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Abstract
Table Structure Recognition (TSR) is a task aimed
at converting table images into a machine-readable
format (e.g. HTML), to facilitate other applications
such as information retrieval. Recent works tackle
this problem by identifying the HTML tags and text
regions, where the latter is used for text extrac-
tion from the table document. These works how-
ever, suffer from misalignment issues when map-
ping text into the identified text regions. In this
paper, we introduce a new TSR framework, called
TFLOP (TSR Framework with LayOut Pointer
mechanism), which reformulates the conventional
text region prediction and matching into a direct
text region pointing problem. Specifically, TFLOP
utilizes text region information to identify both the
table’s structure tags and its aligned text regions,
simultaneously. Without the need for region pre-
diction and alignment, TFLOP circumvents the ad-
ditional text region matching stage, which requires
finely-calibrated post-processing. TFLOP also em-
ploys span-aware contrastive supervision to en-
hance the pointing mechanism in tables with com-
plex structure. As a result, TFLOP achieves the
state-of-the-art performance across multiple bench-
marks such as PubTabNet, FinTabNet, and Syn-
thTabNet. In our extensive experiments, TFLOP
not only exhibits competitive performance but also
shows promising results on industrial document
TSR scenarios such as documents with watermarks
or in non-English domain. Source code of our
work is publicly available at: https://github.com/
UpstageAI/TFLOP.

1 Introduction
Tables are prevalent across a wide spectrum of documents
(e.g. business documents, academic papers) for their compact
and efficient representation. Such compact representation,
however, presents a significant challenge for direct machine
parsing. Table Structure Recognition (TSR) aims to digitize
table images into machine-readable format (e.g. HTML) rep-
resenting their structure and text, allowing for various down-
stream applications such as information retrieval or table QA.

(a) Dual decoder framework (b) TFLOP

Figure 1: Overview of two TSR frameworks. The dual decoder
identifies table cell regions and their HTML structure, requiring fur-
ther cell and text region mapping for the final output. In contrast,
TFLOP utilizes text region information and directly identifies the
HTML structure with its corresponding text region relations.

TSR often comprises of predicting two sets of structures
before constructing the full table structure: logical and phys-
ical [Huang et al., 2023]. Logical structure represents the
semantic organization and relational information between ta-
ble cells, often represented in the form of HTML or LaTeX.
Physical structure, on the other hand, represents the layout
information of table cells such as their bounding boxes.

Recent works take on the image-to-text approach where
both the logical and physical structures are predicted with
the latter conditioning on the former. The physical structures
(cell bounding boxes) are first mapped to text regions of the
table, obtained using OCR engine or through PDF parsing,
before combining the matched texts with the logical struc-
ture to form the full table. Despite its strong performance
in logical structure prediction, these frameworks often suffer
from misalignment issues where erroneous texts are matched
due to imperfect alignment between the table text regions and
the predicted cell bounding boxes. Such approaches require
finely-calibrated post-processing during the matching of text
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regions for satisfactory results.
This work, TFLOP, aims to eliminate the need for

heuristic-based bounding box matching by leveraging table
text regions directly in the framework through layout pointer
mechanism. TFLOP reformulates the original bounding box
prediction problem to a bounding box pointing problem. In
particular, instead of predicting the cell bounding boxes con-
ditioned on the logical structure, it predicts the associations
between the bounding boxes and logical sequence through
pointer mechanism. TFLOP’s pointer mechanism not only
serves as a remedy to the misalignment issue but also elimi-
nates the need for heuristics-based bounding box matching.

On top of misalignment issues, recognizing structures of
tables with row or column spans (i.e. complex tables) is one
of the key challenges of TSR. Capitalizing on the flexibility of
our framework, TFLOP employs span-aware contrastive su-
pervision when processing the table text regions to improve
its recognition of complex tables. Based on the proposed
pointer mechanism and span-aware contrastive supervision,
TFLOP achieves state-of-the-art performance across popular
TSR benchmarks.

