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Abstract
In this paper, we reveal the two sides of data
augmentation: enhancements in closed-set recog-
nition correlate with a significant decrease in open-
set recognition. Through empirical investigation,
we find that multi-sample-based augmentations
would contribute to reducing feature discrimina-
tion, thereby diminishing the open-set criteria. Al-
though knowledge distillation could impair the fea-
ture via imitation, the mixed feature with ambigu-
ous semantics hinders the distillation. To this end,
we propose an asymmetric distillation framework
by feeding the teacher model extra raw data to
enlarge the benefit of the teacher. Moreover, a
joint mutual information loss and a selective relabel
strategy are utilized to alleviate the influence of
hard mixed samples. Our method successfully
mitigates the decline in open-set and outperforms
SOTAs by 2% ∼ 3% AUROC on the Tiny-
ImageNet dataset, and experiments on large-scale
dataset ImageNet-21K demonstrate the generaliza-
tion of our method.

1 Introduction
The utilization of data augmentation (DA) strategies in
training neural networks have been proven effective in ex-
panding the training dataset [Yang et al., 2022] and have
become widespread in many applications [Chen et al., 2021a;
Xu et al., 2022; Chen et al., 2023; Hou et al., 2024;
Wang et al., 2024]. As the simplest implementation, the
base manipulation-based DA is the most common strategy
and can be divided into two categories: single-sample-based
augmentation (SSA) and multiple-sample-based augmenta-
tion (MSA). SSA creates new samples by conducting basic
operations on a single sample, including rotation, flipping,
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Figure 1: Illustration of the two sides of data augmentation. Despite
the tremendous accuracy gain made by augmentations, multiple
sample-based augmentation (MSA) tends to degrade the model’s
open-set performance.

blurring, or their combinations [DeVries and Taylor, 2017;
Cubuk et al., 2018; Hendrycks et al., 2020]. Meanwhile,
MSA further increases the diversity by involving more than
one sample to generate the convex combination of them, i.e.,
cut-and-paste or addition [Zhang et al., 2017; Yun et al.,
2019] and hence remarkably boosts the closed-set recognition
ability as shown in Figure 1.

Efficient and effective as MSA is, some research found it
affects the performance of recognition tasks to some extent.
Balestriero et al. [2022] demonstrate that MSA caused a drop
in some classes, and Choi et al. [2023] argue that MSA
disperses features in similar classes. However, compared with
closed-set recognition, open-set recognition (OSR) is actually
the biggest victim of this problem because it has no access to
open-set data and hence heavily relies on the discriminative
feature. As shown in Figure 1, we reveal that the significant
improvement of MSA on closed-set recognition sacrifices
the performance of OSR, and as closed-set recognition im-
proves, the corresponding decline in OSR becomes more
pronounced, dubbed as the two sides of MSA.
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To mitigate the degradation of open-set performance
caused by MSA, Roady et al. [2020] tempered the outputs of
the models in a label-smoothing way to increase the entropies
of the model’s outputs. Xu et al. [2023] implemented the
InfoNCE loss and used MixUp to enlarge the inter-class mar-
gins. However, these extra constraints alleviate the dilemma
of MSA on OSR while ceiling the improvement on closed-set
recognition. We argue that an ideal solution should be win-
win for both closed- and open-set samples.

Based on preliminary experiments on the interplay of DA
and OSR, we have two key observations: 1) MSA performs
worse than SSA on OSR since it would disperse the features;
2) Knowledge distillation benefits OSR but goes back to
decline when MSA joins in. Digging deeper into these obser-
vations, we found that MSA diminishes the criteria of OSR
in two aspects. First, MSA degrades the magnitude of the
activation of features and logits, which leads to great uncer-
tainty in selecting unknown samples via the logits threshold.
Distillation mitigates this problem somewhat by forcing the
student network to mimic the activation magnitude of the
teacher network. Secondly, low-discriminative features of
MSA samples remain uncertain; merely distillating them still
suffers OSR criteria diminution.

Motivated by the above observation and findings, we
propose an asymmetric distillation framework, a win-win
solution for both close-set and open-set performance. Con-
cretely, in addition to the same MSA samples fed to the
teacher and student in symmetric distillation, we introduce
extra raw samples to the teacher and exert extra mutual
information objectively to enlarge the teacher’s benefit. The
introduced objective enables the student to focus more on the
class-specific features within the mixed samples. Moreover,
since some hard mixed samples provide ambiguous semantic
information, we filter them out by relaxedly checking the
teacher’s predictions and assigning them an unknown-like
target to encourage the model to decrease its activation for
the non-salient features of the known classes. Within this
framework, the model can leverage the advantages of MSA
on closed-set performance and better discriminate the novels
under extra supervision.

