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Abstract

The ascension of Unmanned Aerial Vehicles
(UAVs) in various fields necessitates effective UAV
image segmentation, which faces challenges due
to the dynamic perspectives of UAV-captured im-
ages. Traditional segmentation algorithms fal-
ter as they cannot accurately mimic the com-
plexity of UAV perspectives, and the cost of ob-
taining multi-perspective labeled datasets is pro-
hibitive. To address these issues, we introduce
the PPTFormer, a novel Pseudo Multi-Perspective
Transformer network that revolutionizes UAV im-
age segmentation. Our approach circumvents the
need for actual multi-perspective data by cre-
ating pseudo perspectives for enhanced multi-
perspective learning. The PPTFormer network
boasts Perspective Representation, novel Perspec-
tive Prototypes, and a specialized encoder and de-
coder that together achieve superior segmentation
results through Pseudo Multi-Perspective Atten-
tion (PMP Attention) and fusion. Our experi-
ments demonstrate that PPTFormer achieves state-
of-the-art performance across five UAV segmen-
tation datasets, confirming its capability to effec-
tively simulate UAV flight perspectives and signif-
icantly advance segmentation precision. This work
presents a pioneering leap in UAV scene under-
standing and sets a new benchmark for future de-
velopments in semantic segmentation.

1 Introduction
Semantic segmentation is a fundamental component of many
practical applications in computer vision [Chen et al., 2023;
Yang et al., 2024; Yang et al., 2022a; Yang et al., 2022b; Yang
et al., 2023; Chen et al., 2024a; Yu et al., 2022a; Yu et al.,
2024], such as autonomous driving, video surveillance, and
precision agriculture, where the goal is to predict a category
label for each pixel in an image. In recent years, a plethora of
algorithms and networks [Zhu et al., 2021; Zhu et al., 2024a;
Ji et al., 2023c; Ji et al., 2022; Zhu et al., 2023c; Zhu et al.,

∗Corresponding author.

2023b] have been developed for segmentation in conventional
scenes, showcasing significant advancements in the field.

With the burgeoning growth of Unmanned Aerial Vehicles
(UAVs), UAV segmentation has emerged as a pivotal area of
research, playing a crucial role in applications ranging from
environmental monitoring to disaster response. Unlike data
captured from fixed perspectives, UAVs operate at varying al-
titudes and angles, offering a wealth of dynamic viewpoints.
The images captured by UAVs reflect the rich and varied vi-
sual information from different angles and altitudes, which is
of great importance for monitoring rapidly changing environ-
ments.

Addressing the segmentation challenges posed by such
rich variability in perspectives necessitates a novel approach.
The most intuitive solution would be to collect actual multi-
perspective data for training segmentation networks. How-
ever, as analyzed in [Ji et al., 2024b; Zheng et al., 2020;
Yang and Ma, 2022; Ji et al., 2024a], due to the pro-
hibitive costs of collection and fine-grained annotation, ex-
isting datasets lack multi-perspective images with detailed la-
beling. Conventional segmentation methods typically rely on
explicit perspective transformation-based data augmentation
techniques, such as scaling, rotating, or flipping images in 2D
or 3D dimensions. These rudimentary methods of augmenta-
tion produce stiff and unnatural perspectives that fail to repre-
sent the true changes in perspective experienced during UAV
flight, resulting in limited model performance in real-world
UAV scenarios.

