods in the exper-
iment are as follows. Fully supervised methods include uni-
versal rain removal methods PReNet [Ren et al., 2019], MR-
FAN [Liang et al., 2022], IDT [Xiao et al., 2022] and DRS-
former [Chen et al., 2023b], and the combined removal meth-
ods AMRR [He et al., 2020], TRNR [Ran et al., 2021] and
UDR [Chen et al., 2023a] for multiple disturbance factors.
Semi-supervised methods SIRR [Wei et al., 2018b], Syn2real
[Yasarla et al., 2020], MOSS [Huang et al., 2021], SIDD-KD
[Cui et al., 2022] and MUSS [Huang et al., 2023].

4.2 Comparison with State-of-the-art Methods
Quantitative Comparisons. Table 2 compares the derain-
ing performance of PRRN with multiple existing state-of-the-
art methods on five real rain datasets. The deraining effect

is reflected by two non-reference metrics Brisque and En-
tropy, where a smaller value of Brisque indicates a clearer
image and a higher value of Entropy indicates a more de-
tailed image. As can be seen from Table 2, whether com-
paring fully supervised methods or semi-supervised methods,
PRRN’s student network can demonstrate optimal or sub-
optimal performance on most datasets, which strongly proves
the effectiveness and robustness of our proposed method in a
variety of different real scenarios. In addition, compared with
the teacher network, the student network trained on real data
shows a significant improvement in deraining performance,
indicating that our method can effectively capture key infor-
mation from real rain data.
Qualitative Comparisons. Figure 4 provides a comprehen-
sive visual comparison of deraining capabilities of PRRN
with other advanced rain removal methods under various real
rainy patterns. The figure highlights the proficiency of PRRN
in accurately identifying and eliminating various rain patterns
in real-life scenarios, yielding final images that are not only
clear but also visually appealing.

Figure 5 compares PRRN’s performance against other rain
removal methods for handling complex rainy patterns involv-
ing multiple degradation factors. From details of displayed
images, it can be seen that PRRN can not only deal with mul-
tiple composite rainy patterns, but also restore better texture
details of the image compared to other multi-factor joint rain
removal methods.

4.3 Ablation Study
A series of ablation experiments are conducted to verify the
effectiveness of our proposed real rain image degradation
pipeline and patterns-aware rain removal network.
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Figure 5: Performance comparison of rain removal methods considering multiple degradation factors in complex rain scenarios.

(a) Input (b) IDT+RH (c) IDT+MP

(d) Input (e) MRFAN+RH (f) MRFAN+MP

Figure 6: Comparison of deraining performance of IDT [Xiao et al.,
2022] and MRAFN [Liang et al., 2022] in real scenarios, after train-
ing with Rain200H (RH) and MPRain (MP) datasets, respectively.

Effectiveness of the Degradation Pipeline. We validate
the image degradation pipeline’s effectiveness by assessing
the impact of MPRain on the deraining performance of sev-
eral advanced rain removal methods. Figures 6 (a)-(c) and
(d)-(f) show deraining effects of IDT and MRFAN tested on
real rain images after training using Rain200H and MPRain
datasets respectively. It can be seen that both methods of
training on the MPRain achieve better deraining performance
on real-world rainy image, which fully demonstrates the prac-
ticality of the MPRain and the effectiveness of the degrada-
tion pipeline of the real rain image.

Effectiveness of MIAM and LDA. Table 3 verifies the
effectiveness of sequentially adding MIAM and LDA into
PRRN through the change in values before and after the
DDN-SIRR dataset. The table shows that MIAM and LDA

both enhance PRRN’s training performance to some degree.

5 Concluding Remarks
In this paper, we propose a novel image deraining paradigm
that aims to tackle challenging real-world rain removal prob-

Method DDN-SIRR
- Brisque↓ Entropy↑

w/o MIAM 27.39 7.491
MIAM+w/o LDA 27.00↓0.390 7.558↑0.067
MIAM+w/ LDA 24.57↓2.820 7.596↑0.105

Table 3: Ablation experiments of MIAM and LDA. The table
records the performance improvement of the backbone on the DDN-
SIRR dataset after adding MIAM and LDA sequentially.

lems more effectively. Through our innovative “phenomeno-
logical degradation pipeline”, we have synthesized a broad
and diverse rain dataset MPRain, which covers a wide variety
of rainy patterns and provides a strong guarantee for practi-
cal applications. To better learn from synthetic and real data,
we propose a patterns-aware rain removal network. By de-
signing a multi-representation learning module and an inter-
domain alignment loss, the network realizes the alignment of
synthetic and real data in multiple feature subspaces. Numer-
ous experimental results strongly demonstrate the paradigm’s
exceptional performance and its potential for addressing com-
plex rain removal in real settings.

