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Abstract
Video anomaly detection (VAD) is the core prob-
lem of intelligent video surveillance. Previ-
ous methods commonly adopt the unsupervised
paradigm of frame reconstruction or prediction.
However, the lack of mining of temporal depen-
dent relationships and diversified event patterns
within videos limit the performance of existing
methods. To tackle these problems, we pro-
pose a novel prototype-guided and dynamic-aware
long-distance frame prediction paradigm for VAD.
Specifically, we develop a prototype-guided dy-
namics matching network (PDM-Net) to enhance
the discriminant and robustness of anomaly detec-
tor. To explore the temporal contexts, we equip
PDM-Net with a long short-term dynamic proto-
type alignment learning mechanism, which stores
long-term dynamic prototypes into memory bank
and learns how to recall long-term dynamic proto-
types with short-term dynamics. As a result, the
short input sequences can recall long-term dynamic
prototypes stored in the memory bank to achieve
the task of long-distance frame prediction. Besides,
a feature discrimination module is adopted to ex-
tract the representative dynamic features of various
normal events meanwhile preserving the diversity
of normal patterns. Experimental results on four
datasets demonstrate the superiority of our method.

1 Introduction
With the ever-growing volumes of surveillance cameras, it is
highly demanded how to effectively recognize the abnormal
events that may seriously threaten public security in surveil-
lance videos, such as explosion, fighting, crimes, and traf-
fic accidents. It is impractical to promptly detect the ab-
normal events by watching all surveillance videos, because
vast amounts of videos are captured every second. Therefore,
we need to develop intelligent video surveillance system to
automatically detect abnormal events, where video anomaly
detection (VAD) [Huang et al., 2022d; Huang et al., 2022c;
Huang et al., 2021] is the core technology.

∗Corresponding author.

Generally, current methods can be grouped into weakly-
supervised and unsupervised methods according to the man-
ners of model training. Weakly-supervised VAD [Sultani et
al., 2018; Lv et al., 2021b; Huang et al., 2022a; Wu et al.,
2023b; Zhang et al., 2022] requires both normal and anoma-
lous data to train model. Sultani et al. [Sultani et al., 2018]
established a weakly-supervised dataset UCF-Crime, which
activates this direction. Although remarkable gain has been
achieved in prior works [Lv et al., 2021b], weakly-supervised
VAD still suffers from two drawbacks: 1) it can only recog-
nize abnormal events included in the training set and can-
not detect unseen anomalies; and 2) it still needs to col-
lect amounts of abnormal samples, although time-intensive
video temporal annotation is not required. Whereas, unsu-
pervised methods generally formulate VAD as an outlier de-
tection problem. The anomaly detector is trained with only
normal data for learning the normal patterns. During the test
phase, the learned model discriminates behaviors that out-
side of the learned normal patterns as abnormal events. Early
works [Li et al., 2013] mainly focus on manually designing
appropriate features to represent videos. However, such ap-
proaches are difficult to transfer among different scenarios.
With the recent advances in deep learning, deep neural net-
works (DNNs) based schemes have become the mainstream
solutions to VAD. Generally, DNNs-based approaches follow
two frameworks: frame reconstruction and prediction. Frame
reconstruction-based VAD learns to reconstruct the normal
events and detects abnormal events by the larger reconstruc-
tion errors. Prediction-based VAD takes prior frames as the
input of model to predict current frame and detects frames
with poor prediction as anomalies.

Despite the remarkable performance gain, DNNs-based
VAD still suffers from three issues: 1) Previous DNNs-
based approaches allow to reconstruct or predict anoma-
lies well. As the reconstruction goal is the original input,
reconstruction-based models usually reduce the loss by sim-
ply memorizing the pixel-level details of inputs, which results
in the abnormal frames can be also well reconstructed. Al-
though prediction-based VAD can avoid this problem to some
extent, it cannot guarantee larger prediction errors for abnor-
mal behaviors because of the powerful generalization ability
of DNNs. 2) Previous prediction-based methods lack suffi-
cient abilities to exploit the long-term temporal contexts of
video events. Specifically, existing prediction-based methods
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only predict a short-distance frame (e.g., the next frame) with
tiny differences from the input sequence, which cannot ex-
plicitly exploits the temporal contexts. In other words, vanilla
frame prediction with small information gap cannot explicitly
exploit the temporal contexts. 3) The diversity of normal pat-
terns has been overlooked. For instance, it is normal that no
one or large amounts of pedestrians pass by the avenue, but
these two cases have completely different dynamic patterns.