In light of these challenges and the rapid development of
Vision Transformers in semantic segmentation, a subset of
methodologies [Xie et al., 2021; Zheng et al., 2021] has been
applied to UAV scene segmentation. However, these Trans-
former networks have not deeply analyzed or been designed
with UAV perspective dynamics in mind. The DLPL [Ji et al.,
2024b] introduces a comprehensive approach for latent per-
spective learning. However, DLPL employs a more intricate
method involving discrete perspective decomposition and sta-
tistical representation, and relies on Homography transforma-
tions for converting latent perspectives. Consequently, this
framework requires a slightly larger number of parameters
and incurs higher latency. In this paper, we adopt the the-
oretical foundation of DLPL to propose a more lightweight
and innovative network, termed PPTFormer (Pseudo Multi-
Perspective Transformer), specifically tailored for UAV seg-
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mentation tasks. The core of this network is composed
of advanced PPTFormer blocks designed for pseudo multi-
perspective learning. These blocks utilize perspective proto-
types that remain consistent throughout the network, thereby
enhancing perspective-aware learning. Drawing inspiration
from [Ji et al., 2024b], a critical component of the PPTFormer
Blocks is the perspective representation and generation mod-
ule. This module modifies visual features to emulate various
UAV viewpoints while maintaining the integrity of scene se-
mantics. Distinct from DLPL, PPTFormer utilizes a more
lightweight contourlet transformation for texture extraction,
followed by keypoint-based perspective description. To fur-
ther reduce network complexity, we employ a non-parametric
method for perspective prototype construction based on linear
moving averages, coupled with a simplified Gaussian mix-
ture distribution for generating new pseudo perspectives effi-
ciently. We also utilize a more efficient all-MLP visual de-
coder instead of the complex architecture in DLPL. More-
over, to address domain shift in the multi-perspective learn-
ing process, a challenge which DLPL has overlooked, we
improve the sequential attention mechanism (PIA in DLPL)
with the iterative Pseudo Multi-Perspective (PMP) Attention,
as well as utilize a lightweight Perspective Calibration pro-
cess following the PPTFormer Blocks.

Our contributions can be summarized as follows:
• We propose a lightweight PPTFormer that enables im-

plicit multi-perspective learning in the absence of multi-
perspective datasets. By generating pseudo multi-
perspective characterization about the scene and engag-
ing in joint learning across them, PPTFormer can effec-
tively simulate the varying viewpoints encountered dur-
ing actual UAV flight, thereby improving the segmenta-
tion accuracy.

• Particularly, we employ contourlet transformation
and keypoint-based perspective description, coupled
with non-parametric perspective prototype construction.
Moreover, a perspective calibration process is utilized to
address domain shift in multi-perspective learning.

• PPTFormer achieves competitive performance across
five UAV segmentation datasets while maintaining a
lightweight network, demonstrating its effectiveness in
capturing the intricate dynamics of UAV-captured scenes
through pseudo multi-perspective Learning.

2 Related Work
2.1 Semantic Segmentation
Semantic Segmentation has been a classical and fundamen-
tal task in computer vision area [Chen et al., 2024b; Ji et al.,
2024a; Ji et al., 2020; Zhu et al., 2024b; Wang et al., 2021b;
Wang et al., 2021a; Feng et al., 2018; Ji et al., 2019;
Ji et al., 2023a; Zhu et al., 2023e; Zhu et al., 2023f;
Zhu et al., 2023d; Yu et al., 2023]. In recent years, the ma-
jority of segmentation advancements are grounded in the use
of fully convolutional networks (FCN) [Zhu et al., 2023c;
Zhu et al., 2023b; Long et al., 2015; Zheng et al., 2023a;
Zheng et al., 2023b; Yu et al., 2022b; Zhou et al., 2023;
Yu et al., 2023]. Subsequent research has concentrated on

capturing contextual relationships within images, employ-
ing sophisticated network architectures to enhance the under-
standing of scene composition [Hu et al., 2020; Ji et al., 2022;
Zhu et al., 2023a].

2.2 UAV Scene Segmentation
Despite these advancements, there is a noticeable gap in the
literature pertaining to semantic segmentation tailored for
UAV imagery. Existing UAV segmentation methods mainly
focus on solving the class imbalanced problems, such as SCO
[Yang and Ma, 2022], FarSeg [Zheng et al., 2020] and Point-
Flow [Li et al., 2021]. The unique challenges posed by UAV
scenes, characterized by diverse and dynamic changes in per-
spective, are seldom addressed. The development of segmen-
tation models that can effectively handle the variability inher-
ent in UAV-captured images also remains an area in need of
further exploration.