In this work, we move beyond the benchmark datasets,
and explore the versatility of TFLOP from the industrial per-
spective. We conduct extensive experiments and show that
TFLOP not only has competitive performance but also the
versatility in handling industrial document TSR scenarios
such as watermarked documents or even non-English tables
despite being trained exclusively on English tables.

The key contributions of our work are as follows:
• We propose a novel TSR framework with layout pointer

mechanism which not only remedies the text region mis-
alignment issue but also eliminates the necessity for
post-processing when mapping text regions into the pre-
dicted cell bounding boxes.

• We also present span-aware contrastive supervision in
our framework. This supervision enhances the model’s
ability in recognizing structures of complex tables in-
volving row or column spans.

• TFLOP achieves the state-of-the-art performance across
multiple popular TSR benchmarks.

• Beyond the benchmark performance, TFLOP has also
shown competitive performance and versatility when
dealing with industrial TSR document scenarios such as
tables with watermark or in non-English domain.

2 Related Work
TSR methods cover different variations of handling both log-
ical and physical structure of tables. These methods can
be largely categorised into two groups: detection-based and
image-to-text methods.

2.1 Detection-based TSR Methods
Detection-based TSR is one of the common approaches that
recognizes the table structure by leveraging on the table fea-
tures detected such as separation lines or cell-level features.
These methods typically proceed with physical structure un-
derstanding first before reasoning with the corresponding log-
ical structure for TSR.

Grid-based approach represents methods which utilise
the grid representation based on the detected table features.
Earlier works [Schreiber et al., 2017; Paliwal et al., 2019]
detects row and column masks through segmentation-based
methods before aggregating them to form the table structure.
SPLERGE [Tensmeyer et al., 2019] then proposed split-and-
merge pipeline which first detects the grid structure match-
ing the table before merging adjacent cells to handle span-
ning entries. Follow-up works improved on top of this grid
representation such as TRUST [Guo et al., 2022] which pro-
posed query-based splitting and vertex-based merging mod-
ules to improve spanning cell prediction, while SEM [Zhang
et al., 2022] proposed aggregation of both visual and textual
features in table grid generation. RobusTabNet [Ma et al.,
2023] proposed a spatial CNN module which improved phys-
ical structure reasoning when predicting separation lines prior
to cell grid detection. Follow-up work TSRFormer [Lin et al.,
2022] reformulated the line prediction task as a regression
problem instead of image segmentation through a two-stage
DETR [Carion et al., 2020] based approach. Recent work,
GridFormer [Lyu et al., 2023], proposed a new method which
directly predicts the vertexes and edges of the table grid (log-
ical structure) from the table image.

Cell-based approach is another type of detection-based
methods where cell-level features (physical structure) are first
detected, before classifying the relation between cells (logical
structure) to form the full table structure. Some of the repre-
sentative works include TabStructNet [Raja et al., 2020] and
FLAG-Net [Liu et al., 2021a] which are end-to-end frame-
works utilizing DGCNN architecture [Wang et al., 2019b]
to model the relation between the detected cell-level fea-
tures. More recently, Hetero-TSR [Liu et al., 2022] proposed
NCGM which is designed to improve the cross-modality col-
laboration when handling complex TSR scenarios.

2.2 Image-to-Text based TSR Methods
Image-to-Text methods reformulate the TSR task as an
image-to-sequence translation task where the table structure
is represented as a text sequence (e.g HTML, LaTeX, etc.).
Recent methods typically predict the logical structure of the
table first before conditioning on it for physical structure pre-
diction. The two predictions are then aggregated to form the
full table structure.

Earlier image-to-text TSR works directly produced the full
table structure such as the work [Deng et al., 2019] which
modeled a LSTM-based table-to-LaTeX framework. Re-
cent works on the other hand, transitioned to Transformer
based sequence generation models which produced logical
and physical structures separately before aggregating them
for full table structure.

