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Abstract
The autonomous driving community is highly in-
terested in 3D occupancy prediction due to its out-
standing geometric perception and object recog-
nition capabilities. However, previous methods
are limited to existing semantic conversion mech-
anisms for solving sparse ground truths problem,
causing excessive computational demands and sub-
optimal voxels representation. To tackle the above
limitations, we propose OTOcc, a novel 3D occu-
pancy prediction framework that models semantic
conversion from 2D pixels to 3D voxels as Optimal
Transport (OT) problem, offering accurate seman-
tic mapping to adapt to sparse scenarios without at-
tention or depth estimation. Specifically, the unit
transportation cost between each demander (voxel)
and supplier (pixel) pair is defined as the weighted
occupancy prediction loss. Then, we utilize the
Sinkhorn-Knopp Iteration to find the best map-
ping matrices with minimal transportation costs.
To reduce the computational cost, we propose a
block reading technique with multi-perspective fea-
ture representation, which also brings fine-grained
scene understanding. Extensive experiments show
that OTOcc not only has the competitive prediction
performance but also has about more than 4.58%
reduction in computational overhead compared to
state-of-the-art methods.

1 Introduction
Vision-based 3D Occupancy Prediction aims to estimate the
occupancy state of 3D voxels surrounding the ego-vehicle
which provides a comprehensive 3D scene understanding. It
is particularly an essential solution for recognizing irregularly
shaped objects and also enables the open-set understanding
[Tan et al., 2023], further benefiting downstream tasks, like
prediction and planning.

Though success, most works still struggle to overcome the
semantic sparsity of ground truths, which is the fundamental

∗Corresponding Author.

Figure 1: Comparison of different semantic conversion mechanisms
for 3D occupancy prediction. (a) Depth-based methods estimate a
latent depth distribution for building 3D representations. (b) Query-
based methods pre-define the query (BEV or 3D voxels) to encode
semantics from multi-images. (c) Our OT-based method models the
mapping strategy from 2D to 3D as the Optimal Transport problem.

problem. The information density of such uncompressed rep-
resentation is low, with numerous regions corresponding to
free space in the physical world, resulting in biased 3D pre-
sentation construction. Most works are limited to two kinds
of semantic conversion mechanisms for alleviating the above-
mentioned problem, which can be divided into the follow-
ing two categories [Qi et al., 2023] : depth-based and query-
based methods as shown in Figure 1(a, b). Depth-based meth-
ods [Li et al., 2023c; Miao et al., 2023a] leverage the depth
estimation to build the multi-view frustums to form the BEV
or 3D voxels. Query-based methods [Huang et al., 2023] uti-
lize deformable attention for collecting semantics from im-
ages. However, they still suffer from the high computational
cost of utilizing heavy decoders or relying on the depth es-
timation quality due to the sparse scene semantics, which
rarely made any fundamental changes to the semantic conver-
sion method. It motivates us to solve its efficiency problems
by building the new semantic conversion mechanism without
any attention or depth estimation.
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In contrast to previous attempts, we address this issue with
the Optimal Transport (OT), a well-studied topic in Optimiza-
tion Theory that directly collects semantics from images by
constructing and optimizing the mapping matrix from 2D to
3D via Sinkhorn-Knopp Iteration as shown in Figure 1(c).
This method of semantic collection using matrix transfor-
mation reduces computational consumption by avoiding re-
peated learning of partial semantics like attention mechanism
and can produce accurate and effective semantic mapping to
avoid heavy decoder design. Completely different from cur-
rent methods, our methods do not use any attention mecha-
nism [Jia et al., 2023], temporal fusion [Yang et al., 2023]
or depth estimation [Li et al., 2023a] at all. Specifically, we
define each pixel as a supplier that supplies a certain num-
ber of semantic marks and define each grid as a demander
who needs one unit semantic mark. if a grid receives a suf-
ficient amount of semantic marks from a certain pixel, this
grid becomes one important position for that pixel in which
the complete semantics will be captured. In this context, the
number of semantic marks each pixel supplies can be inter-
preted as “how many grids that pixels need for better conver-
gence during the training process”. The unit transportation
cost between each pixel-grid pair is defined as the weighted
classification loss of the corresponding grid, where the weight
depends on the proportion of semantic marks contribution of
each pixel to that grid. After formulation, finding the best se-
mantic conversion strategy is converted to solve the optimal
transport plan, which can be quickly and efficiently solved by
the off-the-shelf Sinkhorn-Knopp Iteration [Cuturi, 2013].