2.3 Ultra-High Resolution Segmentation
In comparison to natural scene imagery, images captured
from Unmanned Aerial Vehicles (UAVs) generally exhibit
higher resolution characteristics. Existing research has also
attempted to introduce segmentation algorithms that can con-
currently balance accuracy and efficiency, such as WSDNet
[Ji et al., 2023c], GPWFormer [Ji et al., 2023b], among oth-
ers. In this paper, we endeavor to enhance segmentation pre-
cision from the perspective of UAV flight viewpoints. This
approach is universally applicable and can be integrated with
the aforementioned high-resolution image segmentation algo-
rithms.

3 PPTFormer
3.1 Overall Structure
The overall architecture of our proposed Pseudo Multi-
Perspective Transformer (PPTFormer) is inspired by [Ji et
al., 2024b] and depicted in Figure 1. Following the classic
paradigms [Zheng et al., 2021; Xie et al., 2021], PPTFormer
consists of a meticulously designed encoder for perspective
learning and a generic decoder. The encoder comprises four
Transformer Blocks: one Plain Transformer Block followed
by three PPTFormer Blocks. The former is responsible for
extracting basic low-level information, which serves as the
foundation for pseudo multi-perspective learning in the sub-
sequent blocks. Unlike [Ji et al., 2024b] which applies DLPL
at every Transformer Block, we restrict perspective learning
to only the last three Blocks in PPTFormer to enhance its
efficiency. Specifically, within the PPTFormer Blocks, we
extract implicit perspective representations from the visual
features based on the structural texture. In conjunction with
training across the entire dataset, we create perspective pro-
totypes of the images present throughout the dataset. These
prototypes are shared across the three PPTFormer Blocks to
ensure a consistent learning of perspectives during the train-
ing process. Interleaved between the PPTFormer Blocks are
Perspective Calibration modules, which are instrumental in
aligning the visually fused features from pseudo perspectives
with the original perspective of the image. This alignment
prevents potential scene domain shifts, which are overlooked
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Figure 1: The overview of the proposed PPTFormer. The encoder comprises four Transformer Blocks: one Plain Transformer Block followed
by three PPTFormer Blocks. The former is responsible for extracting basic low-level information, which serves as the foundation for pseudo
multi-perspective learning in the subsequent blocks. Interleaved between the PPTFormer Blocks are Perspective Calibration modules, which
prevent potential scene domain shifts. Finally, we concatenate features of varying scales produced by each block and feed them into the
decoder network.

in DLPL [Ji et al., 2024b]. Finally, we concatenate features
of varying scales produced by each block and feed them into
the decoder network for further processing.

3.2 PPTFormer Block
As shown in Figure 1, the PPTFormer Block comprises an
Efficient Perspective Generation module and M layers of
Pseudo Multi-Perspective Attention (PMP Attention). Given
the input of low-level visual features F from block 1, the Ef-
ficient Perspective Generation module implicitly represents
the image’s perspective p, generating a pseudo perspective
p′ that simulates the movement and shift of viewpoints dur-
ing an actual UAV flight, all while preserving the semantic
information of the scene. During this process, the acquired
perspective representation p contributes to the construction
of perspective prototypes P for the entire dataset and also
bases the pseudo perspective generation on these prototypes.
The output visual feature F ′ with the pseudo perspective p′,
along with F , are both fed into the M layers of PMP Atten-
tion for multi-perspective correlation. This allows the model
to understand the scene’s semantic information from both the
original perspective and the new pseudo perspective simulta-
neously. Specifically, in the first layer of PMP Attention, the
inputs are F and F ′, and the output is the first level of per-
spective fusion. Subsequently, in the following M − 1 layers
of PMP Attention, the fused feature and F ′ work together to
achieve the subsequent M − 1 levels of perspective fusion.
Below, we will introduce the specific structures of the Effi-
cient Perspective Generation and PMP Attention in detail.