Notable examples of such works include [Ye et al., 2021;
Nassar et al., 2022] which proposed Image Encoder Dual
Decoder (IEDD) approach. In these works, after encoding
the table image, HTML structure tags (logical structure) are
first predicted by one of the decoders while the other con-
ditioned on these tags to generate the cell bounding boxes
(physical structure). These cell bounding boxes are subse-
quently mapped to text regions of tables obtained using OCR
engines or through PDF parsing, before aggregating with the
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Figure 2: Overview illustration of TFLOP. Given a tabular image and its text region bounding boxes, visual features and layout embedding are
output by the Image and Layout Encoders. Logical Structure Decoder then receives these features to auto-regressively generate table structure
tokens (tags) while also predicting the associations between text region bounding boxes and table data tags through the Layout Pointer. These
associations and table tags are aggregated to generate the full table structure.

logical structure to complete the HTML sequence.
Follow-up works proposed different means to improve the

dual decoder framework. VAST [Huang et al., 2023] pro-
posed visual alignment loss to improve the physical structure
prediction by enforcing detailed visual information in the de-
coding stage. Meanwhile, DRCC [Shen et al., 2023] pro-
posed a semi-autoregressive approach which reduced the ef-
fect of error accumulation in both logical and physical struc-
ture generation.

While both of these works’ contributions do improve the
structure predictions, they both suffer from the inherent is-
sue of bounding box misalignment. When mapping the pre-
dicted cell bounding boxes for text retrieval, misalignment
between the bounding boxes and text regions of tables could
result in erroneous table structure. As such, physical structure
prediction based frameworks are susceptible to bounding box
misalignment issues and require heuristic post-processing for
satisfactory results.

3 Method
3.1 Overall Architecture
TFLOP comprises of four modules: image encoder, layout
encoder, logical structure decoder, and layout pointer. Our
framework receives a table image and its corresponding text
regions which are either provided in cell-level annotations or
obtained using off-the-shelf OCR engines.

TFLOP first extracts the visual features from the table im-
age using the image encoder while embedding the text region
bounding boxes with the layout encoder. The generated vi-
sual features and layout embedding are then processed by the
logical structure decoder. The visual features are provided to
the decoder in a cross-attention mechanism while the layout
embedding is processed as context prompt for generating the
logical structure sequence.

On top of generating the logical structure (e.g. HTML-
tags) auto-regressively, the decoder’s last hidden state is fur-
ther processed by the layout pointer module, which associates
the predicted table data tags (e.g. <td> for HTML, C for
OTSL) with the corresponding text regions to form the full
table structure. TFLOP architecture is illustrated in Figure 2.

3.2 Image Encoder
Motivated by the Donut architecture [Kim et al., 2022], we
use Swin Transformer [Liu et al., 2021b] as TFLOP’s image
encoder. All table images are preprocessed into a fixed res-
olution and embedded into visual features, {zi|zi ∈ Rd, 1 ≤
i ≤ P}, where P is the number of image patches and d is the
latent vector dimension.

3.3 Layout Encoder
Layout encoder comprises of MLP modules which embeds
both the text region bounding boxes and the corresponding 2
x 2 ROIAlign [He et al., 2017] applied on the visual features,
{zi}. These embeddings are aggregated to form the layout
embeddings, {lj |lj ∈ Rd, 1 ≤ j ≤ B}, where B is the con-
text length for layout embedding.

3.4 Logical Structure Decoder
Logical structure decoder generates sequence of table tags
conditioned on the visual features, {zi}, and layout em-
bedding, {lj}. TFLOP utilizes BART [Lewis et al., 2019]
architecture and follows configurations similar to that of
Donut [Kim et al., 2022]. TFLOP’s decoder outputs a se-
quence of {yk|yk ∈ Rv, 1 ≤ k ≤ T} where T is the to-
tal number of table tags and v is the token vocabulary size.
Cross-entropy loss, Lcls, is employed to supervise the de-
coder’s tag classification.