The main contributions in this paper are as follows:
• We revealed the two sides of DA leading to the degener-

ation of OSR and conducted experiments to analyze how
the augmented samples undermine the model.

• We introduce an asymmetric distillation framework with
a cross-mutual information maximization and a two-
hot label smoothing to eliminate the effect and further
improve the model’s open-set performance.

• We perform extensive experiments and prove the effec-
tiveness of our proposed method on various benchmarks.

2 Reveal the Two Sides of MSA
Despite MSA achieves significant improvement in closed-set
recognition, we reveal two sides of MSA on closed-set and
OSR in this section. We first present two distinct observations
concerning DA and OSR in Section 2.1, followed by an in-
depth analysis expounded in Section 2.2. Finally, we eluci-
date the mechanisms through which knowledge distillation

can alleviate the degradation in OSR performance induced
by MSA, and we highlight inherent issues within existing
symmetric distillation frameworks in Section 2.3.

2.1 Key Findings from DA and OSR Interplay
Without loss of generality, we experiment on both SSA and
MSA methods on accuracy and Area Under the Receiver
Operating Characteristic curve (AUROC) on Tiny-ImageNet
dataset. As shown in Table 1, taking the vanilla model as the
baseline, we can make the following two observations:

Observation 1) on SSA vs MSA. Both SSA and MSA
exhibit efficacy in enhancing the closed-set accuracy of
the model, attributed to their capabilities in expanding the
dataset. Notably, MSA demonstrates superior performance in
this regard, as it effectively enlarges the diversity within the
training data. Nevertheless, when evaluating AUROC, SSA
modestly enhances performance, while the incorporation of
MSA significantly undermines OSR capabilities.

Observation 2) Distillation Benefits OSR. To verify the
influence of distillation [Hinton et al., 2015] on MSA, we
compare the MSA-sample based distillation with the vanilla
distillation framework. Following Wang et al. [2022], we use
a non-MSA-trained network as the teacher model. As shown
in Table 1, with distillation only, both accuracy and AUROC
gain an improvement. Furthermore, the integration of MSA
significantly enhances accuracy by a substantial margin. This
implies that the dataset expanded through MSA contributes
significantly to the augmentation of the model’s represen-
tational capacity. Notwithstanding the attainment of more
expressive and generalized features, MSA persists in yielding
a decrement rather than an amelioration in performance on
OSR.

2.2 MSA Diminishes the Criteria of OSR
Choi et al. [2023] argue that the MixUp-trained model
disperses features in closed-set classes. To quantify such a
phenomenon, we visualize the discrepancy among all class
pairings of the vanilla model and the CutMix-trained model
in Figure 2 (a). At first glance, the heatmap of the CutMix-
trained model is darker than the vanilla one, which indicates
the degradation of the model’s activation magnitude and the
lower margins among all the classes. Specifically, the drastic
decrease of the gap among the similar classes ‘k 2 - k 3’
and ‘k 2 - k 5’ in Figure 2 (a) indicates that the model
tends to learn an obscure boundary among these classes. In
contrast, the degradation of the distinct classes such as ‘k 4
- k 5’ and ‘k 4 - k 3’ is slighter. The broken boundaries
among the similar classes are vulnerable to the unknowns
which have similar features with these classes. For OSR, the
darker colors in the intersect regions of the known classes
and the unknown classes suggest the model’s degeneration of
discriminating them from each other. To dig deeper into the
observation, we draw a theoretical analysis in the following.

Denoting D = {Dk, Dunk} as all the inputs the model
may encounter during deployment, Dtrain = {xi, yi}

n
i=1 ⊆

Dk represents the training dataset and xi and yi are the
image and the corresponding label. Given input image xi,
model’s C-classes prediction ŷi can be obtained via ŷi =
softmax(WΦθ(xi)), where Φθ(·) is the feature extractor and
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Model
Vanilla CNN

SSA MSA Distillation
+ AugMix [2020] + Rand. Quantization [2023] + CutOut [2017] + CutMix [2019] + MixUp [2017] Vanilla [2022b] + CutMix [2019]

Acc. AUROC Acc. AUROC Acc. AUROC Acc. AUROC Acc. AUROC Acc. AUROC Acc. AUROC Acc. AUROC
R-101 86.72 84.03 86.98+0.26 84.12+0.09 86.90+0.18 84.14+0.11 86.84+0.12 84.11+0.08 87.06+0.34 82.62−1.41 88.34+1.62 83.74−0.29 87.32+0.60 84.65+0.62 88.90+2.18 84.50+0.47

