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Abstract

Text-guided image inpainting has rapidly garnered
prominence as a task in user-directed image syn-
thesis, aiming to complete the occluded image re-
gions following the textual prompt provided. How-
ever, current methods usually grapple with issues
arising from the disparity between low-level pixel
data and high-level semantic descriptions, which
results in inpainted sections not harmonizing with
the original image (either structurally or texturally).
In this study, we introduce a Structure-Aware In-
painting Learning (SAIL) scheme and an Asym-
metric Cross Domain Attention (ACDA) to ad-
dress these cross-domain misalignment challenges.
The proposed structure-aware learning scheme em-
ploys features of an intermediate modality as struc-
ture guidance to bridge the gap between text infor-
mation and low-level pixels. Meanwhile, asym-
metric cross-domain attention enhances the tex-
ture consistency between inpainted and unmasked
regions. Our experiments show exceptional per-
formance on leading datasets such as MS-COCO
and Open Images, surpassing state-of-the-art text-
guided image inpainting methods. Code is released
at: https://github.com/MucciH/ECDM-inpainting.

1 Introduction

Image inpainting aims to restore damaged images to make
them appear realistic and harmonious [Criminisi ef al., 2003;
Barnes et al., 2009]. The advent of deep learning [Liu
et al., 2018; Cao and Fu, 2021; Vaswani et al., 2017;
Li et al., 2022a; Suvorov et al., 2022] has brought signifi-
cant advancements in related fields. Nevertheless, image in-
painting, being an ill-posed task, yields unpredictable out-
comes that may not align with user expectations. As a re-
sponse, text-guided image inpainting has emerged [Zhang
et al., 2020b; Zhang et al., 2020a], empowering users with
control over restoration through textual descriptions, result-
ing in customized outcomes (Figure 1). Recently, Denoising
Diffusion Models [Ho et al., 2020; Rombach et al., 2022;
Zhang et al., 2023b], especially the Stable Diffusion (SD)
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Figure 1: Examples of text-guided image inpainting. Input indicates
the masked image. The prompt of the first row is “A/An (*) lying
near the white stripe of a highway”, and that of the second row is
“There is a/an (*) on dense tree branches”.

family, have demonstrated outstanding performance across
tasks involving image generation, editing, and inpainting.
However, we find that most text-guided image inpainting
methods primarily focus on the semantic alignment between
the generated results and the provided textual prompts, yet
pay little attention to the authenticity and correctness of the
generated images. Therefore, when the task of text-guided
image inpainting necessitates the dual objectives of adhering
to semantic constraints while also ensuring the creation of vi-
sually cohesive images, the majority of current algorithmic
models encounter considerable challenges. To a significant
extent, these challenges arise from the substantial disparity
and misalignment that exists between the guidance provided
by textual semantic cues and the fine-grained pixel-level in-
formation. These challenges manifest concretely as follows:
(a) Structural Inconsistency: Despite the semantics of the in-
painted image being roughly correct, there could be artifacts
at the boundaries of masks, as well as fragmentation of ob-
ject structures. This problem results from the emphasis on
synthesizing content based on text prompts while disregard-
ing the preserved structural information present in the orig-
inal image. (b) Texture Detail Disparity: The reconstructed
areas may lack critical high-frequency information, leading
to distinct clarity disparities when compared to adjacent re-
tained regions. These issues stem from the underlying mis-
alignment between the high-level semantic information con-
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veyed through textual descriptions and the inherent low-level
pixel information in the images.

In this paper, we propose a Structure-Aware Inpainting
Learning scheme and an Asymmetric Cross Domain Atten-
tion to address the aforementioned misalignment. First, we
leverage a pre-trained ControlNet branch as a teacher to add
structure guidance during the training process. Specifically,
we leverage the edge features extracted from the training im-
age serving as an intermediate modality connecting seman-
tic features of the text prompt with the low-level informa-
tion of the image. The pre-trained ControlNet branch guides
the training process of the inpainting network by supervis-
ing the weight updates of the decoding stage, which directs
the network’s focus toward capturing the overarching seman-
tic structure implicitly, yielding results that exhibit integrated
structural coherence. Within this architecture, we introduce
an Asymmetric Cross Domain Attention module, where the
masked input is mapped to the frequency domain through
Fourier transformation. Subsequently, high-pass filtering is
employed to extract high-frequency components before com-
puting the similarities of the objective in the image domain
with features in the frequency domain and the textual do-
main, respectively. This process facilitates the fusion of high-
frequency image information with text features, which dy-
namically influences the generated results to intricately re-
store texture details while ensuring semantic correctness. The
contributions of this work are summarized as follows:

* We devise a Structure-Aware Inpainting Learning mech-
anism, integrating a structure-guided pre-trained con-
trolnet branch, to direct the network to consciously re-
store comprehensive semantic information.

e We introduce an Asymmetric Cross Domain Attention
module that employs attention on high-frequency fea-
tures and textual prompts, enabling the model to empha-
size and incorporate the texture information.