Prior works’ decoders [Shen et al., 2023; Huang et al.,
2023; Nassar et al., 2022] generate logical structure sequence
in the HTML format. Despite its long sequence, HTML rep-
resentation is often used for its flexibility and wide cover-
age of tabular layouts. To reduce its long sequence length,
[Huang et al., 2023; Ye et al., 2021] merged specific tags (e.g.
<td></td>). TFLOP achieves similar effect by generating
OTSL-tag sequences [Lysak et al., 2023] which have 1-to-1
mapping with the target HTML sequence.

3.5 Layout Pointer
Apart from generating a sequence of table tags, the decoder’s
last hidden state features, {hi|hi ∈ Rd, 1 ≤ i ≤ N}, are
used in our layout pointer module. N is the sum of the num-
ber of bounding boxes (B) and the number of table tags (T ).
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Specifically, the feature sequence, {hi}Ni=1, is first split into
two sub-sequences: {bj}Bj=1 and {tk}Tk=1. {bj}Bj=1 is a se-
quence of fixed-length B, representing the last hidden state
features of the bounding boxes. {tk}Tk=1, on the other hand,
is a sequence of length T , representing the last hidden state
features of the predicted table tags. These two sequence of
features are then projected into {b̄j} and {t̄k} through linear
transformation (Equation 1). Among the table tag features,
{t̄k}, we define the indices of those which correspond to ta-
ble data tags as set D. Layout pointer supervision is then
applied as in Equation 2.

b̄j = projb(bj), t̄k = projt(tk) (1)

Lptr = − 1

B

B∑
j=1

log(
exp(b̄j · t̄k∗/τ)∑

k′∈D exp(b̄j · t̄k′/τ)
) (2)

Lptr represents the loss for layout pointer supervision
where b̄j represents the projected feature of the jth bounding
box and k∗ is the index of the table data tag corresponding to
the jth bounding box. · and τ denote the dot product and the
temperature hyper-parameter, respectively. It is worth noting
that, the bounding box and the table tags have a one-to-one
or a many-to-one relation as there could be one or more text
bounding boxes present within a single table cell. As such, in
Equation 2, Lptr is calculated by evaluating the negative log-
likelihood for each of the B bounding boxes before taking
their arithmetic mean.

It should also be noted that, it is possible for table data tags
to not have any corresponding bounding boxes (i.e. empty
table cell). To ensure provision of pointer supervision for all
table data tags, a separate loss supervision Lempty

ptr is applied
to those without any corresponding bounding boxes as fol-
lowing:

Lempty
ptr = − 1

|D|
∑
k′∈D

BCE(σ(b̄0 · t̄k′), I(k′)) (3)

b̄0 is the linear projection of a special embedding dedicated
to empty table data tags. σ() and BCE() represents sigmoid
activation function and Binary Cross-Entropy, respectively,
while I(k′) represents binary label indicating whether k′ data
tag is empty.

3.6 Span-aware Contrastive Supervision
To better address complex table structures (with rowspan
or colspan), TFLOP adopts span-aware contrastive supervi-
sion across the bounding box embeddings, {bj}, to improve
its tabular layout understanding. While prior works pro-
vide contrastive supervision on table elements both row-wise
and column-wise, TFLOP takes a step further by introducing
span-aware adjustments to this supervision.

Given a jth bounding box embedding bj , it is first projected
using a linear layer to form b̂j (Equation 4), before evaluating
its span-aware contrastive loss as shown in Equation 5.

b̂j = projs(bj) (4)

Lcontr,j = − 1∑
p∈P (j)

cp(j)

∑
p∈P (j) cp(j) log(

exp(b̂j ·b̂p/τ)∑
a∈A(j)

exp(b̂j ·b̂a/τ)
) (5)

Target

Positive

Partial-Positive

Negative

() = +

() = + +

Figure 3: Sample visualisation of span-aware constrastive supervi-
sion involving multi-span structures. In the column-wise contrastive
supervision example above, for a given bounding box (i, pink), pos-
itive samples (P (i)) are those with either full overlap (green) or par-
tial overlap (orange), while the rest (red) are negative samples.