3.3 Efficient Perspective Generation
As illustrated in Figure 2, the input is the visual feature F
form Block 1, which first passes through a Perspective Rep-
resentation encoder Ep to obtain an original Perspective p.
Subsequently, on one hand, p contributes to the construction
of the entire dataset’s perspective prototypes P using the on-
line sequential clustering updating technique. The length of

P , which corresponds to the number of perspective proto-
types in the dataset, is N . On the other hand, p is also used for
Pseudo Perspective Generation based on P , to generate a new
pseudo perspective p′. Thereafter, a Visual Reconstruction
decoder Dp uses p′ to ultimately reconstruct the visual fea-
ture F ′. In order to reduce the complexity, Dp is all-MLP ar-
chitecture which demonstrates promising performance here.
During training, to ensure its reconstructive capability, p is
also directly fed into Dp with the aim of restoring the origi-
nal visual feature F , that is,

Lrec = ||Dp(p)− F ||2 = ||Dp(Ep(F ))− F ||2, (1)

where Lrec is the reconstruction loss.

Perspective Representation
As depicted in Figure 3, distinct from DLPL, PPTFormer uti-
lizes a more lightweight contourlet transformation for texture
extraction, followed by keypoint-based perspective descrip-
tion. The Perspective Representation encoder Ep primarily
encompasses two processes: extracting low-level structural
texture from the image using contourlet decomposition [Do
and Vetterli, 2005] and, based on this texture, extracting in-
terest super points that are related to the image’s perspec-
tive. The former ensures that the model captures the global
structural texture information, which can represent the im-
age’s contours, edges, and other structural features, including
perspective information. To further distill perspective-related
features, the latter identifies key support points representing
perspective as super points, whose spatial distribution and
feature intensity can construct a structured high-dimensional
description of the image’s perspective.
Texture Extraction. Specifically, as traditional filters, con-
tourlet decompositions inherently excel at texture represen-
tation across various geometric scales and directions in the
spectral domain. Rather than describing texture features in
the spatial domain, they analyze the energy distribution in the
spectral domain to extract the inherent geometric structures of
the texture, which naturally includes the image’s perspective.
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Figure 2: The Efficient Perspective Generation module in PPTFormer Block.

The contourlet decomposition comprises a cascaded Lapla-
cian Pyramid (LP) [Burt and Adelson, 1983] and a directional
filter bank (DFB) [Bamberger and Smith, 1992]. The LP
decomposes input features into low-pass and high-pass sub-
bands using pyramidal filters. The high-pass subband is pro-
cessed through the DFB, which is employed to reconstruct the
original signal with minimal sample representation, produced
by t-level binary tree decomposition in the two-dimensional
frequency domain, resulting in 2z directional subbands. For
instance, when z = 3, the frequency domain is divided into 8
directional subbands, with subbands 0-3 and 4-7 correspond-
ing to vertical and horizontal details, respectively [Ji et al.,
2022]. Following [Ji et al., 2022], for a richer expression,
we stack multiple contourlet decomposition layers iteratively,
and concatenate the output of each level to form the final ex-
tracted structural texture.

Specifically, the output of level t ∈ [1, T ] is denoted as
Fbds,t,

Fbds,t = DFB(Fh,t), t ∈ [1, T ],

where Fl,t, Fh,t = LP(Fl,t−1)
(2)

where l and h represent the low-pass and high-pass subbands
respectively, bds denotes the bandpass directional subbands.
Then structural texture Ftexture is denoted as:

Ftexture = Cat
t∈[1,T ]

{Fbds,t}. (3)

where Cat is the concatenation operation. Ftexture is rich in
texture information including the image’s perspective.
Perspective Support Description. Based on Ftexture, we
use a SuperPoint network to extract key support points and
corresponding support descriptors that are capable of char-
acterizing the perspective from the texture features. Specifi-
cally, this network comprises two parallel heads, Ssp and Ssd,
which respectively output the “point-ness” probability map
and the corresponding point feature descriptor. The final out-
put, the perspective feature p, is the concatenation of output
features from the two heads, along the channel dimension:

p = Cat(Ssp(Ftexture),Ssd(Ftexture)). (4)

Perspective Prototypes Construction
The construction of Perspective Prototypes is aimed to ob-
tain and manage the scene perspective types of the whole
dataset, by performing an online sequential clustering process
on the coming ps. We utilize a lightweight memory bank and
its length N is equal to the number of prototypes. Specif-
ically, different from DLPL [Ji et al., 2024b], we employ a
non-parametric mechanism to reduce the network complex-
ity. Firstly, the N prototypes P = {P1, P2, ..., Pn, ..., PN}
are initialized with the first input N ps, and we set the counts
{c1, c2, ..., cn, ..., cN} to record the number of perspective
features belonging to the corresponding prototype. Then, for
each new coming p, we find its closest prototype Pn by L2
distances, and update the the prototype with:

cn ← cn + 1

Pn ← Pn +
1

cn
(p− Pn).