Our complete framework is as shown in Figure 2, which
is named OTOcc (Optimal Transport for Occupancy Predic-
tion). First, we pre-define a group of 3D voxels representa-
tion V containing dense reference point mapping from 3D
voxels to 2D images. Motivated by low memory cost de-
sign [Huang et al., 2023], we also pre-define tri-perspective
view (TPV) mapping matrices for converting multi-view im-
ages into TPV features. After applying the camera principle,
we utilize the existing reference point mapping relationship
to complete various coarse mapping matrices from pixels to
grids by inverse projection [Zhou et al., 2022]. Then, coarse
mapping matrices are refined via Sinkhorn-Knopp Iteration
to seek the best semantic conversion strategy π∗. Multiplying
π∗ with the image features, we obtain diverse refined TPV
features, which can accurately represent current scene infor-
mation. For further reducing computational cost, we pro-
pose a practical block reading technique, which divides the V
equally into four small sets of voxels for optimization in turn.
It not only brings Multi-Perspective View (MPV) characteris-
tics to obtain more accurate estimation of 3D scenes but also
mitigates the semantic loss caused by tri-plane compression
of complex scene information. Finally, we use the lightweight
Adaptive Fusion Decoder to process MPV features for ob-
taining the 3D voxel representation and accurate occupancy
prediction. Extensive experiments against state-of-the-art oc-
cupancy prediction methods demonstrate that OTOcc outper-
forms others on two benchmarks, reducing about 4.58% com-
putational cost. Ablation studies further validate the effec-
tiveness of each module within our method. To summarise,
our main contributions are as follows:

• We introduce an innovative vision-based 3D occupancy
prediction framework named OTOcc. This work repre-
sents the first attempt at formulating the semantic con-
version from pixels to voxels as the Optimal Transport
problem to the best of our knowledge.

• OTOcc designs the dense reference points from voxels
to pixels and projects them into multiple mapping matri-
ces inversely. Then, OTOcc utilizes the Sinkhorn-Knopp
Iteration to find the optimal mapping matrices. Note that
OTOcc doesn’t use any attention mechanisms, temporal
fusion or depth estimation to show its effectiveness.

• Comprehensive experiments verify that the proposed
OTOcc achieves the competitive performance on the
Occ3D-nuScene benchmark and also show its effective-
ness for vision-based semantic segmentation task.

2 Related Work
2.1 3D Occupancy Prediction
The 3D occupancy prediction task has garnered significant
attention due to its enhanced geometry information and supe-
rior capabilities in generalized object recognition compared
to 3D object detection. Previous works [Yang et al., 2023;
Li et al., 2023d] directly utilize the BEV feature for oc-
cupancy prediction tasks. Current research in occupancy
prediction focuses on dense voxel modelling. OccFormer
[Zhang and others, 2023] decomposes the 3D processing
into the local and global transformer pathways along the
horizontal plane. Due to the high resolution of standard
voxel representation and sparse context distribution in 3D
scenes, these methods [Zhang and others, 2023; Miao et
al., 2023b] face significant computational overhead and ef-
ficiency challenges. Some approaches [Huang et al., 2023;
Li et al., 2023a] propose to reduce the number of modelled
voxels to address this problem. TPVFormer [Huang et al.,
2023] proposes a tri-perspective view method for predict-
ing 3D occupancy, leading to performance loss caused by
coarse scene semantic compression. VoxFormer [Li et al.,
2023a] mitigates computational complexity through depth
estimation and modelling only those specific areas. How-
ever, the success of this procedure critically depends on
the precision of depth estimation. PanoOcc [Wang et al.,
2023] presents a coarse-to-fine manner for constructing 3D
voxel representation. However, the lack of information from
coarse-grained modelling cannot be adequately addressed by
the up-sampling process. Some works [Lu et al., 2023;
Ouyang et al., 2024] utilize the octree representation for fine-
tuning the 3D voxels. Different from above methods, our ap-
proach models the semantics conversion from 2D images to
3D representation as the Optimal Transport problem, which
finds the best mapping strategy via Sinkhorn-Knopp Iteration.
It leverages direct mathematical mapping to avoid redundant
and complex semantic collection mechanisms like attention
or depth estimation, thereby better adapting to sparse seman-
tic scenes and reducing computational consumption.

2.2 Optimal Transport
Optimal Transport (OT), a well-studied topic in Optimization
Theory, efficiently quantifies the minimum “cost” of trans-
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Figure 2: Overall of the proposed OTOcc training framework. “TPV” stands for tri-perspective view (front, side and top). “MPV” stands for
multi-perspective view (front, left, right, rear and top). Our method first generates coarse TPV mapping matrices Mr from pixels to grids for
r-th reference points V̂r . Then, we refine Mr with Sinkhorn-Knopp Iteration to find the optimal semantic conversion strategy. Finally, the
Adaptive Fusion Decoder is designed for constructing MPV features and building accurate 3D representation through simple MLP layer.

porting mass from one distribution to another. It enables
measuring the similarity between two distributions, widely
applied in various fields, such as object detection [Ge et al.,
2021] or domain adaptive [Li et al., 2022a]. Motivated by
this well-known theory, we propose a novel framework for
3D occupancy prediction by utilizing OT, which tackles the
sub-optimal transformation problem.