Lcontr,j represents the span-aware contrastive loss for the
jth bounding box. This formulation is applicable to both row-
span and column-span supervision. Here, A(j) represents all
the bounding boxes except the jth, P (j) represents all the
bounding boxes of A(j) that are positive samples (i.e. either
same row or column as the jth bounding box), and b̂p and b̂a
represent the projected bounding box embedding of P (j) and
A(j), respectively. The above formulation follows similar
to that of Supervised Contrastive Loss [Khosla et al., 2020]
except for the span-coefficient cp(j).

Span-coefficient cp(j) denotes the degree of proximity be-
tween jth and p based on the span overlap between the two
bounding boxes. For example, with reference to Figure 3, in
column-wise contrastive supervision, the span-coefficient be-
tween the jth bounding box (pink) and a positive bounding
box (green or yellow) can be formulated as:

cp(j) =
overlap(p, j)

span(p)× span(j)
(6)

Here, span() denotes the span count (either row or column)
for the given bounding box, while overlap(x, y) denotes the
number of overlap cells between the bounding box x and y.
For example, span-coefficient of the bounding box of “Am-
monia” against that of “Chemically Doped” in Figure 3 would
be 1/(2× 1).

It is worth noting that, when the span-coefficient is set to
a constant value of 1 (i.e. uniform contrastive supervision),
Lcontr,j reduces to the standard supervised contrastive loss
formulation [Khosla et al., 2020].

3.7 Loss Function
TFLOP’s training objective is composed of tag classification
loss, layout pointer loss, and span-aware contrastive loss. Tag
classification loss (Lcls) is evaluated using the negative-log
likelihood of the table tag predictions, while layout pointer
loss is a linear combination of Lptr and Lempty

ptr . Span-aware
contrastive loss is also a linear combination of Lrow

contr,j and
Lcol
contr,j which denote row-wise and column-wise contrastive

loss for the jth bounding box respectively.

L = λ1Lcls + λ2Lptr + λ3Lempty
ptr

+ λ4
1

B

B∑
j=1

Lrow
contr,j + λ5

1

B

B∑
j=1

Lcol
contr,j

(7)

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

950



Methods PubTabNet.Val PubTabNet.Test

TEDS-S TEDS TEDS-S TEDS

TableMaster [2021] - - - 96.32
LGPMA [2021] 96.7 94.6 - -
TableFormer [2022] 97.5 - 96.75 93.60
VAST [2023] - - 97.23 96.31
RobusTabNet [2023] 97.0 - - -
DRCC [2023] 98.9 97.8 - -

TFLOPBASE 98.1 97.8 98.25 96.42
TFLOPFULL 98.3 98.0 98.38 96.66

Table 1: TEDS-Struct (TEDS-S) and TEDS evaluation on PubTab-
Net validation and test dataset.

4 Experiments

4.1 Datasets

To validate the effectiveness of our framework, experiments
are conducted against three popular TSR benchmark datasets:
PubTabNet [Zhong et al., 2020], FinTabNet [Zheng et al.,
2021], and SynthTabNet [Nassar et al., 2022].

PubTabNet is one of the large-scale TSR datasets con-
taining HTML annotations of tables extracted from scientific
articles. It is composed of 500,777 training and 9,115 val-
idation table images. Annotated test dataset comprising of
9,064 images was subsequently released, and TFLOP’s TSR
performance against both the validation and test datasets are
reported in this work. It should be noted that for PubTabNet
test dataset, no cell-level annotation (i.e. text region bound-
ing box) is provided and off-the-shelf OCR engine was used
to obtain these annotations.

FinTabNet is one of the popular TSR benchmarks com-
posed of single-page PDF documents from financial reports.
This dataset comprises of 112,887 tables extracted from the
documents along with the cell-level annotations. FinTabNet
facilitates the evaluation of TFLOP’s performance in tables
where the text regions are not obtained using OCR engines
(i.e. free from OCR-related noise similar to PDF parsing).