Limitations. Given the current method’s propensity to
overexpose and lose sky detail, we plan to incorporate two
techniques. The first is to reasonably control the luminance
difference between the rain image and the ground truth in the
synthesized dataset, to avoid overly obvious luminance en-
hancement in the result. The second is to separate high and
low frequency parts of the image to eradicate rain textures
while safeguarding low-frequency details of the sky.
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Woods, and Steven L. Eddins. Digital image processing
using matlab. 2006.

[Guo et al., 2022] Xin Guo, Xueyang Fu, Man Zhou, Zhen
Huang, Jialun Peng, and Zhengjun Zha. Exploring fourier
prior for single image rain removal. In International Joint
Conference on Artificial Intelligence, 2022.

[He et al., 2020] Da He, Xiaoyu Shang, and Jiajia Luo. Ad-
herent mist and raindrop removal from a single image

using attentive convolutional network. Neurocomputing,
505:178–187, 2020.

[Hou et al., 2020] Yifan Hou, Jian Zhang, James Cheng,
Kaili Ma, Richard T. B. Ma, Hongzhi Chen, and Ming
Yang. Measuring and improving the use of graph informa-
tion in graph neural networks. In International Conference
on Learning Representations, 2020.

[Hu et al., 2019] Xiaowei Hu, Chi-Wing Fu, Lei Zhu, and
Pheng-Ann Heng. Depth-attentional features for single-
image rain removal. 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
8014–8023, 2019.

[Huang et al., 2021] Huaibo Huang, Aijing Yu, and Ran He.
Memory oriented transfer learning for semi-supervised
image deraining. 2021 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
7728–7737, 2021.

[Huang et al., 2023] Huaibo Huang, Mandi Luo, and Ran
He. Memory uncertainty learning for real-world single im-
age deraining. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(3):3446–3460, 2023.

[Jiang et al., 2022] Kui Jiang, Zhongyuan Wang, Zheng
Wang, Peng Yi, Junjun Jiang, Jinsheng Xiao, and Chia-
Wen Lin. Danet: Image deraining via dynamic association
learning. In International Joint Conference on Artificial
Intelligence, 2022.

[Jin et al., 2018] Xin Jin, Zhibo Chen, Jianxin Lin, Zhikai
Chen, and Wei Zhou. Unsupervised single image derain-
ing with self-supervised constraints. 2019 IEEE Inter-
national Conference on Image Processing (ICIP), pages
2761–2765, 2018.

[Li et al., 2017] Boyi Li, Wenqi Ren, Dengpan Fu, Dacheng
Tao, Dan Feng, Wenjun Zeng, and Zhangyang Wang.
Benchmarking single-image dehazing and beyond. IEEE
Transactions on Image Processing, 28:492–505, 2017.

[Li et al., 2018] Xia Li, Jianlong Wu, Zhouchen Lin, Hong
Liu, and Hongbin Zha. Recurrent squeeze-and-excitation
context aggregation net for single image deraining. In
Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu,
and Yair Weiss, editors, Computer Vision – ECCV 2018,
Cham, 2018. Springer International Publishing.

[Li et al., 2019a] Ruoteng Li, Loong Fah Cheong, and
Robby T. Tan. Heavy rain image restoration: Integrating
physics model and conditional adversarial learning. 2019
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1633–1642, 2019.

[Li et al., 2019b] Siyuan Li, Iago Breno Araujo, Wenqi Ren,
Zhangyang Wang, Eric K. Tokuda, Roberto Hirata Ju-
nior, Roberto Marcondes Cesar Junior, Jiawan Zhang, Xi-
aojie Guo, and Xiaochun Cao. Single image deraining:
A comprehensive benchmark analysis. 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3833–3842, 2019.

[Liang et al., 2022] Songliang Liang, Xiaozhe Meng, Zhuo
Su, and Fan Zhou. Multi-receptive field aggregation net-

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1036



work for single image deraining. J. Vis. Commun. Image
Represent., 84:103469, 2022.

[Liu et al., 2021] Ze Liu, Yutong Lin, Yue Cao, Han Hu,
Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using
shifted windows. 2021 IEEE/CVF International Con-
ference on Computer Vision (ICCV), pages 9992–10002,
2021.

[Meng et al., 2023] Xiaozhe Meng, Yuxin Feng, Fan Zhou,
Yun Liang, and Zhuohan Su. Towards real-world haze re-
moval with uncorrelated graph model. J. Vis. Commun.
Image Represent., 96:103927, 2023.

[Mittal et al., 2012] Anish Mittal, Anush K. Moorthy, and
Alan Conrad Bovik. No-reference image quality assess-
ment in the spatial domain. IEEE Transactions on Image
Processing, 21:4695–4708, 2012.