* Experimental results conducted on two prominent
datasets MS-COCO and Open Images demonstrate the
superiority of our method over the state-of-the-art text-
guided inpainting techniques.

2 Related Work

2.1 Image Inpainting

A multitude of deep learning-based methodologies have
been explored for tackling image inpainting tasks, frequently
adopting frameworks such as Generative Adversarial Net-
works (GANs) [Goodfellow et al., 2020] or encoder-decoder
architectures. Certain approaches have decomposed the task
into multiple stages [Yu et al., 2019; Huang and Zhang,
2022], employing sequential networks to gradually restore
coarse elements and intricate textures within images. To en-
sure the coherence of the whole image, attention mechanisms
have gained prominence to align the generated content with
the surrounding context. RFR [Li et al., 2020] adopts an iter-
ative strategy to propagate inpainting and calculate attention
score from mask edges inward. LBAM [Sun et al., 2021]
introduces bidirectional attention maps for enhanced long-
range contextual modeling. However, the filled content often
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lacks control and exhibits significant randomness, leading to
uncertain quality of reconstructed images that might not ful-
fill user expectations in practical applications.

2.2 Text-guided Image Inpainting

To offer more controlled restoration options, text-guided im-
age inpainting methods enable users to input both masks and
accompanying text, facilitating the reconstruction of missing
content based on textual cues. LSAI [Xie et al., 2022] em-
ploys semantic alignment to repair patches of the damaged
image. ALMR [Wu et al., 2021] employs adversarial learn-
ing and introduces a dual-attention module for both coarse-
and fine-grained stages, spanning from semantic to textural
image recovery. MMFL [Lin et al., 2020] introduces a multi-
modal fusion approach that leverages both textual and image
information. However, these methods often fall short in terms
of image diversity, struggling to provide ample choices when
confronted with low-quality generations.

2.3 Diffusion Model in Image Inpainting

The diffusion model has emerged as a prominent framework
for generating high-quality images in a controlled manner.
Originating from DDPM [Ho et al., 2020], this paradigm
involves iteratively diffusing noise levels to transform latent
representations into images. By modulating noise diffusion,
this approach elegantly balances the trade-off between im-
age generation and control. The inherent attributes of dif-
fusion models also find resonance in the domain of image
restoration. SDM [Li e al., 2022b] introduces a spatial dif-
fusion model to restore images with large holes, while Re-
Paint [Lugmayr et al., 2022] employs fine-tuning through re-
sampling based on pre-trained DDPM, enhancing image re-
alism. Furthermore, EditBench [Wang et al., 2023], Blended
Diffusion [Avrahami et al., 2022], GLIDE [Nichol et al.,
2022], and SmartBrush [Xie et al., 2023] propose diffusion-
based text-guided image editing methods, producing con-
trolled high-quality images that are also applicable to inpaint-
ing tasks. To maintain the high performance and variabil-
ity of DDPM under limited computational resources, LDM
(Stable Diffusion) [Rombach et al., 2022] incorporates a pre-
trained autoencoder, enabling the diffusion model to operate
on smaller latent feature maps. Building upon this, Con-
trolNet [Zhang et al., 2023b] introduces additional control
branches, exclusively training control branches while keep-
ing the weights of Stable Diffusion branches fixed, offering a
more flexible approach to image generation.

These methods inherit the iterative nature of diffusion, en-
abling them to adaptively restore missing regions while ad-
hering to textual cues. However, while augmenting the image
restoration with guidance has its merits, it also presents new
challenges. Due to gaps between different modalities, there
can be misalignment or even conflicts between the textual in-
formation and the preserved image details.

3 Preliminary: Diffusion Model

In this paper, we employ the diffusion model as our genera-
tor. The Denoising Diffusion Probabilistic Models (DDPM)
consist of a forward process and a reverse process, with the
former being also referred to as the diffusion process.
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Figure 2: Structure-Aware Inpainting Learning scheme. (a) and (b) are Latent Diffusion Model (LDM) and ControlNet with cross attention
(CA) for text-guided image inpainting. The snowflakes signify fixed weights, while the flames mean the modules are trainable.