(5)

So the final resulting prototype Pn is the moving average of
ps that are closest to Pn.

Then we formulate overall perspective distribution of the
whole dataset in form of Gaussian Mixed Model (GMM), fol-
lowing DLPL,

G(P ) =
N∑

n=1

πn · N (p|Pn,Σn), (6)

whereN (·) indicates the Gaussian Distribution, the nth com-
ponent of GMM has the center of Pn with the variance of Σn,
and πn is the mixture coefficient of meets:

N∑
n=1

πn = 1, 0 ≤ πn ≤ 1, (7)

Pseudo Perspective Generation
Based on the dynamically updated perspective distribution
G(P ), we can generate a new semantic-related pseudo per-
spective p′ of the given probe p, by leveraging all the proto-
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types. Note that we avoid using Homography transformations
in DLPL to accelerate the generating process.

p′ = p ·G(P, p) = p ·
N∑

n=1

πn · N (p|Pn,Σn), (8)

where p′ is generated based on the overall perspective distri-
bution over all perspective prototypes.

Finally, the corresponding visual feature F ′ for p′ can be
reconstructed with Dp.

F ′ = Dp(p
′). (9)

3.4 Pseudo Multi-Perspective Attention

By the Efficient Perspective Generation, we obtain the visual
feature F ′ with a new pseudo perspective for the input im-
age. As seen that F and F ′ contain closely identical scene
context and structured information but only differ in perspec-
tive. Next, they are fed into the M layers of Pseudo Multi-
Perspective (PMP) Attention to leverage the relationship be-
tween the F (with original perspective p) and F ′ (with gener-
ated pseudo perspective p′). Different from DLPL which use
sequential attention mechanism, the PMP Attention employs

an iterative one,
PMP Att(F, F ′) =

F1 = Softmax(
F × F

′⊤
√
C

)× F ′,

F2 = Softmax(
F ′ × F⊤

1√
C

)× F1,

F3 = Softmax(
F1 × F⊤

2√
C

)× F2,

...

FM = Softmax(
FM−2 × F⊤

M−1√
C

)× FM−1.

,

(10)
where C is the feature channel. By the iterative attention cal-
culation, the multiple perspectives can be fully correlated.

3.5 Perspective Calibration
Within each PPTFormer Block, after undergoing N layers of
PMP Attention, the original perspective and the pseudo per-
spective are thoroughly fused multiple times, ultimately en-
abling the model to capture scene information as observed
from various perspectives. However, in practice, we ob-
served that as the perspective fusion progresses, there could
be some domain shift within the visual features’ depiction
of the scene. To prevent such occurrences, we further incor-
porate a straightforward Perspective Calibration process after
PPTFormer Blocks. Specifically, this entails passing the vi-
sual feature with the original perspective, which is the input
to the current PPTFormer Block, through a skip connection to
calibrate the fused feature output by the current PPTFormer
Block, by several layers of PMP Attention. In practice, we
found this elegant approach to be effective in mitigating is-
sues of domain shift.

3.6 Optimization
The overall loss function L is the combination of the main
segmentation loss Lseg and the reconstruction loss Lrec:

L = Lseg + λLrec, (11)
where λ is the weight for Lrec, and set to 0.4.

4 Experiments
4.1 Datasets and Evaluation Metrics
In our experiments, we validate the effectiveness of PPT-
Former on five datasets, including UDD6, iSAID, UAVid ,
Aeroscapes, and DroneSeg.