SynthTabNet was introduced by [Nassar et al., 2022] as a
benchmark dataset that is not only large-scale but also diverse
in table appearances and content. SynthTabNet is composed
of 600,000 table images across different styles and provides
cell-level annotation similar to that of FinTabNet.

4.2 Experimental Settings

In training of TFLOP, input image resolution is set to 768 ×
768 across all benchmark datasets. The output sequence
length, N , is fixed at 1,376 to allow sufficient length for
the layout embedding and generation of the table tags. Fea-
ture dimension d of the framework is set to 1,024 and the
hyper-parameters of the loss formulation Equation 7 are:
λ1 = λ2 = λ3 = 1 and λ4 = λ5 = 0.5. The tempera-
ture value τ is set to 0.1. All experiments were conducted
with 4×A100 GPUs at 250K training steps.

Methods FinTabNet SynthTabNet
TEDS-S TEDS TEDS-S TEDS

TableFormer [2022] 96.80 - 96.70 -
GridFormer [2023] 98.63 - - -
VAST [2023] 98.63 98.21 - -
DRCC [2023] - - 98.70 -

TFLOPBASE 99.43 99.22 99.42 99.34
TFLOPFULL 99.56 99.45 99.42 99.40

Table 2: TEDS-Struct / TEDS on FinTabNet and SynthTabNet.

4.3 Evaluation Metrics
To evaluate TFLOP’s performance, we utilize Tree-Edit-
Distance-Based Similarity, TEDS [Zhong et al., 2020], and
TEDS-Struct [Huang et al., 2023; Nassar et al., 2022] which
computes the TEDS score between the predicted and ground
truth HTML table structure with and without table text con-
tent, respectively.

TEDS(Tpr, Tgt) = 1− EditDist(Tpr, Tgt)

max(|Tpr|, |Tgt|)
(8)

In Equation 8, T and |T | represent the HTML structure and
number of nodes in T , respectively, while EditDist() indicates
tree-edit distance between the HTML structures.

4.4 Results
We benchmarked TFLOP against three popular datasets as
shown in Tables 1 and 2. For all benchmarks, we not only re-
port the results of TFLOPFULL, but also TFLOPBASE to better
evaluate the effectiveness of our layout pointer mechanism.
TFLOPBASE differs from TFLOPFULL with the absence of im-
age ROIAlign and span-aware contrastive supervision.

Table 1 results show that TFLOP outperforms prior works
in recognition of full table structure across the validation
and test splits of PubTabNet. Evaluation across PubTabNet’s
validation dataset was conducted to ensure fair comparisons
against prior works which only reported results on the val-
idation set. For the test dataset, where cell-level annota-
tions are not provided, text region bounding box annotations
were obtained using PSENet [Wang et al., 2019a] and Mas-
ter [Lu et al., 2021] similar to prior works [Ye et al., 2021;
Guo et al., 2022; Huang et al., 2023] for fair comparisons.
TFLOP’s state-of-the-art performance on PubTabNet’s test
dataset clearly demonstrates our framework’s efficacy when
using text regions derived from off-the-shelf OCR engines.
Visualisations in Figure 4 illustrate TFLOP’s ability to recog-
nize tables with complex structures such as hierarchical row-
spans (top) and hierarchical column-spans (bottom).

Results in Table 2 also substantiate TFLOP’s superior per-
formance over various prior works by achieving state-of-the-
art recognition results for both FinTabNet and SynthTab-
Net. FinTabNet being table extracts from financial reports,
TFLOP’s state-of-the-art performance (99.45 TEDS) has sig-
nificant implications in the context of industrial applications
where the margin for error is exceedingly narrow. SynthTab-
Net, on the other hand, comprises of table structures of var-
ious styles and TFLOP’s state-of-the-art performance (99.40
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Figure 4: Visualisations of tables constructed from generated HTML
sequences with corresponding tabular images (recreated for im-
proved legibility) for reference. TFLOP successfully constructs ta-
bles with complex structures such as hierarchical row-spans (top) or
hierarchical column-spans (bottom).