The diffusion process involves incrementally adding Gaus-
sian noise to the data until it becomes random noise. For
the original data xg ~ ¢ (), each step of the diffusion pro-
cess generates a sample x; ~ ¢ (z¢|zo) by iteratively adding
Gaussian noise to the previous step’s data over T steps, ulti-
mately resulting in a random noisy image x; ~ ¢ (x4|x¢) that
completely loses the original information:

q ($t|$t—1) =N (ﬂUt; VA ﬁtﬂTt—l,ﬁtI) , (1

where {3;}1_, represents the variance at each noise addition
step.
Given ay = 1 — (; and &y

tion we have:
Tt =/ O_étI() + v 1-— Q€. (2)

The variable z; can be regarded as a linear combination
of the original data o and random noise €, where /&; and
v/1 — &, act as the blending coefficients, with their squares
summing up to 1.

The reverse process, on the other hand, is a denoising pro-
cess. It starts with a noisy image x7 ~ N (0,1) at step
T and gradually denoises it using known real distributions
q (x¢—1|z¢) for each step:

Po (xi—1|we) = N (Tp—1; o (4,1) , o (24,8)) . (3)

Here, p (x1) = N (21;0,I), and pg (z:—1|z:) represents

a parameterized Gaussian distribution, with its mean and

variance determined by the trained networks iy (x4, t) and
Yo (z4,t). After reparameterizing , 119 can be expressed as:

1 B
Ty — e, t) |, 4
(- o). @
where € ~ AN (0,1), and €y is a fitting function based on
neural networks, implying the use of predicted noise € instead
of predicted mean. The simplified optimization objective is:

LY = Brgye [le = o). )

t .
= [1;_; i, by reparameteriza-

Mo (xta t) =
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4 Method

Given an original image I, a binary mask m, and a text
prompt ¢, the masked image I;y,,, is obtained by overlaying
the mask on the original image.

Iinput = Igt © (]- (6)

The corresponding latent feature z( is derived through en-
coding. Passing through the overall network yields the latent
feature map Z, which is subsequently decoded into the final
output Iype. The generation of Z,_; and the composition
with restored region in each denoising step is as follows:

Zi_1~ N (g (2e,t) , 29 (21, 1)), (N
Zi=2-101—m)+Z_10m. ®)

In this work, we introduce a novel Structure-Aware In-
painting Learning scheme that offers semantic guidance to the
inpainting network, enabling the generation of structurally
coherent images. Furthermore, we devise an Asymmetric
Cross Domain Attention module that blends high-frequency
texture details from the preserved region of the image with
text embeddings, which dynamically constrains the genera-
tion of texture details.

—m),

4.1 Structure-Aware Inpainting Learning Scheme

To narrow the disparity between the semantic content of the
text and the pixel-level information in the image, we intro-
duce the use of image structure as an intermediary between
the two domains. This strategy associates high-level textual
features with low-level image features, aiding the inpainting
network to implicitly focus on global image semantics during
training, thus leading to the generation of cohesive images in
accordance with textual descriptions.

The training strategy is shown as Figure 2. (a) depicts
a simplified diagram of the latent diffusion model, where
images are encoded into the latent space through an Au-
toEncoder, reducing the feature map dimensions. Training
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Figure 3: The Asymmetric Cross Domain Attention mechanism in trainable input blocks.

of the diffusion model then occurs within the latent feature
space, utilizing a U-net architecture for the generator net-
work. The output of the diffusion model is finally mapped
back into image space through a decoder. Figure 2(b) il-
lustrates ControlNet with the LDM. It introduces a control
branch between the input z and output blocks of the diffusion
model. The condition signal added with noise z is propagated
through input blocks, and each input block is processed with
a zero-initialized convolution, effectively connecting with the
main LDM. This enables ControlNet to accept various types
of conditional signals, such as Canny edge and segmenta-
tion maps, thereby flexibly guiding the generation process of
the latent diffusion model without compromising the perfor-
mance of the pre-trained Stable Diffusion model.