R-50 86.16 83.84 86.28+0.12 83.92+0.08 86.42+0.26 84.19+0.32 86.36+0.20 84.26+0.42 87.44+1.28 83.41−0.43 86.62+0.46 83.13−0.71 86.38+0.22 84.74+0.90 88.04+1.88 84.10+0.26

R-18 84.28 82.84 86.14+1.86 84.10+1.26 84.64+0.36 82.93+0.09 86.42+2.14 84.24+1.44 87.42+3.14 80.99−1.29 86.82+2.54 82.61−0.23 86.64+2.36 84.24+2.44 88.82+4.54 82.47−0.37

V-19 82.10 80.99 82.70+0.60 81.69+0.70 82.86+0.76 81.32+0.33 82.40+0.30 81.17+0.18 83.44+1.34 75.24−5.75 83.34+1.24 76.81−4.18 83.12+1.02 81.18+0.19 84.18+2.08 76.72−4.27

V-16 80.90 80.83 82.84+1.94 81.51+0.68 82.96+2.06 81.86+1.03 82.36+1.46 81.17+0.34 84.28+3.38 74.98−5.85 83.10+2.20 75.78−4.95 83.74+2.84 81.62+0.72 85.04+4.14 78.17−2.66

V-13 80.72 80.49 83.86+3.14 81.70+1.21 82.18+1.46 81.67+1.18 82.98+2.26 81.45+2.26 83.96+3.24 74.90−5.59 83.08+2.36 73.00−7.49 83.62+2.90 81.80+1.31 85.32+4.60 78.87−1.62

MV2 83.20 81.31 84.46+1.26 81.56+0.25 83.50+0.30 81.52+0.21 84.24+1.04 81.97+0.66 86.26+3.06 78.82−2.49 85.42+2.22 78.68−2.63 84.42+1.22 82.36+1.05 84.46+1.26 82.00+0.69

Table 1: The impact of different augmentations on different models. ‘R’, ‘V’, and ‘MV2’ denote ResNet [2016], VGG [2014], and
MobileNetV2 [2018], respectively. We report the close-set accuracy (Acc., %) and AUROC (%). The green numbers in the upper right
show the improvement compared to the vanilla CNN model and the numbers in red indicate the degradation.
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Figure 2: (a) Heatmap visualization of the distances among all the class parings on MNIST dataset. ‘k’ denotes the known classes and ‘uk’
denotes the unknown classes. The number after the underline is the ground-truth label. (b) The comparison of ||Φθ(x)|| and ||WΦθ(x)||
under different training paradigms. (c) The teacher’s top-2 error rate and over-confident predictions (higher than 95%) over 10000 mixed
samples under different mixing coefficients.

Φθ(xi) ∈ RD. W = [w1,w2, . . . ,wC ] ∈ RC×D is the linear
classification matrix and WΦθ(xi) = [ŷi,1, ŷi,2, . . . , ŷi,C ] is
the logits. The training is based on the cross-entropy loss
LCE :

LCE(θ,W) = −ŷi,c + log(
C∑

k=1

exp(ŷi,k))

= −wc Φθ(xi) + log(
C∑

k=1

exp(wk Φθ(xi))).

(1)

Vaze et al. [2022] investigated how LCE influences OSR.
The model initially embeds all the classes with a similar
magnitude and gradually activates more for the known classes
by increasing ||WΦθ(x)|| to better distinguish the unknowns.
The final maximum logit score is used to provide the open-
set score in their conclusion. Additionally, the model’s wrong
predictions during training tend to reduce wk ·Φθ(xi) ∀k ̸= c.

We use CutMix as an example to study the impact of MSA:

xm = M ⊙ xi + (1 − M)⊙ xj ,
ym = λ · yi + (1− λ) · yj ,

(2)

where M is a mask and λ is sampled from Beta distribution
β(α, α). With xm, Eq. 1 can be rewritten as:

Lm(θ,W) = (−λ ·wc1 Φθ(xm)) + (−(1− λ) ·wc2 Φθ(xm))

+log(
C∑

k=1

exp(wk Φθ(xm))), (3)

where c1 and c2 are the ground-truth classes of xi and xj .