[Radford et al., 2015] Alec Radford, Luke Metz, and
Soumith Chintala. Unsupervised representation learning
with deep convolutional generative adversarial networks.
CoRR, abs/1511.06434, 2015.

[Ran et al., 2021] Wu Ran, Bohong Yang, Peirong Ma, and
Hong Lu. Trnr: Task-driven image rain and noise removal
with a few images based on patch analysis. IEEE Trans-
actions on Image Processing, 32:721–736, 2021.

[Ren et al., 2019] Dongwei Ren, Wangmeng Zuo, Qinghua
Hu, Peng Fei Zhu, and Deyu Meng. Progressive image
deraining networks: A better and simpler baseline. 2019
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3932–3941, 2019.

[Su et al., 2021] Zhipeng Su, Yixiong Zhang, Jianghong Shi,
and Xiao-Ping Zhang. Recurrent network knowledge dis-
tillation for image rain removal. IEEE Transactions on
Cognitive and Developmental Systems, PP:1–1, 2021.

[Sun et al., 2014] Shao-Hua Sun, Shang-Pu Fan, and
Y. Wang. Exploiting image structural similarity for single
image rain removal. 2014 IEEE International Conference
on Image Processing (ICIP), pages 4482–4486, 2014.

[Tremblay et al., 2020] Maxime Tremblay,
Shirsendu Sukanta Halder, Raoul de Charette, and
Jean-François Lalonde. Rain rendering for evaluating
and improving robustness to bad weather. International
Journal of Computer Vision, 129:341 – 360, 2020.

[Wang et al., 2019] Tianyu Wang, Xin Yang, Ke Xu,
Shaozhe Chen, Qiang Zhang, and Rynson W. H. Lau.
Spatial attentive single-image deraining with a high qual-
ity real rain dataset. 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
12262–12271, 2019.

[Wang et al., 2021] Xintao Wang, Liangbin Xie, Chao Dong,
and Ying Shan. Real-esrgan: Training real-world blind
super-resolution with pure synthetic data. 2021 IEEE/CVF
International Conference on Computer Vision Workshops
(ICCVW), pages 1905–1914, 2021.

[Wei et al., 2018a] Wei Wei, Deyu Meng, Qian Zhao, Zong-
ben Xu, and Ying Wu. Semi-supervised transfer learning

for image rain removal. 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
3872–3881, 2018.

[Wei et al., 2018b] Wei Wei, Deyu Meng, Qian Zhao, Zong-
ben Xu, and Ying Wu. Semi-supervised transfer learning
for image rain removal. 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
3872–3881, 2018.

[Wei et al., 2021] Yanyan Wei, Zhao Zhang, Yang Wang,
Mingliang Xu, Yi Yang, Shuicheng Yan, and Meng Wang.
Deraincyclegan: Rain attentive cyclegan for single image
deraining and rainmaking. IEEE Transactions on Image
Processing, 30:4788–4801, 2021.

[Wu et al., 2019] Qingbo Wu, Lei Wang, King Ngi Ngan,
Hongliang Li, Fanman Meng, and Linfeng Xu. Subjec-
tive and objective de-raining quality assessment towards
authentic rain image. IEEE Transactions on Circuits and
Systems for Video Technology, 30:3883–3897, 2019.

[Xiao et al., 2022] Jie Xiao, Xueyang Fu, Aiping Liu, Feng
Wu, and Zhengjun Zha. Image de-raining transformer.
IEEE Transactions on Pattern Analysis and Machine In-
telligence, 45:12978–12995, 2022.

[Yang et al., 2016] Wenhan Yang, Robby T. Tan, Jiashi
Feng, Jiaying Liu, Zongming Guo, and Shuicheng Yan.
Deep joint rain detection and removal from a single im-
age. 2017 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 1685–1694, 2016.

[Yasarla et al., 2020] Rajeev Yasarla, Vishwanath A.
Sindagi, and Vishal M. Patel. Syn2real transfer learning
for image deraining using gaussian processes. 2020
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2723–2733, 2020.

[Zhang et al., 2023] Ning Zhang, Francesco Nex, George
Vosselman, and Norman Kerle. Lite-mono: A lightweight
cnn and transformer architecture for self-supervised
monocular depth estimation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 18537–18546, June 2023.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

1037


	Introduction
	Related Work
	Our Contributions

	Data Preparation
	Haze Generation
	Rain Layer Superimposition
	Dataset Comparison

	Patterns-aware Rain Removal Network
	Self-attention Feature Mapping Module
	Multi-representation Inter-domain Alignment Module
	High-precision Image Reconstruction Module
	Training Strategy and Loss Function

	Experimental Results
	Implementation Details
	Comparison with State-of-the-art Methods
	Ablation Study

	Concluding Remarks