Figure 2(c) showcases our training scheme. We employ
a pre-trained stable diffusion model as the backbone of the
generation process. The inpainting branch receives the con-
catenation of the masked image and mask as inputs, which are
then passed through trainable input blocks and zero convolu-
tions before being fed back into the main network. Notably,
a pre-trained ControlNet, employing structure information
as a condition, is used as supervision during network train-
ing. This is achieved by computing the feature differences of
each output block in the inpainting branch and the Control-
Net branch using a soft loss mechanism, implicitly guiding
the network to focus more on image structural information.
“Zero Conv” refers to 1x1 convolution initialized with zero,
while “Structure Conv” stands for the zero-initialized convo-
lution that has already been activated. The computation of the
soft loss involves employing an intuitive mean error loss:

€))

where fooniror 18 the feature map during the structure con-
volution block of the ControlNet, and f;,pqint iS that of the
inpainting network branch.

Esoft = ”fcontrol - finpaint”l ;
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4.2 Asymmetric Cross Domain Attention

In the context of inconsistencies between regions of image
reconstruction, beyond discrepancies in content and struc-
ture, differences in image clarity and resolution also exist.
Many existing text-guided image inpainting algorithms pre-
dominantly focus on adhering to textual prompts while disre-
garding the coherence between the reconstructed objects and
the preserved regions. To address this issue, we further pro-
pose a network architecture based on Asymmetric Cross Do-
main Attention, facilitating the interaction between informa-
tion from the image’s spatial domain, frequency domain, and
the textual domain, to integrate the impact of high-frequency
image texture information into text-guided object generation.
The Asymmetric Cross Domain Attention calculation is as
follows:

T /1T
ak_ + b)v + softmax( g
Vd vd
where Attn denotes Attention(q,k,v,k’,v"), d represents
the dimension of the input vector, and b is the bias.

The overall framework of the network is illustrated in Fig-
ure 3. The text prompt is encoded through CLIP and suc-
cessively introduced into the transformer blocks within the
U-net structure of the diffusion model. This process involves
the integration of Asymmetric Cross Domain Attention with
the high-frequency feature map of the image encoded into
the latent feature space, as depicted on the right side of Fig-
ure 3. The high-frequency feature map I, is obtained by
transforming the masked image into the frequency domain
using Fourier transformation, followed by extraction via a
high-pass filter with a radius of 4. Then we get the feature
ffreq in frequency domain by:

ffreq = Concat(Norm(fabs(Ih)) + fangle(lh))7 (11)

where Concat denotes concatenate, Norm means normal-
ization, Fps(-) and Fypgie(-) are used to compute the ampli-

Attn = softmax( +b)v, (10)
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A very green hillside under the golden sunset.

(a) Input (b) GT (c) GLIDE  (d) Blended Diff. (e) Stable Inpaint (f) Control Inpaint (g) Uni-paint (h) CoPaint (i) Ours

Figure 4: Qualitative Comparison over datasets MS-COCO and Open Images with customized masks and prompts. (a) is the input corrupted
image, (b) is the ground truth, (c)-(h) are results of other approaches. (i) is the result of the proposed method.

A cat crouched over sitting by a red brick wall.

A large building with a clock on the front of it.

18,

(a) Input (b) GT (c) GLIDE  (d) Blended Diff. (e) Stable Inpaint (f) Control Inpaint (g) Uni-paint (h) CoPaint (i) Ours

Figure 5: Qualitative Comparison over datasets MS-COCO with wide/narrow masks. (a) is the input corrupted image, (b) is the ground truth,
(c)-(h) are results of other approaches. (i) is the result of the proposed method.

879



Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

Datasets MS-COCO Open Images

Mask Ratio | Methods PSNRT SSIMT Meanl/; ] LPIPS|] | PSNRT SSIM{T Meani; | LPIPS|
GLIDE 27.4670  0.8720 0.0223 0.0523 | 27.9267 0.8780 0.0212 0.0530

Blended Diff. 27.5872  0.8683 0.0226 0.0523 | 28.0664  0.7784 0.0377 0.1085

Stable Inpaint 29.2245  0.9321 0.0139 0.0228 | 29.7867  0.9359 0.0133 0.0211

10%-20% | Control Inpaint | 28.9814  0.9333 0.0140 0.0238 | 29.4835 0.9374 0.0133 0.0220
Uni-paint * 21.8992  0.8701 0.0287 0.0981 | 22.3254  0.8807 0.0262 0.0925