3 Method
In this section, we first revisit the definition of the Optimal
Transport problem and then demonstrate how we formulate
the semantic conversion from 2D images to 3D representa-
tion in occupancy prediction into an OT problem as shown
in Figure 2. Then, motivated by TPVFormer and MatrixVT
[Zhou et al., 2022], we convert the image semantics into TPV
features by inverse projection, which utilizes the Sinkhorn-
Knopp Iteration to find the best semantic mapping strategy.
For reducing the memory cost, we propose the block read-
ing technique. It brings the more accurate estimation of 3D
scenes and mitigates the semantic loss caused by tri-plane
compression of complex scene information. Finally, we in-
troduce the Adaptive Fusion Decoder for obtaining an accu-
rate 3D voxel representation, which is lightweight and simple,
showing the superiority of our OT-based design.

3.1 Optimal Transport
Optimal Transport (OT) describes the following problem:
supposing there are ns suppliers and nd demanders in a cer-
tain area. The α-th supplier holds sα units of goods while the
β-th demander needs dβ units of goods. Transporting cost for
each unit of good from supplier α to demander β is denoted
by cαβ . The goal of OT problem is to find a transportation
plan π∗ = {παβ | α = 1, 2, . . . ns, β = 1, 2, . . . nd}, accord-
ing to which all goods from suppliers can be transported to

demanders at a minimal transportation cost:

minπ
∑ns

α=1

∑nd

β cαβπαβ .
s.t.

∑ns

α=1 παβ = dβ ,
∑nd

β=1 παβ = sα∑ns

α=1 sα =
∑nd

β=1 dβ ,
παβ ≥ 0, α = 1, 2, . . . ns, β = 1, 2, . . . nd.

(1)
This is a linear program which can be solved in polynomial
time. However, the resulting linear program is large, involv-
ing the square of feature dimensions with the semantic con-
version from 2D images to 3D representation. Hence, we
address this issue by a fast iterative solution named Sinkhorn-
Knopp [Cuturi, 2013].

3.2 OT for Semantic Conversion
As shown in Figure 2, we present a coarse-to-fine manner
for finding the semantic conversion strategy. We define the
semantic conversion from 2D images to 3D voxels as the OT
problem. Specifically, We instantiate the semantic conversion
strategy as a mapping matrix, which defines each pixel as a
supplier who supplies a certain number of semantic marks,
and defines each voxel as a demander who needs one unit
semantic mark. The pair-wise transportation cost is defined
as the weighted occupancy prediction loss. With Sinkhorn-
Knopp optimization, we can find the optimal mapping matrix.
In this section, we will introduce how to generate the mapping
matrix, calculate the transportation cost and optimize the se-
mantic conversion strategy via Sinkhorn-Knopp Iteration.
Mapping Construction. We first define a group of 3D
voxels representation V ∈ RX×Y×Z , where X,Y, Z are
the spatial resolution of the voxel space. For reducing the
computional cost, we divide the Vr equally into four small
V̂ ∈ RX̂×Ŷ×Z , where X̂ = X

2 , Ŷ = Y
2 , r ∈ {1, 2, 3, 4}.

Each grid cell in the voxel corresponds to a box in the real-
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world size of (ex, ey, ez) meters. We uniformly sample Np

points within a certain range along a dimension of the real
world. The real position of a reference point located at voxel
grid (i, j, k) in the ego-vehicle frame is (xm

i , ymj , zmk ), where
i, j, k ∈ {1, 2, · · · , Np}, m ∈ {1, 2, · · · , N3

p}. The pro-
jection between m-th projected reference point Refmi,j,k =
(xm

i , ymj , zmk ) and its corresponding 2D reference point n-th
view can be formulate as:

dn,mijk · [u
n,m
ijk , vn,mijk , 1] = Pn · [xm

i , ymj , zmk , 1]T , (2)

where Pn ∈ R3×4 is the projection matrix of the n-th cam-
era. n ∈ {0, 1, ..., Nc − 1} and Nc denotes the number of
cameras. (un,m

ijk , vn,mijk ) denotes the m-th 2D reference point
on n-th image view. dn,mijk is the depth in the camera frame.
For the sake of simplicity, we denote the process of project-
ing from three-dimensional coordinates to pixels coordinates
as {R̃ef

m

i,j,k} = Pn({Refmi,j,k}). Since not all cameras can
capture the reference points of v, we can further reduce com-
putation by removing invalid sets from {R̃ef

m

i,j,k} if none of
the reference points falls onto the image captured by the cor-
responding camera.
Inverse Projection. For further reducing memory cost, we
decide to utilize the Tri-Perspective View (TPV) shape ma-
trices as our mapping matrices from 2D images to 3D voxels
for storing the current mapping strategy and represent the 3D
voxel semantics as TPV features. In detailed, for r-th V̂, we
first define its mapping matrices as follows:

Mr = [MX̂Ŷ
r ,MŶ Z

r ,MX̂Z
r ], MX̂Ŷ

r ∈ RNcHW×X̂Ŷ ,

MŶ Z
r ∈ RNcHW×Ŷ Z , MX̂Z

r ∈ RNcHW×X̂Z ,
(3)

where H,W denotes the weight and width of image feature
maps and r ∈ {1, 2, 3, 4}. All elements of Mr are filled
with 0. Since the mappings contained in Mr and {R̃ef

m

i,j,k}
are exactly opposite, we obtain Mr through {R̃ef

m

i,j,k} by
inverse projection PI :