We display the comparison of ||Φθ(x)|| and ||WΦθ(x)||
in Figure 2 (b) to explore how Eq. 3 influences the model’s
behavior. It is straightforward that the MSA-trained model
suffers from a degradation of feature norm which have the
direct bearing on the model’s criteria of OSR. Consequently,
in Figure 2 (b), ||WΦθ(x)|| of the MSA-trained model
decreases drastically, thus harming the open-set score. The
discrepancy between the known classes and the unknown
classes is also reduced as can be seen in Figure 2 (b). Through
the above analysis, we conclude that MSA diminishes the
criteria of OSR.

2.3 Retrieve the Discrepancy by Distillation
The distillation experiments in Table 1 indicate that KD
benefits OSR. However, distillation with CutMix brings a
greater improvement on the model’s accuracy while impair-
ing the gain of OSR performance. We investigate how the
teacher works by analyzing the distillation loss LDistill =
DKL(ŷ

s||ŷt), where the superscripts s and t denote the
student and the teacher model. It encourages ŷs to minimize
its divergence with ŷt, which implicitly leads to an alignment
of the magnitude of the activation. This can be concluded in
Figure 2 (b) by comparing the ||Φθ(x)|| of the KD-trained
model and the teacher. In addition, the comparison of
||WΦθ(x)|| between the MSA-trained model and the MSA-
distilled model indicates that distillation with MSA helps the
model retrieve the decreased discrepancy between the known
classes and the unknown classes to a certain degree. How-
ever, the MSA is still harmful to the distilled model, which
suggests that the vanilla symmetric distillation framework can
not mitigate this issue.
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To investigate why CutMix influences the benefit of distil-
lation, we calculate the teacher’s over-confident predictions
(the maximum probability is greater than 95%) and wrong
predictions (the predicted class is out of c1 and c2) over
10000 mixed samples on Tiny-ImageNet dataset as shown
in Figure 2 (c). The statistical results suggest that the
teacher makes amount of unreasonable predictions on MSA
samples. For example, the mixtures of the similar classes will
easily be over-confidently predicted because of the redundant
activation of their similar features. To solve this problem, We
regularize the teacher’s redundant activation by an asymmet-
ric distillation framework with an extra mutual information
supervision and a re-label mechanism in Section 3. And the
wrong prediction indicates that the mixed sample does not
include the discriminative features so that the model should
be encouraged to decrease its activation. To achieve this,
we re-label the wrong predicted samples with smoothed two-
hot labels to make the model put less attention on the class-
agnostic features within the mixed samples.

3 Method
3.1 Overview
The overall pipeline of the proposed asymmetric distillation
framework is outlined in Figure 3. Based on the vanilla
symmetric distillation in which the student and the teacher are
fed with the same inputs, we introduce extra initial samples
xi and xj to the teacher while training with the augmented
input xm to perform an asymmetric data flow between the
student and the teacher. We utilize the teacher’s output of
xi and xj to exert the student’s output of xm a cross mutual
information objective which forces the student to concentrate
more on the class-specific features within xm. In addition,
for the confusing mixtures that are wrongly predicted by the
teacher, we pick them out and re-label them with a smoothed
two-hot label to decrease the student’s activation of them.
Achieving this can make the student less active in the class-
agnostic features.

3.2 Asymmetric Distillation Framework
The asymmetric distillation framework is specially designed
for the training of MSA. In our experiments, the model is
randomly trained using either the original or mixed samples,
with a probability of 0.5. We control different data flows
with different objects for the student and the teacher during
distillation to leverage the teacher’s prior knowledge.

Training with the Initial Samples. We inherit the ad-
vantages of KD for the initial samples by training with
the symmetric distillation framework similar to Wang et
al. [2022]. The loss is computed by:

Lraw = LCE(ŷ
s, y) + LDistill(ŷ

s, ŷt). (4)

Asymmetric Inputs of Training MSA. The unreasonable
output of the teacher emphasizes the non-salient features
within the mixture. To enable the student to concentrate more
on the class-specific features, we propose extra supervision to
amplify the teacher’s optimization of ||Φθ(x)||. Concretely,
we build an asymmetric distillation framework upon the
vanilla symmetric distillation framework by introducing the
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Figure 3: The proposed asymmetric distillation framework. Both the
student and teacher models receive mixed data as input and perform
distillation on Φθ(x). Besides, the teacher model additionally
accepts raw data as input to enlarge its benefit on the mixed inputs.
To further decrease the student’s activation of the non-discriminative
features, we filter the teacher’s wrong predictions of the mixed
samples out and assign them a revised label to optimize.

initial samples to the teacher. The additional initial samples
offer the mixed samples an extra mutual information maxi-
mization objective to amplify the teacher’s impact.