CoPaint 28.3742  0.9244 0.0154 0.0280 | 28.9633  0.9336 0.0137 0.0258

Ours 29.8000 0.9379 0.0132 0.0203 | 30.3400 0.9415 0.0126 0.0187

GLIDE 21.1245  0.6892 0.0462 0.1590 | 23.3936  0.7811 0.0337 0.1100

Blended Diff. 23.6027  0.7609 0.0350 0.1218 | 24.1145 0.7715 0.0334 0.1171

Stable Inpaint 23.5053  0.8366 0.0281 0.0734 | 24.1427 0.8461 0.0266 0.0676

30%-40% | Control Inpaint | 22.7211  0.8315 0.0303 0.0826 | 23.3488  0.8414 0.0286 0.0760
Uni-paint * 16.3802  0.6877 0.0733 0.2489 | 16.6082  0.6931 0.0711 0.2503

CoPaint 224218  0.8208 0.0313 0.0894 | 22.9441  0.8287 0.0297 0.0851

Ours 23.6437  0.8482 0.0271 0.0696 | 24.1812 0.8566 0.0258 0.0643

GLIDE 21.1304  0.6893 0.0461 0.1591 | 21.5083  0.6972 0.0448 0.1587

Blended Diff. 21.6013  0.6567 0.0481 0.1823 | 21.9916  0.6680 0.0465 0.1763

Stable Inpaint 21.8510  0.7649 0.0387 0.1107 | 22.2850 0.7743 0.0376 0.1040

50%-60% | Control Inpaint | 21.0475  0.7524 0.0427 0.1247 | 21.4741  0.7633 0.0410 0.1165
Uni-paint * 14.0914  0.5203 0.1182 0.3904 | 14.3470  0.5216 0.1153 0.3922

CoPaint 20.6561  0.7390 0.0435 0.1374 | 20.9275  0.7480 0.0425 0.1329

Ours 22.0327  0.7804 0.0373 0.1039 | 22.4339 0.7889 0.0363 0.0976

Table 1: Quantitative comparisons with the state-of-the-art approaches, namely GLIDE, Blended Diffusion, Stable Diffusion inpainting,
ControlNet inpainting, Uni-paint, CoPaint, over datasets MS-COCO and Open Images with different ratios of random mask. 1 denotes higher
is better. | denotes lower is better. The optimum result is highlighted in bold, the second-ranked result is underlined, and the third-ranked
result is italicized. Uni-paint marked with * is only effective for inpainting with customized masks.

tude and phase, respectively. We concatenate the amplitude
spectrum and phase spectrum of the high-frequency compo-
nent along the channel dimension, presenting them in a fre-
quency domain form for input into the Asymmetric Cross Do-
main Attention module.

The overall optimization objective is

Liotar = L3P + ALoo i (12)

where A is a hyper-parameter controlling the weight of the
soft loss and is set to 0.1 in our experiments.

S Experiments

5.1 Experiment Settings

We employ our proposed Structure-Aware Inpainting Learn-
ing (SAIL) approach for image inpainting under the architec-
ture of ControlNet and it is finetuned from Controlnet - v1.1
- InPaint Version. The learning rate is set at 5¢~%, and the
batch size is configured to be 4. Each experiment necessitate
the utilization of one A100 GPU. After a series of systematic
experiments, it has been shown that choosing Canny edge as
the structure information of the auxiliary ControlNet branch
during training can effectively correlate high-level semantic
information with low-level pixel details. Therefore, all subse-
quent experimental setups utilize Canny edge as the condition
for the ControlNet branch.

Datasets. We fine-tune our model on the standard MS-
COCO dataset [Lin et al., 2014], which comprises over 100k
images in the training set. For testing, we utilize 5k image-
text pairs from the MS-COCO validation set. To assess the
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Figure 6: Visualization of ablation study.

robustness of our model to diverse data, we further vali-
date its performance on 1.5k images from the Open Images
dataset [Kuznetsova et al., 2020].

Baselines. We select six state-of-the-art approaches based
on the diffusion model as our baselines: GLIDE [Nichol et
al., 2022], Blended Diffusion [Avrahami et al., 2022], Stable
Diffusion inpainting [Rombach et al., 2022], ControlNet in-
painting [Zhang e al., 2023b], Uni-paint [Yang ef al., 2023],
and CoPaint [Zhang er al., 2023al.