Mr = PI({R̃ef
m

i,j,k}). (4)

Specifically, for R̃ef
m

i,j,k = (un,m
ijk , vn,mijk ), we first encode it

as {R̃ef
m

i,j,k} = {(pn,mijk )} for obtaining its position of the
feature map after flattening:

pn,mijk = un,m
ijk + vn,mijk W + nHW, (5)

where pn,mijk ∈ [1, NcHW ]. Each pixel coordinates
(un,m

ijk , vn,mijk ) in each voxel can be expressed as a value pn,mijk

in one dimension. Then, we set the element in Mr to 1 if
its corresponding point exists in {R̃ef

m

i,j,k} and obtain the
coarse mapping matrix Mr that converts 2D image semantics
into TPV features. Next, we map the one fused feature map
ϕ ∈ RC×NcHW with 1/16 of the input resolution to coarse
TPV features Fr = [F X̂Ŷ

r , F X̂Z
r , F Ŷ Z

r ] with Mr as follows:

F X̂Ŷ /X̂Z/Ŷ Z
r = fmlp(ϕ ∗MX̂Ŷ /X̂Z/Ŷ Z

r ) ∈ RC×X̂Ŷ /X̂Z/Ŷ Z ,
(6)

Algorithm 1 Optimal Transport for Strategy Optimization
Input:

ϕ ∈ RC×Nc×Hf×Wf is the feature map
F ∈ RC×Ht×Wt is the coarse TPV feature
M ∈ RNcHfWf×HtWt is the coarse mapping matrix
A ∈ RHtWt is the sum of each column of M
G is the ground truth for F

Parameters:
C is the number of the channel
Nc is the number of the camera view
(Hf ,Wf ) is resolution of the feature map
(Ht,Wt) is resolution of the TPV feature
γ is the regularization intensity in Sinkhorn-Knopp Iter.
T is the number of iterations in Sinkhorn-Knopp Iter.

Output:
π∗ is the optimal strategy

1: P ← Forward(F )

2: sα(α = 1, 2...., NcHfWf )←
∑HtWt

j=1 (M[α, j])

3: dβ(β = 1, 2, ...,HtWt)← OnesInit
4: classification cost: C ∈ RHt×Wt ← CE(P,G)

5: C is flattened and broadcast into Ĉ ∈ RNcHfWf×HtWt

6: transportation cost: C̃ = M · Ĉ/A
7: v0, u0 ← OnesInit
8: for t=0 to T do:
9: vt+1, ut+1 ← SinkhornIter(c, vt, ut, s, d)

10: obtain π∗ from SinkhornIter(c, vT , uT , s, d)
11: return π∗

where C is the channel number and fmlp(·) denotes the multi-
layer perception layer (MLP). This MLP layer learns the char-
acteristics of Sinkhorn Iteration for better optimization and
fine-tune. The coarse mapping matrices Mr and TPV fea-
tures Fr will be used to calculate initial transportation cost
and finding the best semantic conversion strategy by refining
Mr in the following module.
Strategy Optimization. Supposing there are ns image pixels
and nd grids (across all mapping matrices Mr) for multi-view
features ϕ, we view each pixel as a supplier who holds sα
units of semantics marks (i.e., α = 1, 2, .., NcHW ), and each
grid as a demander who needs dβ units of semantic mark (i.e.,
β = 1, 2, .., η), where η ∈ {X̂Ŷ , X̂Z, Ŷ Z}. The cost crpα,gβ

for transporting one unit of semantic marks from pixel pα to
grid gβ is defined as the weighted occupancy prediction loss
corresponding to gβ :

crpα,gβ
=

1∑NCHW
i=1 Mr[i, β]

L(P (gβ), Ggβ ), (7)

where P (gβ) denotes the predicted classification score and
Ggβ denotes ground truth class for gβ . L(·) generally stands
for cross entropy loss. Specifically, we use top plane mapping
matrix MX̂Ŷ

r to instantiate the above how to transportation
cost for instance. We first use its corresponding top plane
feature F X̂Ŷ

j to calculating the classification loss:

CX̂Ŷ
r = L(F X̂Ŷ

j , GX̂Ŷ ) ∈ RX̂×Ŷ . (8)