Cross Mutual Information. Mutual Information (MI)
is a fundamental measurement to quantify the relationship
between random variables [Hou et al., 2021; Feng et al.,
2023] denoting by I (v1, v2) where v1 and v2 are two
random variables. Initially, the primary objective for MSA
training can be understood as maximizing I (Φs

θ(xm), ym).
As the mixed label ym does not reflect the amount of the
label information included in xm well, the powerful teacher
is introduced to produce the embedding Φt

θ(xm) which is
considered as a proper and model-friendly target of optimiza-
tion. The objective of distillation can be abstracted into the
maximization of I (Φt

θ(xm), Φs
θ(xm)) which encourages the

student to align its representation with the teacher.
However, since Φt

θ(xm) may include class-agnostic infor-
mation, especially the mixture of similar classes, we argue
that merely imitating the teacher’s output is not an optimal
solution for OSR. An ideal objective encourages the student
to maximize the discriminative features while discarding the
common ones within the mixed samples. We achieve this
by excluding their shared label information to amplify the
teacher’s impact on the class-specific features. The term
I (Φs

θ(xm), Φt
θ(xm)|yj) rigorously quantifies the amount of

information of the c1-th class shared between Φt
θ(xm) and

Φs
θ(xm) where ‘|’ is an excluding operation. The maximiza-

tion of this term forces the student to attend more on the
characteristic features of the c1-th class in xm. We maximize
this term for both of the two classes in xm by a mutual
information loss:

LMI = −( I(Φs
θ(xm),Φt

θ(xm)|yj)

+ I(Φs
θ(xm),Φt

θ(xm)|yi)).
(5)

Revisiting the terms in Eq. 5, we find that excluding
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the class-agnostic information of the c1-th class in xm, i.e.
(Φt

θ(xm)|yj), can be easily achieved by replacing it with
Φt

θ(xi) in consideration of xi shares the same pure informa-
tion of the c1-th class with xm. So we maximize the mutual
information of xm, xi and xj in a cross manner and simplify
Eq. 5 to a Cross Mutual Information loss:

LCMI = −(λI (Φs
θ(xm),Φt

θ(xi))

+ (1− λ)I(Φs
θ(xm),Φt

θ(xj)),
(6)

where λ is determined by Eq. 2 to weight the contribution of
xi and xj .

3.3 Sample Verify and Two-Hot Label Smoothing
Eq. 6 enables the model to discard the class-agnostic features
in xm. However, in Figure 2 (c), we point out that the teacher
makes mistakes for some corner cases, which may be sub-
optimal to the model’s optimization. We revise the teacher’s
wrong predictions with a smoothed two-hot label to help the
model learn more uncertainties within the confusing samples.

Relaxed Sample Verify. For a mixed sample xm, we argue
that it contains the non-salient parts of both the c1-th and the
c2-th class when the teacher predicts it to the third class. We
utilize a relaxed verification that checks the top-2 accuracy
of ŷtm to filter the teacher’s wrong predictions out and assign
them a revised target to optimize.

Two-Hot Label Smoothing. We aim to optimize the
wrongly predicted mixed samples to decrease their activation
so that the model can discard the non-discriminative features
within the mixtures. The cross-entropy loss we discussed
above can naturally degrade the activation for the wrong
predictions by Eq. 1. In addition, we want the model to
learn more uncertainties among the confusing mixtures, so we
manually set a revised target for these samples. Concretely,
we mix a uniform label ȳ ∈ RC whose elements are 1/C
and ym by a ratio of 0.5 to generate the target of the wrongly
predicted xm which we name it yu. The loss is computed by:

LRelabel =1(argmax(ŷt
m) ̸= c1 and argmax(ŷtm) ̸= c2)

LCE(ŷ
s
m, yu),

(7)

where 1(·) is an indicator function whose value is 1 when the
following expression in the brackets is true and 0 vise versa.
This object encourages the model to embed the uncertain
samples xm to the origin of the feature space.

The overall loss can be denoted as:

LCutMix = LDistill + µLCMI + ηLRelabel, (8)

where µ and η are hyper-parameters we set to 1.0.

4 Experiments
4.1 Experimental Settings
Datasets. We evaluate the performance of our model on three
benchmarks: the OSR benchmark, semantic shift benchmark,
and large-scale benchmark.

• OSR Benchmark: within this benchmark, the method
is evaluated on five datasets, including SVHN [Netzer
et al., 2011], CIFAR-10 [Krizhevsky et al., 2009],
CIFAR+10, CIFAR+50, and Tiny-ImageNet [Le and
Yang, 2015]. All settings align with those of AGC.