Methods Simple Complex All

TFLOPBASE 97.92 94.85 96.42
TFLOPBASE + I +0.04 +0.14 +0.08
TFLOPBASE + I + U +0.01 +0.12 +0.06
TFLOPBASE + I + S +0.14 +0.35 +0.24
TFLOPFULL 98.06 95.20 96.66

Table 3: Ablation of I(ImageROI), U(Uniform contrastive) and
S(Span-aware contrastive) on PubTabNet test Dataset in TEDS (%).
Note that TFLOPBASE + I + S and TFLOPFULL are equivalent.

TEDS) clearly demonstrates that the framework is not restric-
tive to specific tabular format or style.

In both Tables 1 and 2, it can be noted that TFLOP also
achieves significant improvement in terms of TEDS-Struct
metric (HTML table tags only). We posit that this is a side-
effect of layout embedding in our framework. Provision of
layout embedding is essential for our framework’s layout
pointer mechanism as it serves as the pointing target from
the generated table tags. Incidentally, this layout embedding
could also improve the framework’s understanding of the ta-
ble’s layout, resulting in improved table tag generation as
shown by TFLOP’s TEDS-Struct results.

On top of achieving the state-of-the-art TEDS score across
benchmark datasets, it is also worth noting of the gap between
TEDS-Struct and TEDS scores of our framework in compar-
ison to prior works. While the TEDS metric evaluates the
accuracy of the full table structure, the gap between TEDS-
Struct and TEDS serves as an indirect indication for signif-
icance of bounding box misalignments (for prior works) or
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Figure 5: Row-wise and column-wise t-SNE visualisation of bound-
ing box embeddings. PubTabNet table image (top, table recreated
for improved legibility) and 25 bounding boxes are sampled for visu-
alisation. Filled-colours represent different row-span groups while
border-colours represent different column-span groups sampled for
visualisation. Colours in t-SNE plots match that of table above and
boxes spanning multi-rows/columns are marked with a red star.

significance of layout pointer mechanism (for TFLOP). Aside
from PubTabNet test dataset where the TEDS metric is also
affected by the OCR error of PSENet [Wang et al., 2019a] and
Master [Lu et al., 2021], TFLOP consistently achieves the
smallest gap between TEDS-Struct and TEDS across remain-
ing benchmarks (e.g. 0.11 vs 0.42 in FinTabNet). This clearly
shows the effectiveness of layout pointer mechanism in ad-
dressing bounding box misalignments faced by prior works.

4.5 Ablation Study
Aside from layout pointer mechanism, we analyzed the effec-
tiveness of other components in our framework by comparing
between TFLOPBASE and TFLOPFULL in Table 3. Firstly, for
image ROI alignment, consistent with [Huang et al., 2023;
Shen et al., 2023], it is evident from Table 3 that incorpo-
rating RoI aligned visual features into layout embedding is
also beneficial for recognizing table structures in our frame-
work. Secondly, Table 3 shows clear performance improve-
ment through span-aware contrastive supervision over other
method configurations. The performance gain is most notice-
able for tables with complex structure, showing that our span-
aware contrastive supervision benefits the framework with
improved recognition of tables with row or column spans.
This can also be observed in t-SNE visualisation of bound-
ing box embedding space (Figure 5) where, embeddings are
distinctly structured into clusters of row or column spans.

5 TFLOP Versatility
On top of its strong TSR performance, we further explore
the versatility of our framework in two scenarios commonly
encountered during industrial application of TSR: tables with
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Figure 6: Sample FinTabNet image with a “Draft Version” water-
mark demonstrates the challenge of processing watermarks in TSR
using a dual-decoder framework. Blue and green boxes indicate text
regions and watermark areas, while red shows a sample prediction.

Methods IOU TEDS-Struct (%) TEDS (%)

TableMaster - 82.18 72.83
Goldgreedy 0.0 - 96.45
Goldselective 0.5 - 98.16

TFLOPFULL - 99.54 99.41

Table 4: TSR performance on watermarked FinTabNet dataset.

watermark and non-English texts.