Then, we flatten the CX̂Ŷ
r into a vector and broadcast the
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MonoScene [Cao and others, 2022] 6.06 1.75 7.23 4.26 4.93 9.38 5.67 3.98 3.01 5.90 4.45 7.17 14.91 6.32 7.92 7.43 1.01 7.65
BEVDet [Huang et al., 2021] 11.73 2.09 15.29 0.0 4.18 12.97 1.35 0.0 0.43 0.13 6.59 6.66 52.72 19.04 26.45 21.78 14.51 15.26
BEVStereo [Li et al., 2023b] 24.51 5.73 38.41 7.88 38.70 41.20 17.56 17.33 14.69 10.31 16.84 29.62 54.08 28.92 32.68 26.54 18.74 17.49
OccFormer [Zhang and others, 2023] 21.93 5.94 30.29 12.32 34.40 39.17 14.44 16.45 17.22 9.27 13.90 26.36 50.99 30.96 34.66 22.73 6.76 6.97
RenderOcc [Pan et al., 2023] 26.11 4.84 31.72 10.72 27.67 26.45 13.87 18.20 17.67 17.84 21.19 23.25 63.20 36.42 46.21 44.26 19.58 20.70
BEVFormer [Cortinhal and others, 2020] 26.88 5.85 37.83 17.87 40.44 42.43 7.36 23.88 21.81 20.98 22.38 30.70 55.35 28.36 36.00 28.06 20.04 17.69
TPVFormer [Huang et al., 2023] 27.83 7.22 38.90 13.67 40.78 45.90 17.23 19.99 18.85 14.30 26.69 34.17 55.65 35.47 37.55 30.70 19.40 16.78
CTF-Occ [Zhu et al., 2021] 28.53 8.09 39.33 20.56 38.29 42.24 16.93 24.52 22.72 21.05 22.98 31.11 53.33 33.84 37.98 33.23 20.79 18.00

OTOcc 29.10 7.81 39.23 19.45 39.54 42.45 18.15 25.72 23.81 20.13 24.56 34.73 54.45 37.12 37.23 34.56 18.53 17.10

Table 1: 3D occupancy prediction performance on the Occ3D-nuScenes dataset. Our OTOcc achieves competitive prediction performance
compared with state-of-the-art methods.
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RangeNet++ [Milioto et al., 2019] LiDAR 65.5 66.0 21.3 77.2 80.9 30.2 66.8 69.6 52.1 54.2 72.3 94.1 66.6 63.5 70.1 83.1 79.8
PolarNet [Zhang et al., 2020] LiDAR 71.0 74.7 28.2 85.3 90.9 35.1 77.5 71.3 58.8 57.4 76.1 96.5 71.1 74.7 74.0 87.3 85.7
Salsanext [Cortinhal and others, 2020] LiDAR 72.2 74.8 34.1 85.9 88.4 42.2 72.4 72.2 63.1 61.3 76.5 96.0 70.8 71.2 71.5 86.7 84.4
Cylinder3D++ [Zhu et al., 2021] LiDAR 76.1 76.4 40.3 91.2 93.8 51.3 78.0 78.9 64.9 62.1 84.4 96.8 71.6 76.4 75.4 90.5 87.4
RPVNet [Xu et al., 2021] LiDAR 77.6 78.2 43.4 92.7 93.2 49.0 85.7 80.5 66.0 66.9 84.0 96.9 73.5 75.9 76.0 90.6 88.9
BEVFormer-Base [Li et al., 2022b] Camera 56.2 54.0 22.8 76.7 74.0 45.8 53.1 44.5 24.7 54.7 65.5 88.5 58.1 50.5 52.8 71.0 63.0
TPVFormer-Base [Huang et al., 2023] Camera 68.9 70.0 40.9 93.7 85.6 49.8 68.4 59.7 38.2 65.3 83.0 93.3 64.4 64.3 64.5 81.6 79.3
Occformer [Zhang and others, 2023] Camera 70.4 70.3 43.8 93.2 85.2 52.0 59.1 67.6 45.4 64.4 84.5 93.8 68.2 67.8 68.3 82.1 80.4
PanoOcc-Base [Wang et al., 2023] Camera 70.7 73.7 42.6 94.1 87.1 56.4 62.4 64.7 36.7 69.3 86.4 94.9 69.8 67.1 67.9 80.3 77.0

OTOcc Camera 70.9 73.0 43.2 93.9 88.5 53.5 66.5 62.5 41.0 68.5 87.2 90.5 69.4 66.0 66.0 80.5 81.7

Table 2: LiDAR segmentation results on nuScenes validation dataset. Our OTOcc achieves comparable performance with state-of-the-art
vision-based methods.

vector into the matrix ĈX̂Ŷ
r ∈ RNcHW×X̂Ŷ , so that we can

calculate the initial transportation cost of MX̂Ŷ
r as follows:

C̃X̂Ŷ
r = MX̂Ŷ

r · ĈX̂Ŷ
r /AX̂Ŷ

r ∈ RNcHW×X̂Ŷ , (9)

where AX̂Ŷ
r ∈ RX̂Ŷ denotes the sum of each column of

MX̂Ŷ
r , which is the vector. In a standard OT problem, the

total supply must be equal to the total demand. Hence, for
each supplier gβ , we sum up all elements in its correspond-
ing row of MX̂Ŷ

r as its holding semantic marks. As we al-
ready have cost matrix C̃X̂Ŷ , supplying vector sα ∈ RNcHW

and demanding vector dβ ∈ RX̂Ŷ , the optimal transporta-
tion plan π∗,X̂Ŷ

r ∈ RNcHW×X̂Ŷ can be obtained by solving
this OT problem via the off-the-shelf Sinkhorn-Knopp Itera-
tion [Cuturi, 2013]. After T iteration, we get π∗,X̂Ŷ

r . One
can decode the corresponding semantic conversion strategy
by directly multiplying it with feature map by Eq. (6), which
obtains the better top plane F̂ X̂Ŷ

r = fmlp(ϕ · π∗,X̂Ŷ
r ). The

similar procedure is repeated for all mapping matrices Mr as
shown in Algorithm 1. Here, we get the refined TPV features
F̂r from each segmented voxel V̂, which contains the pure
semantics from 2D images, facilitating accurate scene repre-
sentation. Note that the optimization process of OT problem
only contains some matrix multiplications which can be ac-
celerated by GPU devices. Hence, the optimization module
only increases the total training time.

3.3 Adaptive Fusion Decoder
After sending four small V̂ through the above modules, we
obtain the refining TPV features F̂r for each V̂r, which col-
lects pure semantics from 2D images. We first need to com-
bine these features to form five diverse planes to represent the
front, left, right, rear and top features as follows:

F̂ X̂Ŷ
front = C(F̂ X̂Y

1 , F̂ X̂Y
2 ), F̂ X̂Ŷ

rear = C(F̂ X̂Y
3 , F̂ X̂Y

4 ),

F̂ top = C(F̂ X̂Ŷ
front, F̂

X̂Ŷ
rear), F̂

front = C(F̂ X̂Z
1 , F̂ X̂Z

2 ),

F̂ rear = C(F̂ X̂Z
3 , F̂ X̂Z

4 ), F̂ left = C(F̂ Ŷ Z
3 , F̂ Ŷ Z

1 ),

F̂ right = C(F̂ Ŷ Z
4 , F̂ Ŷ Z

2 ),

(10)

where C(·) stands for the concat operation. Compared to or-
dinary TPV features setting [Huang et al., 2023], our meth-
ods perform a more comprehensive representation of the
3D scene representation by introducing the Multi-Perspective
View (MPV) features. Due to the top plane F̂ top contain-
ing comprehensive and significant labeling of scene category
position relationships, we propose to decouple F̂ top on other
planes F̂ ′ (front, rear, left and right) for condensing voxel
semantics. Specifically, we use several convolutional layers
to highly aggregate plane feature semantics and perform dual
fusion:

F̂ ′ ← F̂ ′ ∗ Pa(F̂
top) + Pb(F̂

′) ∗ F̂ top, (11)
where Pa(·) is composed of three convolutional layers, a lin-
ear layer and an upsampled layer. Pb(·) consists of two con-
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Figure 3: Illustration of the inference pipeline of OTOcc. Note that
we don’t need the Strategy Optimization with Sinkhorn-Knopp Iter-
ation in this pipeline.

Method Memory Latency FPS mIoU

TPVFormer-Base 33.5G / 7.1G 268ms 3.7 68.9
PanoOcc-Base 24.0G / 6.0G 203ms 4.8 70.7

OTOcc (Ours) 22.9G / 5.3G 227ms 4.4 70.9

Table 3: Model efficiency comparison in LiDAR Segmentation. We
report the train/inference memory consumption in the experiment.

volutional layers, a linear layer, an upsampled layer and a
relu layer. For dense voxel features, we actively broadcast
each plane F̂ ′ along the corresponding orthogonal direction
to produce three feature tensors of the same upsampled size
C×X ′×Y ′×Z ′ and aggregate them by summation to obtain
the full-scale voxel features. To conduct fine-grained predic-
tion or segmentation tasks, we apply a lightweight MLP on
voxel features to predict their semantic labels, which is in-
stantiated by only three linear layers, and an intermediate ac-
tivation layer.

3.4 Model Optimization
In the training stage of the OTOcc, the whole loss function L
consists of three main components:

L = LCE + LLovasz + λLOT , (12)
where LCE denotes the cross entropy loss (all voxels),
LLovasz denotes the Lovasz loss [Berman et al., 2018] (vox-
els containing LiDAR points) for voxel prediction and LOT

denotes the mean of the initial transportation cost of TPV
mapping matrices Mr. We utilize the hyperparameter λ for
controlling the sensitivity of LOT .

3.5 Model Inference
The whole test pipeline of our proposed OTOcc is as shown
in Figure 3. Caused by the time cost of the Sinkhorn-Knopp
Iteration, we abandon the Strategy Optimization module from
the training framework, which promotes the inference speed
significantly. Moreover, the fmlp also plays a similar role
as Strategy Optimization for fine-tuning the coarse TPV fea-
tures, which contains sufficient inherent semantic knowledge
from TPV features and voxels presentation.