UDD6
Urban Drone Dataset (UDD) dataset is collected by a DJI-
Phantom 4 UAV at altitudes between 60 and 100 meters, and
is extracted from 10 video sequences. The resolution is either
4k (4096×2160) or 12M (4000×3000). It contains a variety
of urban scenes.

iSAID
iSAID totally consists of 2,806 images, where 1411, 458, and
937 images are for training, validation, and testing sets, re-
spectively.
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Method mIoU (%)

UDD6 iSAID UAVid Aeroscapes DroneSeg
Deeplab 71.84 59.20 56.82 51.40 38.69

OCR W48 73.37 62.73 63.10 58.19 43.10
PSPNet 72.95 60.30 58.20 57.98 37.03
FarSeg - 63.70 - - -

FarSeg++ - 63.70 - - -
PFNet - 66.90 - - -
SCO - 69.10 - - -

SETR 68.00 62.77 58.52 50.34 48.23
UperNet 73.13 66.45 61.91 64.32 53.34

PoolFormer 74.54 65.55 61.73 62.27 53.94
SegFormer 74.28 67.19 62.01 66.40 55.33

PPTFormer 76.70 69.87 65.00 68.50 57.71

Table 1: Comparison with state-of-the-arts on UDD6, iSAID,
UAVid, Aeroscapes, and our proposed DroneSeg datasets.

UAVid
UAVid dataset has 300 images of size of 3840×2160, where
the training, validation, and testing set contains 200, 70, and
30 images respectively.

Aeroscapes
The Aeroscapes dataset provides 3,269 720p images and
ground-truth masks for 11 categories, where the training and
validation sets include 2,621 and 648 images respectively.

DroneSeg
The DroneSeg dataset [Ji et al., 2024b] extends the segmenta-
tion annotations from VisDrone dataset. The dataset consists
of 10,209 images with fine-grained pixel-level annotations of
14 categories.

4.2 Implementation Details
In our experiments, we adopt the MMSegmentation toolbox
as codebase and follow the default augments without bells
and whistles. SuperPoint network is used for the perspec-
tive support description. To ensure training stability, dur-
ing the initial 30% of epochs, we replace the PMP Attention
with plain Self-Attention. This substitution aims to guarantee
the reliability of perspective representation and reconstruc-
tion within Ep and Dp, as well as the stability of learning
perspective prototypes. Subsequently, we revert to the PMP
Attention mechanism to perform global joint optimization in
the remaining epochs. In the training, SGD optimizer with
momentum 0.98 for all parameters is used, the initial learn-
ing rate is configured as 5 ×10−3 and the maximum iteration
number is set to 160K for all datasets. In Eq. 2, T is set to 2.
The length of P is set to N = 64.

4.3 Comparison with State-of-the-Arts
We compare PPTFormer with both representative CNN-based
(FarSeg [Zheng et al., 2020], FarSeg++ [Zheng et al., 2020],
PFNet [Li et al., 2021] and SCO [Yang and Ma, 2022]) and
ViT-based (SETR [Zheng et al., 2021], UperNet [Liu et al.,
2021], PoolFormer [Yu et al., 2022c], SegFormer [Xie et al.,
2021]) segmentation methods on five benchmark datasets.

Perspective-Oriented Learning Method mIoU (%)

Baseline (SegFormer w/o data aug.) 52.03

+ Random Rotate 52.94
+ Random Scale 53.09

+ Random Perspective-Vertical 53.56
+ Random Perspective-Horizontal 53.42

+ Random Combination 55.33

PPTFormer 57.71

Table 2: The comparison of PPTFormer with other perspective-
oriented learning methods (data augmentation). Perspective-Vertical
and Perspective-Horizontal means adjusting perspectives in verti-
cal and horizontal directions, and are implemented by the default
“torchvision.transforms” interfaces in PyTorch.

UDD6, UAVid
Both the two datasets contain relative fewer images and
lower scene complexity and we compare their results here.
For fair comparisons with ViT-based methods, we adopt
large backbones for CNN-based methods including ResNet-
101 and HRNet-W48. As shown in Table 1, the ordi-
nary transformer (SETR) show even lower performance than
CNN-based methods, and the advanced ones including Pool-
Former, SegFormer shows better results. The proposed PPT-
Former achieves further performance improvements on both
the datasets.

iSAID, Aeroscapes, DroneSeg
These three datasets consist of more images than UDD6 and
UAVid, and have higher scene perspective variances. So they
would be more convincing to prove the superiority. PPT-
Former outperforms other methods by a larger margin, which
demonstrates the effectiveness of the proposed method on the
description of perspective information.