• Semantic Shift Benchmark: this evaluation pro-
tocol includes three datasets: Caltech-UCSD-Birds
(CUB)[Wah et al., 2011], Stanford Cars[Krause et al.,
2013], and FGVC-Aircraft [Maji et al., 2013]. The
presence of specific attributes distinguishes different
classes, and the difficulty of recognition is calculated
based on the differences in the number of attributes.
Consequently, the open-set classes of the FGVC datasets
are divided into ‘Easy’, ‘Medium’, and ‘Hard’ levels to
denote their similarities with close-set classes.

• Large-Scale Benchmark: Within this protocol, 200
classes from Tiny-ImageNet are used for training. Sub-
sequently, non-overlapping ‘Easy’ and ‘Hard’ splits
from Imagenet-21k are selected for evaluation, follow-
ing the approach outlined by Ren et al. [2023].

Evaluation Metrics. In the OSR benchmark, AUROC serves
as a threshold-independent metric [Davis and Goadrich,
2006]. It quantifies the probability that a positive example
possesses a higher detector score or value compared to a
negative example. OSCR is a metric that gauges the trade-off
between accuracy and open-set detection rate by adjusting the
threshold on the confidence of the predicted class.
Implementation Details. We utilize DIST [Huang et al.,
2022a] as the foundational distillation method. The default
teacher-student pair consists of ResNet-50 [He et al., 2016]
and ResNet-18. The training duration spans 200 epochs,
employing a batch size of 32. The initial learning rate is 0.1,
subsequently reduced by a factor of 5 at the 60th, 120th, and
160th epoch. The optimization employs the SGD optimizer
with a momentum of 0.9, and the weight decay is set to 5e-4.

4.2 Comparison on OSR Benchmark
To assess the recognition capability of our proposed asym-
metric distillation framework in open-set scenarios, we com-
pare it not only with traditional state-of-the-art open-set
recognition methods (denoted as ARPL [Chen et al., 2021b],
RCSSR [Huang et al., 2022a] and AGC [Vaze et al., 2022],
etc.) but also with method CMPKD [Wang et al., 2022],
which incorporates both MSA and distillation. As shown
in Table 2, our method exhibits a significant improvement
in open-set performance compared to traditional open-set
recognition methods, achieving a gain of 0.4% on CIFAR-
10 and 2.6% on TinyImageNet. In comparison to method
CMPKD, our model substantially enhances the model’s
open-set performance while maintaining closed-set accuracy,
achieving improvements of 4.9% on SVHN and 2.8% on
TinyImageNet. This demonstrates that through the use of
the asymmetric distillation framework and the constraints
of mutual information object engineering, we have indeed
succeeded in enhancing the focus of the student model on
class-specific features, and finally got a win-win solution for
open-set recognition.
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Methods
SVHN CIFAR-10 CIFAR+10 CIFAR+50 TinyImageNet

Acc. AUROC Acc. AUROC Acc. AUROC Acc. AUROC Acc. AUROC
CROSR (CVPR, 2019) - 89.9 - 88.3 - 91.2 - 90.5 - 58.9
C2AE (CVPR, 2019) - 92.2 - 89.5 - 95.5 - 93.7 - 74.8
RPL (ECCV, 2020) - 93.4 - 82.7 - 84.2 - 83.2 - 68.8
ARPL+CS (TPAMI, 2021) - 96.7 - 91.0 - 97.1 - 95.1 - 78.2
CSSR (TPAMI, 2022) - 97.9 - 91.3 - 96.3 - 96.2 - 82.3
AGC (ICLR, 2022) 97.6 97.1 96.4 93.6 97.8 97.9 97.8 96.5 84.6 82.7
OpenMix+ (TCSVT, 2023) - - 95.3 86.9 96.8 93.1 96.8 92.5 58.4 75.1
CMPKD (NIPS, 2022) 97.6 92.1 96.8 84.1 97.8 95.0 97.8 91.9 86.9 82.5
Ours 97.7 97.2 96.9 94.0 98.0 98.1 98.0 96.8 87.3 85.3

Table 2: Comparison of AUROC (%) and close-set accuracy (Acc., %) on OSR Benchmark. The best performance values are highlighted in
bold and the second best performances are underlined.