Metrics. We compare the proposed method with other
approaches on four widely-adopted metrics, namely PSNR,
SSIM, Mean [, and LPIPS, to evaluate the clarity, structure
similarity, and diversity of the results comprehensively.
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5.2 Qualitative Comparison

We conduct image inpainting tests with various mask ratios
on both the MS-COCO dataset and the Open Images dataset.
As depicted in Figure 4, for custom masks and prompt in-
puts, our proposed method generates high-quality images that
align both internally and externally with the textual descrip-
tions. In contrast, GLIDE and Blended Diffusion often fail to
generate content aligned with textual descriptions. While the
generated results of Stable Diffusion, ControlNet, and Uni-
paint incorporate textual descriptions, the overall semantic
coherence of the images may be compromised, resulting in
artifacts or noticeable boundaries along the mask edges. Co-
Paint is the only comparative method that performs inpaint-
ing without text guidance. It can produce reasonable results
but falls short in meeting user-customized content generation
demands. Figure 5 showcases the comparative results of our
approach against other methods on the MS-COCO dataset us-
ing randomly generated masks. It is evident that our method
consistently produces coherent and semantically sound clear
images, both for wide and narrow masks. In contrast, other
methods struggle to maintain the structural consistency when
dealing with objects that are partially occluded, such as the
cat in the first row of the figure. Note that Uni-paint, be-
ing a task-specific training-free approach, relies solely on the
generative capacity inherited from the pre-trained stable dif-
fusion model. While it performs well with regularly shaped
masks, it exhibits a lack of robustness in situations involving
free-form masks or cases where the mask does not entirely
cover the object.

5.3 Quantitative Comparison

We conduct quantitative evaluations on both the MS-COCO
and Open Images validation sets, selecting 5k and 1.5k im-
ages respectively. We apply same irregular masks to different
methods. Table 1 presents numerical outcomes with various
mask ratios. As observed, the images generated by our pro-
posed approach outperform other SOTA methods across all
metrics, objectively showcasing our method’s superiority in
terms of image structure, clarity, and diversity.

5.4 Ablation Study

In this section, we meticulously validate the efficacy of
the proposed Asymmetric Cross Domain Attention mod-
ule (ACDA) and the Structure-Aware Inpainting Learning
(SAIL) scheme. The baseline is the naive fine-tuning scheme
as ControlNet with masked image as condition. The notation
“w/ ACDA” signifies the adoption of solely the ACDA mod-
ule without utilizing the pre-trained ControlNet model with
Canny edge as structural guidance, while “w/ SAIL” denotes
the exclusive use of the SAIL training mode, substituting the
ACDA module with a standard cross attention mechanism.
As discerned from Figure 6, employing only the ACDA
module yields images with distinct texture details, but seman-
tic structural inaccuracies are observed. Conversely, employ-
ing solely the SAIL strategy enhances the overall structural
coherence of the images, but at the expense of losing high-
frequency information in the reconstructed missing regions.
Table 2 objectively quantifies the effectiveness of our pro-
posed network architecture and training methodologies.
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Model PSNRT SSIM{T Meanl; | LPIPS]
Baseline | 21.6907  0.7569 0.0417 0.1594
w/ SAIL | 21.7218 0.7764 0.0383 0.1072

w/ ACDA | 21.9833 0.7784 0.0377 0.1086
Ours 22.0327 0.7804 0.0373 0.1039

Table 2: Ablation study on MS-COCO with mask ratio 50%-60%. T
denotes higher is better. | denotes lower is better.
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Figure 7: User study. We have 348 samples voted over text align-
ment and image realism of the inpainted results of different methods.
Our approach outperforms the baselines by a large margin.

5.5 User Study

To investigate human perception of generated results, we con-
ducted user study with a random selection of 29 participants.
A total of 348 answers for several image-text pairs were pre-
sented. They were asked two questions for each pair, focus-
ing on the generated images from GLIDE, Blended Diff., Sta-
ble Diff., ControlNet, Uni-paint, CoPaint and our method: 1)
Which image best matches the textual description? 2) Which
result appears the most realistic and natural?

The results of the study, as shown in Figure 7, demonstrate
significant advantages of our method in terms of textual fi-
delity and image realism.

6 Conclusion

In this paper, we propose Structure-Aware Inpainting Learn-
ing scheme for text-guided image inpainting, aiming at en-
hancing the efficacy of conditioned image synthesis model
based on LDM for inpainting tasks. By leveraging Canny
edge as intermediate modality, our method offers crucial
structural guidance to the inpainting network training pro-
cedure. Moreover, we introduce an Asymmetric Cross Do-
main Attention mechanism within the diffusion model to
achieve harmonious alignment between and high-frequency
image textures. This strategic fusion ensures both semantic
consistency in composition and retention of fine-grained tex-
ture details. Experimental results validate the capability of
our approach to reconstruct globally semantically coherent
high-quality images across different datasets, achieving re-
markable performance compared to state-of-the-art diffusion
model-based methods.
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