4.4 Ablation Study
All ablation studies are performed on DroneSeg testing set,
SegFormer is used as baseline network.

Comparison with Perspective Learning Methods
Given that PPTFormer is a perspective-oriented learning ap-
proach, we begin by comparing it with various perspective-
based augmentations. We observe that in UAV scenarios, per-
spective shifts are almost invariably linked to changes in al-
titude and angular positioning, which manifest as alterations
in scale and rotation. Therefore, we employ a combination of
these two data augmentation techniques to benchmark against
PPTFormer. As illustrated in Table 2, we discover that utiliz-
ing either augmentation method in isolation yields only mod-
est enhancements over the baseline approach. In contrast,
PPTFormer secures a substantial increase in performance.
We further demonstrate that PPTFormer remains compatible
with standard data augmentations for additional gains.

The Impact of Contourlet Decomposition
The contourlet decomposition is capable of extracting struc-
tural texture information from images, which encompasses a
wealth of perspective details. By initially employing it within
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Contourlet Decomposition mIoU (%)

0 56.88
1 57.40
2 57.71
3 57.73

Table 3: The impact of contourlet decomposition.

Method Parameters

SegFormer 84.7M
DLPL(Segformer) 87.5M

PPTFormer 86.0M

Table 4: Efficiency analysis.

the Perspective Representation, the network can swiftly focus
on shallow image textures, thereby facilitating further extrac-
tion of Perspective and enhancing learning efficiency. Table
3 demonstrates its efficacy, as the number of contourlet de-
composition layers increases, the mIoU correspondingly im-
proves. Here, a layer count of zero indicates no application
of contourlet decomposition.

Effectiveness of Perspective Calibration
The purpose of Perspective Calibration is to prevent the oc-
currence of scene domain shift that may arise as a conse-
quence of deep perspective fusion. Figure 4 illustrates the
impact of the number of PMP Attention layers in it on model
performance. “Layer=0” implies the absence of Calibration,
and the results indicate a low mIoU under this condition. As
the number of layers increases, there is a significant improve-
ment in mIoU, which underscores the effectiveness and ne-
cessity of Perspective Calibration.

The Quantity of Perspective Prototypes
The quantity of perspective prototypes represents the entirety
of perspective variations found within the dataset, with a
higher count enabling the retention of a more extensive set
of prototypes. Figure 5 reveals that with a smaller allocation
of prototypes (16, 32), the process fails to exhaustively cap-
ture all perspectives, resulting in an underfitting of the model.
Conversely, as the number of prototypes increases (128, 256),
we generate an overly dense array of prototypes. This surplus
can introduce redundancy and give rise to numerous discrete
perspectives, potentially hindering the learning process.

Efficiency Analysis
PPTFormer, inspired by the theoretical framework of DLPL,
exhibits a more lightweight architecture and enhanced effi-
ciency. In Table 4, we present a comparative analysis of the
parameter counts between PPTFormer and DLPL (based on
SegFormer). The comparison indicates that PPTFormer in-
troduces only a slight increase in parameters over the base-
line SegFormer, yet maintains a lower parameter count than
DLPL. This demonstrates that PPTFormer not only achieves
high accuracy but also sustains a high level of efficiency.
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Figure 4: Layer number in perspective calibration.
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Figure 5: The quantity of perspective prototypes.

5 Conclusion
This paper presents the novel PPTFormer, a Pseudo Multi-
Perspective Transformer network for UAV scene segmenta-
tion. It addresses the challenges of capturing the dynamic
perspectives inherent in UAV-captured imagery. By inte-
grating systematic Pseudo Multi-Perspective Learning within
the Transformer framework, PPTFormer adeptly performs
efficient pseudo perspective generation and achieves multi-
perspective correlation, leading to a more nuanced under-
standing of UAV scenes. The experiments on several datasets
validate the superior performance and efficiency of PPT-
Former. The significant advancements made by PPTFormer
underscore the importance of perspective-oriented learning in
semantic segmentation and pave the way for further innova-
tion in the processing of UAV-captured visual data.
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