Method
CUB SCars FGVC-Aircraft

Acc.
AUROC OSCR

Acc.
AUROC OSCR

Acc.
AUROC OSCR

Easy / Hard Easy / Hard Easy / Hard Easy / Hard Easy / Hard Easy / Hard

ARPL (TPAMI, 2021) 85.9 83.5 / 75.5 76.0 / 69.6 96.9 94.8 / 83.6 92.8 / 82.3 91.5 87.0 / 77.7 83.3 / 74.9

AGC (ICLR, 2022) 86.2 88.3 / 79.3 79.8 / 73.1 97.1 94.0 / 82.2 92.2 / 81.1 91.7 90.7 / 82.3 86.8 / 79.8

Ours 87.6 89.6 / 82.0 81.4 / 75.8 96.9 95.5 / 84.9 93.3 / 83.5 91.1 90.1 / 83.5 86.2 / 80.9

Table 3: Comparison of AUROC (%), OSCR (%) and closed-set accuracy (Acc., %) on semantic shift Benchmark. Results of ARPL and
AGC are from Vaze et al. [2022]. The best performance values are highlighted in bold.

BackBone
Easy Hard

AUROC OSCR AUROC OSCR

ARPL VGG32 51.4% 33.8% 52.4% 34.4%

AGC VGG32 72.8% 44.1% 72.1% 43.8%

CLIP ViT-B/32 72.9% 44.0% 72.3% 43.6%

CoOp ViT-B/32 74.6% 54.3% 73.3% 53.3%

A2Pt ViT-B/32 76.6% 58.7% 74.7% 57.4%

Ours ResNet18 77.1% 60.8% 75.7% 60.1%

Ours ViT-B/32 79.3% 64.8% 75.7% 62.8%

Table 4: Comparison on large-scale benchmark.

Method Backbone Acc. AUROC

AGC VGG-32 84.64% 82.68%

AGC MobileNet-V2 82.46% 80.68%

Ours MobileNet-V2 85.70% 83.32%

Table 5: Comparison on light-weight model MobileNet-V2.

4.3 Comparison on Semantic Shift Benchmark
To further explore the discriminative ability of our model for
feature extraction, we conduct experiments on the semantic
shift benchmark following AGC [2022]. The results, as
shown in Table 3, reveal that our method consistently out-
performs the AUROC metric of the state-of-the-art method
AGC by a margin of 1%∼2% in both ‘Easy’ and ‘Hard’ splits
while maintaining closed-set accuracy on three fine-grained

datasets (CUB, SCars, and FGVC), a slightly declined by less
than 1% in the ‘Easy’ split of the Aircraft, possibly due to the
invariable backgrounds (either the sky or the runway) among
the dataset. Notably, our model’s performance excels in the
hybrid scenario with an OSCR metric exceeding 2.7% for
the SOTA method. This suggests that, by employing MSA
samples through an asymmetric distillation framework, our
model can discard class-agnostic representations and focus
more on class-specific representations, thereby enhancing
recognition performance across various scenarios, even in
challenging fine-grained classification scenarios.

4.4 Comparison on Large-Scale Benchmark
To further explore the effectiveness of our method in real-
world scenarios, we conducted experiments on a large-scale
dataset. Specifically, we trained on TinyImageNet with only
200 classes and tested on ImageNet-21k with 2100 classes.
In our evaluation, we compare our method not only with
conventional OSR methods, ARPL [Chen et al., 2021b] and
AGC [Vaze et al., 2022], but also with additional multimodal
methods such as CLIP [Radford et al., 2021], CoOp [Zhou
et al., 2022], and A2Pt. The results, as presented in Table 4,
showcase the performance of our method in both the open-
set recognition metric AUROC and the hybrid recognition
metric OSCR. Remarkably, our method outperforms conven-
tional methods by approximately 5%, as well as multimodal
methods by 1%. This demonstrates that even in complex real-
world scenarios, the features learned through the asymmetric
distillation framework remain highly discriminative. Impor-
tantly, these features are not significantly disturbed by the
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Model CutMix Distillation CMI Smoothed two-hot label Acc. AUROC
ResNet-18 84.3% 82.8%
(a) ✓ 87.4% 81.0%
(b) ✓ ✓ 88.8% 82.5%
(c) ✓ ✓ ✓ 87.8% 84.8%
(d) ✓ ✓ ✓ ✓ 87.3% 85.3%

Table 6: Ablations of our proposed terms on Tiny-ImageNet.

η

µ 0.5 1.0 2.0
Acc. AUROC Acc. AUROC Acc. AUROC

0.5 87.7% 85.1% 87.6% 85.0% 87.4% 85.0%
1.0 87.3% 84.9% 87.3% 85.3% 87.5% 85.1%
2.0 86.8% 84.9% 87.3% 84.7% 87.5% 84.9%

Table 7: Results under different hyper-parameter settings.

increase in unknown novel classes, showcasing the ability of
our method to stabilize the open-set recognition performance
of the model. Additionally, we replace our ResNet-18
backbone with ViT and report the results. Compared to
A2Pt and CLIP, the performance on the ImageNet-21k dataset
shows the superiority of our method on the ViT backbone.
And the comparison with our ResNet-18 proves that using a
more powerful backbone model can reap better benefits.