In this work, we present a Prototype-guided Dynamics
Matching Network (PDM-Net) for VAD to enhance the dis-
criminant and robustness of anomaly detector. Specifically,
PDM-Net adopts a novel prototype-guided and dynamic-
aware video prediction framework for VAD. To tackle the
issue 1), we adopt a prototype module which learns repre-
sentative motion prototypes from normal videos. During the
test phase, the motion features of input sequence are recon-
structed with normal prototypes, and then reconstructed fea-
tures are used to predict the target frames. As a result, the
model can lessen the generalization ability of model towards
anomalies, because abnormal target frames are also predicted
with the normal prototypes. To address the issue 2), we pro-
pose a Prototype-guided and Dynamic-aware Long-Distance
Frame Prediction (PDLP) paradigm for VAD. Our model first
stores the normal long-term motion prototypes learned from
normal long sequences into prototype module, and then it
uses motion features extracted from short sequences to recall
the stored normal long-term motion prototypes. Finally, the
recalled normal long-term motion prototypes are exploited to
help compensate the missing motion information between the
short input sequence and long-distance target frame. To mit-
igate the issue 3), we adopt a feature discrimination module
to preserve the diversity of normal patterns.

The main contributions of this work are listed as follows:
1) We develop a novel prototype-guided and dynamic-

aware long-distance frame prediction framework for
VAD, which can jointly help the anomaly detector ex-
plicitly exploit the long-term temporal contexts and
lessen the generalization ability of model on anomalies.

2) A long-term dynamic prototypical network is designed
to learn the long-term dynamic prototypes of normal pat-
terns, which facilitates the long-distance prediction of
normal frames and suppresses those of abnormal frames.

3) Experimental results on four public datasets demonstrate
the superiority of our method.

2 Related Work
2.1 Video Anomaly Detection
Unsupervised video anomaly detection (VAD) [Huang et al.,
2022b; Wu et al., 2023a; Huang et al., 2024; Huang et al.,
2020] is typically formulated as an out-of-detection task in
previous works, where a normal model is trained on only
normal videos to recognize events outside of the learned
model as anomalies. Some early works [Li et al., 2013]
adopt object detection and tracking methods to extract high-
level features. However, these conventional approaches re-
quire the prior knowledge to design appropriate features. Re-
cently, DNNs-based VAD methods have demonstrated su-

perior performance over hand-crafted features-based meth-
ods. Many approaches adopt deep Auto-Encoder (AE) to
learn the normal patterns and quantify the extent of abnor-
malities using reconstruction errors [Hasan et al., 2016].
As the reconstruction target is the input frame, these deep
AE-based models overlook temporal information of videos
and typically reduce their loss by memorizing the pixel de-
tails of input frame. Subsequently, several variants of AE
are developed to capture the temporal patterns of normal
videos. For example, Luo et al. [Luo et al., 2021] intro-
duced recurrent neural networks into AE. Liu et al. [Liu et
al., 2018] utilized adversarial training to help AE perform
frame prediction task. To lessen the generalization ability
of DNNs, Gong et al. and Park et al. [Gong et al., 2019;
Park et al., 2020] introduced a memory module into deep AE.
Lv et al. [Lv et al., 2021a] dynamically learned the prototypes
of normal patterns via an attention mechanism for quantifying
the normalities of each pixels. These memory-guided meth-
ods directly learn normal patterns from the short-distance
frame prediction, i.e., utilizing several previous frames to
predict current frame. Thus, they lack sufficient abilities to
explicitly exploit the long-term temporal contexts of video
events. To explicitly exploit the temporal contests, our pro-
posed prototype-guided dynamic matching network (PDM-
Net) learns how to match the learned normal long-term pro-
totypes with the short-term inputs.

2.2 Prototypical Networks
Prototypical learning has proven its effectiveness in various
pattern recognition tasks. The earliest prototypical learning
can be traced back to the k-nearest neighbor which represents
data with k nearest neighbors [Wang et al., 2022]. Generally,
conventional prototypical learning is mainly built on hand-
crafted features. Recently, prototypical networks combining
prototypical learning and DNN have demonstrated their supe-
riority in various tasks [Wang et al., 2021d; Jiang et al., 2022;
Wang et al., 2021c; Liu et al., 2023b; Wang et al., 2023;
Wang et al., 2021b; Wang et al., 2021a]. Prototypical net-
works can directly extract deep features by neural networks
and incorporate prototypical learning to optimize the neural
networks. For instance, Liu et al. [Liu et al., 2023a] pre-
sented a region prototypical network to improve the perfor-
mance of weak supervised image segmentation, which learns
region prototypes to locate the inactivated objects more accu-
rately. Lee et al. [Lee et al., 2021] proposed a memory align-
ment method for improving the performance of video predic-
tion, which learns the prototypes across training samples and
uses the learned prototypes to facilitate video prediction at
test time. Instead of directly learning prototypes from the in-
puts, PDM-Net learns long-term motion prototypes from nor-
mal video clips and then recalls them using the short inputs
for predicting the long-distance frames.