5.1 Watermark TSR
Unlike the benchmark dataset tables, tables in real industrial
documents often contain unwanted texts such as watermark.
These unwanted texts could result in recognition of erroneous
table structure if not filtered accurately.

Prior works based on the dual-decoder framework are not
optimal in handling tables with watermark as they require
complex bounding box matching heuristics to properly dis-
tinguish wanted text region bounding boxes from those of
watermark (as illustrated in Figure 6). Our work, TFLOP, on
the contrary, has the versatility to be trained to ignore these
watermark bounding boxes prior to layout pointing.

To support this, we first prepared watermark table dataset
by inpainting watermarks into the FinTabNet [Zheng et al.,
2021] dataset. We then trained TFLOP with this dataset, re-
quiring only a minor addition of a two-layer MLP with a bi-
nary cross-entropy loss function. In brief, prior to predicting
pointer associations between bounding boxes and table tags, a
binary classifier is trained to filter watermark bounding boxes.
More details can be found in supplementary material.

In Table 4, we compare TFLOP’s TSR on watermark
dataset against TableMaster and variations of gold annotation
which assume error-free logical structure. Goldgreedy con-
structs full table structure by including all watermarks that
has any bounding box IOU with the text bounding boxes,
while Goldselective filters watermarks with IOU threshold of
0.5. Table 4 shows promising result where TFLOP filters out
most of the watermark texts with just a simple addition of
two-layer MLP, showcasing the versatility of our framework.

5.2 Cross-lingual TSR
Another important aspect for industrial TSR applications lies
in the performance across non-English tables. TSR on non-
English tables is a challenging task due to limited availability
of data and thus, we examine the versatility of TFLOP in per-
forming TSR on non-Engligh tables despite having only been

Methods TEDS (%) QA Acc. (%)Simple Complex

Image-only - - 56.00
GPT-4V 79.43 68.39 78.86
TableMaster 89.96 83.94 82.86

TFLOP 95.76 89.41 92.00

Table 5: TSR and QA performances on the Korean tables.

trained on English tables. For this purpose, we self-annotated
30 Korean table images (15 simple & 15 complex tables) ex-
tracted from real Korean financial reports, including both the
HTML sequence and cell-level annotations of tabular images.

We benchmarked our framework against TableMaster [Ye
et al., 2021] and GPT-4V [OpenAI, 2023]. It should be
noted that both TFLOP and TableMaster were trained on
PubTabNet dataset prior to evaluating on the Korean table
dataset. Results in Table 5 show promising results demon-
strating the cross-lingual versatility of TFLOP by outper-
forming both TableMaster and GPT-4V consistently across
simple and complex Korean tables by a significant margin.

To better under the industrial implications of TSR results
in Table 5, we conducted an additional Question-Answering
(QA) assessment on top of the generated table structures. For
the assessment, we built 175 unique question-answer pairs
where the questions require clear understanding of the table
provided to answer accurately. In the assessment, both the
question and table structure generated (HTML) are provided
to GPT-4V along with the tabular image, before comparing its
output with the answer label. Each of the 175 answers were
evaluated manually for the QA accuracy shown in Table 5.

QA accuracy results in Table 5 not only show the impor-
tance of HTML sequence for Table QA in non-English do-
main for GPT-4V, but also highlight how the difference in
TEDS score could translate into the real industrial application
of table QA in cross-lingual setting. Details of the dataset and
qualitative results can be found in supplementary material.

6 Conclusion
In this work, we proposed TFLOP, a TSR framework leverag-
ing on layout pointer mechanism with span-aware contrastive
supervision, which not only remedies the bounding box mis-
alignment issues, but also recognizes tables with complex
structures accurately without the need for finely-calibrated
post-processing. With these features, TFLOP achieves the
new state-of-the-art performance across the three popular
TSR benchmarks. In addition to its strong TSR performance,
TFLOP has also shown significant versatility and promising
performance in industrial application contexts, namely: ta-
bles in documents with watermark or in non-English domain.
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