4.5 Comparison on the Light-weight Model
We conduct additional experiments to assess the effectiveness
of our model on lightweight networks in Table 5. In compar-
ison to the state-of-the-art (SOTA) method AGC [Vaze et al.,
2022] implemented on MobileNet-V2 [Sandler et al., 2018],
our proposed asymmetric distillation model demonstrates
superior performance. Our model exhibits improvements in
both closed-set accuracy (Acc.) with a margin of +3.24% and
open-set recognition AUROC with a margin of +2.64% on the
TinyImageNet dataset. These results indicate that our method
is not constrained by the network parameters and remains
effective even in lightweight networks.

4.6 Ablation Study
In Table 6, we conduct an ablation analysis on the Tiny-
ImageNet dataset to delve deeper into the effectiveness of
different elements of our method. The comparison between
ResNet-18 with CutMix (a) highlights the significant positive
impact of multiple samples-based augmentations on improv-
ing closed-set classification (+3.1%). However, this im-
provement comes at the expense of a substantial reduction in
the model’s open-set recognition performance (-1.8%). The
introduction of distillation methods partially mitigates the
degradation of open-set performance (from 81.0% to 82.5%),
but does not lead to improvement, less than 82.8%. However,
when our Contrastive Mutual Information (CMI) objective
and Smoothed Two-Hot Label method are introduced, the
open-set recognition metrics AUROC of the model sequen-
tially increase from 82.5% to 84.8% and 85.3%. Although
the closed-set classification metric (Acc.) slightly decreased
by 1% point and 1.5% points, respectively, there are still +3%
improvements over the original ResNet. This demonstrates
that our proposed CMI objective and Smoothed Two-Hot
Label method significantly enhance the model’s open-set

Method In-distribution Out-of-distribution AUROC
MLS

Cifar-10 Cifar-100
87.5%

Ours 89.6%
MLS

Cifar-10 Tiny-ImageNet
88.7%

Ours 91.2%

Table 8: The evaluations on OoD detection.

Method
ChestMNIST OCTMNIST PneumoniaMNIST

AUROC Acc. AUROC Acc. AUROC Acc.
MedMNIST 76.8% 94.7% 94.3% 74.3% 94.4% 85.4%
Ours 77.5% 94.8% 96.2% 77.0% 94.9% 90.1%

Table 9: Results on MedMNIST v2 dataset.

recognition ability. The empirical evidence highlights the
effectiveness of our additional supervision methods in facil-
itating the learning of class-specific features and decreasing
the activation of the non-salient features of the known classes.

To validate the robustness of our method to the hyper-
parameters, we test different combinations of hyper-
parameters µ and η including 0.5, 1.0, and 2.0. The result in
Table 7 fluctuating around 0.5% under different combinations
shows that our method is insensitive to hyper-parameter
settings. And the optimal result appears when µ and η are
set as 1.0.

4.7 Results on Other Tasks
Our proposed method ensures the backbone model extracts
features with discrimination and hence further promotes
downstream task performance like OSR task. In Table 8,
we evaluate our method on uncertainty-related task Out-
of-Distribution (OoD) to verify our method as a general
feature-strengthening tool. We equipped the maximum logit
score (MLS) baseline with our method on Cifar-10/Cifar-100
and Cifar-10/Tiny-ImageNet and the improvements show the
effectiveness on OoD task.

Furthermore, we focus on the fundamental and practically
applicable recognition task. As a win-win solution for close-
and open-set tasks, our proposed method can be regarded as
an effective feature extractor enhancement strategy. Taking as
an example, we verify the representation ability enhancement
of our method on medical image analysis (on MedMNIST v2
dataset [Yang et al., 2023]) in Table 9.

5 Conclusion
In this paper, we start by revealing the two sides of the data-
mix augmentation by investigating how MSA interplays with
open-set recognition. Our experiments and visualizations
suggest that MSA diminishes the criteria of OSR and leads to
confusion among similar classes. Based on the observations
of how knowledge distillation works on OSR, we propose
a win-win solution that leverages MSA to boost both the
close-set and the open-set performance. The outstanding
performance of our method conducted on multiple datasets
demonstrates the effectiveness of our approach. It also
demonstrates the potential of the known classes can help to
detect novels.
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