4 Experiments
4.1 Datasets
Occ3D-nuScenes1 [Tian et al., 2023] contains 700 training
scenes and 150 validation scenes. The occupancy scope is

1https://github.com/Tsinghua-MARS-Lab/Occ3D/

defined as −40m to 40m for x-axis or y-axis, and −1m to
5.4m for the z-axis in the ego coordinate. The voxel size is
0.4m× 0.4m× 0.4m for the occupancy label. The semantic
labels contain 17 categories.
nuScenes [Caesar et al., 2020] is a large-scale autonomous
driving dataset, collected in Boston and Singapore. It in-
cludes 1000 driving sequences from various scenes, split into
700 in the training set, 150 in the validation set, and 150 in the
test set. Each sequence is captured at 20Hz frequency with 20
seconds duration. Each sample contains RGB images from 6
cameras with 360◦horizontal FOV and point cloud data from
32 beam LiDAR sensor.

4.2 Experimental Settings

We adopt TPVFormer as our baseline and use its framework
for developing our method. Following the setting in previous
works, we adopted ResNet101-DCN [Dai et al., 2017] as the
image backbone and trained the model on 8 NVIDIA A100
GPUs with a batch size of 1 per GPU. We also employ both
cross entropy loss and Lovasz-softmax loss [Berman et al.,
2018]. In the implementation, both two loss use voxel pre-
dictions as input. During training, we utilize the AdamW op-
timizer with an initial learning rate of 2×10−4 and the cosine
schedule. Additionally, we employ photo-metric distortion as
the data augmentation technique. The initial resolution of the
(X,Y, Z) is (100, 100, 8) and the upsampled voxel features
have dimensions of (X ′, Y ′, Z ′) is (200, 200, 16). We also
set Np = 4, T = 40, λ = 0.2 and C = 256. Note that our
proposed OTOcc is trained with only 15 epochs for efficiency.

4.3 Main Results

3D Occupancy Prediction. Evaluation results for 3D oc-
cupancy prediction are recorded in Table 1. OTOcc can
achieve SOTA prediction performance with a 29.10% mIoU,
outperforming existing counterparts significantly. More-
over, OTOcc surpasses CTF-Occ (28.53% mIoU), TPV-
Former (28.34% mIoU) and BEVFormer (26.88% mIoU)
with 0.57%, 0.76%, 2.22% mIoU gains, showing the advan-
tage in terms of accurate semantic conversion. After that, our
method can better detect easily confused objects such as the
motorcycle (25.72%) or pedestrian (23.81%) than SOTAs.
3D Semantic Segmentation. We utilize the voxel predic-
tions on sparse LiDAR points for the semantic segmenta-
tion evaluation. As shown in Table 2, we evaluate the se-
mantic segmentation performance on the nuScenes validation
set. OTOcc surpasses TPVFormer-Base, and Occformer with
2.0%, 0.5% mIoU, verifying its better ability to effectively
sample semantics than these non-linear strategies. Moreover,
OTOcc can achieve comparable performance to methods with
LiDAR as input modality. For the model efficiency as shown
in Table 3, we compare the performance and efficiency of
our method with TPVformer and PanoOcc, under the same
experimental setup. Our model still exhibits lower memory
consumption with 22.9G training memory consumption (in-
ference with 5.3G), showing the effectiveness of our methods.
Moreover, our methods also have similar and competitive in-
ference latency or FPS performance compared to PanoOcc.
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Figure 4: Qualitative results about LiDAR segmentation on nuScenes among TPVFormer, the proposed OTOcc and Ground-truth (GT). Red
circles denote the instance of baseline failure detection. Zooming in best views.

Nx
p Ny

p Nz
p Occ. mIoU LiDAR Seg. mIoU

3 3 3 27.45 65.79
3 3 4 28.76 66.98
3 4 4 28.36 68.34
4 4 4 29.10 70.87
4 4 5 29.02 70.92
4 5 5 29.21 69.78
5 5 5 28.57 68.36
6 6 6 26.31 66.43

Table 4: Different number of sampling points N i
p, i ∈ {x, y, z}

settings on each voxel grid for building reference points.

4.4 Ablation Studies
We present detailed ablation studies of Occupancy Prediction
on Occ3D-nuScenes and LiDAR segmentation on the valida-
tion sets of nuScenes respectively.

Ablation for Sampling Points
Our framework relies on the quality of mapping matrices.
The sampling point setting is essential for constructing our
initial reference points. As shown in Table 4, we perform
analysis on different numbers of points settings on each
voxel. N i

p, i ∈ {x, y, z} denotes the number of points sam-
pled along i-axis in a voxel. We can conclude that the sparse
point setting like N i

p = 3 causes a worse result because sparse
points are struggling to capture scene semantics. Meanwhile,

MX̂Ŷ
r MŶ Z

r MX̂Z
r Occ. mIoU LiDAR Seg. mIoU

- - - 26.04 65.21
! - - 27.98 67.87
- ! - 27.34 66.89
- - ! 27.82 66.21
! ! - 29.25 70.13
! - ! 28.44 70.68
- ! ! 27.23 69.14
! ! ! 29.10 70.87

Table 5: Different mapping matrices M∗
r , ∗ ∈ {X̂Ŷ , X̂Z, Ŷ Z}

choices for strategy optimization.

too dense point setting like N i
p = 6 leads to significant perfor-

mance degradation because the diversity of the mapping re-
lationship has approached its limit, which brings more noise
confusing our model. N i

p = 4 can strike the right balance be-
tween projecting appropriate image semantics and sampling
noise, which prevents our model from overfitting catastrophe.

Ablation for Strategy Optimization
OTOcc presents a coarse-to-fine semantic conversion strat-
egy. We compare different settings of the iteration number
T , optimization object Mr choice of each v̂ and sensitive
parameter λ in Sinkhorn-Knopp Iteration for exploring their
impact on semantic conversion.
Mapping Matrices Optimization. As shown in Table 5, we
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T Time λ Occ. mIoU LiDAR Seg. mIoU

0 1.207s 0 26.04 65.21

30 1.427s
1.0 27.04 68.41
0.5 27.67 68.29
0.2 28.13 69.43

40 1.545s
1.0 28.43 69.54
0.5 28.97 70.05
0.2 29.10 70.87

50 1.682s
1.0 27.62 69.31
0.5 29.21 69.64
0.2 28.65 70.12

Table 6: Various number of iterations T and hyperparameter λ set-
tings for Sinkhorn-Knopp module. “Time” denotes the time cost of
each training iter.

can conclude that if we don’t optimize any mapping matrices
and directly utilize the coarse Mr for semantic conversion,
it leads to serious performance degradation (like 3.06% de-
crease in occupancy prediction). Even though, it still demon-
strates strong prediction accuracy compared to BEVFormer,
thanks to the superiority of MPV features representation.
Then, we find that compared with optimizing other plane fea-
tures, optimizing the top plane MX̂Ŷ

r can significantly en-
hance the semantic representation of 3D scenes, benefiting
from its comprehensive spatial information representation.
Sinkhorn-Knopp Iteration Setting. As shown in Table 6,
we observe that a higher λ (λ = 1) setting compromises
the model performance, which focuses on the loss of a sin-
gle plane is inconsistent with the loss optimization direc-
tion of the overall calculation of 3D voxels. Then, higher
T will bring better performance, but also increase the compu-
tational cost. Like T = 30, the Sinkhorn-Knopp Iteration can
bring more than 1.00% mIoU gains on occupancy prediction
or 3.20% mIoU gains on LiDAR segmentation compared to
T = 0, while the training time increases by more than 16%
due to the large scale optimization. When T = 50, perfor-
mance on two benchmarks generally decreases caused of the
optimization limits from the Sinkhorn-Knopp Iteration. To
balance the computational cost and prediction performance,
we set the T to 40 and λ to 0.2.

4.5 Qualitative Results
We present the comparisons of LiDAR segmentation results
among TPVFormer, OTOcc and ground truth, which are
shown in Figure 4. OTOcc can reduce class errors in LiDAR
segmentation, such as the truck in the third row while TPV-
Former classifies it as a trailer. We also observe that OTOcc
has a better perception of small and blurry objects like the
less occupied traffic cone in the second row or the manmade
in the third row, demonstrating the advantages of finding the
optimal semantic transport strategy for significant prediction.

5 Discussion
Motivation. From another perspective, calculating the opti-
mal semantic conversion strategy is equivalent to performing

auxiliary task learning, not limited to occupancy prediction.
OTOcc utilizes transportation loss to calibrate the MPV fea-
ture semantics, thereby providing a guarantee for building ac-
curate voxel representation.
Limitation. We admit that the deformable attention [Zhu et
al., 2020] mechanism has a better computation speed than
OT-based methods no matter from theoretical derivation or
experiments as shown in the speed comparison results with
PanoOcc from Table 3. However, it only samples several
points on key, which easily aggregates semantics within a
certain range leading to the slower convergence. In future
works, we will investigate more efficient methods in OT-
based deeply. After that, the Sinkhorn Iteration still brings
the high training time cost and the instability prediction per-
formance, easily leading to the cherry picking. Then, OTOcc
only uses a lightweight decoder to explore the effectiveness
of applying OT methods, which motivates us to design a more
powerful decoder for accurate occupancy prediction.

6 Conclusion
In this paper, we propose a novel framework named OTOcc
—— Optimal Transport for Occupancy Prediction. It repre-
sents the semantic conversion from 2D images to 3D voxels
as the Optimal Transport problem, which breaks the barrier of
existing approaches relying on attention or depth estimation
to collect information in sparse semantic scenes. It gener-
ates initial mapping matrices from the designed dense refer-
ence points, which are refined via Sinkhorn-Knopp Iteration
to seek the best semantic conversion strategy. Then, it adopts
an Adaptive Fusion Decoder for obtaining accurate voxel rep-
resentation. Extensive experiments on two benchmarks show
the effectiveness of our proposed method.
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