3 Methodology
3.1 Problem Formulation
Prediction-based VAD typically leverages frame prediction
to train a normal model. Then anomalies are detected by
poor prediction based on the following assumption: the
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Figure 1: Architecture of our PDM-Net at inference phase. The lower branch is the long-term dynamic prototypes matching, which uses the
motion features of short sequence to match the long-term motion prototypes of normal patterns. The upper branch is PDLP, which predict the
target frame with the help of matched long-term motion prototypical features. Finally, the prediction error between original frame Xt+1 and
predicted frame X̂t+1 as well as the matching error between feature FSD and its prototype Γ∗ are used to calculated the anomaly score.

learned normal model can predict normal future frames well
while poorly predict abnormal frames. Assume Vt−N+1:t =
{Xi}ti=t−N+1 indicates a video sequence containing N con-
secutive frames, and Xt is the t-th frame. Given previous
N frames Vt−N+1:t, the goal is to train a predictor P that
minimizes the difference between predicted frame X̂t+1 =
P(Vt−N+1:t) and actual frame Xt+1.

To exploit the temporal information, we develop a novel
prototype-guided and dynamic-aware long-distance predic-
tion (PDLP) paradigm, as shown in Figure 1. Specif-
ically, PDLP utilizes the short input video sequence
V(t−N+1):(t−(N−n)+1) to predict its long-distance target
frame Xt+1. Theoretically, the predictor P needs to bridge
the larger information gap by explicitly exploiting the long-
term temporal contexts of videos, so as to accurately predict
the target frame Xt+1. Actually, only simply increasing the
distance between input sequence and target frame cannot en-
able our model to obtain better performance (detailed in Ab-
lation Study). Thus, we introduce the prototype module to
tackle this problem. The dynamic features FSD of short in-
puts are used as queries to match the normal long-term dy-
namic prototypes learned from the normal long sequences.
Then, the recalled prototype features Fpro are aggregated as
FAggk to predict the target frame Xt+1

{P∗,F∗} = arg min
P,F

‖Xt+1 − P([V;F(V)])‖, (1)

where V is the short sequence V(t−N+1):(t−(N−n)+1), andF
indicates the prototypical module. Finally, the prediction er-
ror and the matching error are used to calculated the anomaly
score for detecting anomalies.

3.2 PDLP-Enabled Video Anomaly Detection
Figure 1 shows the architecture of our prototype-guided dy-
namics matching network (PDM-Net) at the inference phase.

The short input sequence goes through two branches to
predict the long-distance target frame Xt+1. One (lower
branch of Figure 2) is long-term dynamic prototypes match-
ing (LDPM), which uses the dynamic features of short se-
quence to match the long-term dynamic prototypes of normal
patterns stored in the prototype module. The other one (upper
branch of Figure 2) is the proposed PDLP module, which uti-
lizes the spatio-temporal features to predict the target frame
with the assistant of matched long-term dynamic prototypical
features.

As for the branch of LDPM, the residual sequence R is
taken as the input of dynamic encoder ESDM . The dynamic
feature FSD = ESDM (R) is extracted for matching the
long-term dynamic prototypes Γ from the prototype module.
Specifically, a matching vector M is calculated according to
the prototype matching strategy. FSD is represented as the
weighted combination of prototypes Γ, i.e., Fpro = Γ ⊗M.
In this way, Fpro of the short input can be considered to con-
tain the long-term temporal dynamic contexts. Then, Fpro is
embedded into the upper branch PDLP to predict the long-
distance target frame Xt+1.

With regards to the branch of PDLP, each frame of the
short sequence is independently fed into the spatial encoder
ESP for extracting the appearance features FSPk = ESP (Xk).
Further, FSPk is fed into a spatio-temporal aggregation mod-
ule composed of a stack of convolutional LSTMs (ConvL-
STM) [Shi et al., 2015] in time step orders to capture the
temporal relations. Each cell in ConvLSTM outputs a cell
memory Ck and a hidden stateHk. Then, we design a feature
aggregation module to aggregate the spatio-temporal features
and prototypical feature, as shown in Figure 1. Specifically,
Fpro and Ck are concatenated and fed into the multi-layer
perception to generate the channel-wise attention Apro

k =
MLP (Fpro©Ck). © indicates concatenate operator. Fur-
ther, the channel-wise refined prototypical feature F̂prok =
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Apro
k ⊗Fpro and the hidden featureHk from the ConvLSTMs

are concatenated to embed long-term dynamic contexts to the
aggregated feature FAggk = F̂prok ©Hk. Since FAggk can pro-
vide the prior of long-term dynamic contexts to the short in-
put sequence, it is fed into the frame decoder D to generate
the predicted frame X̂t+1 = D(F̂prok ©Hk). Finally, the pre-
diction error between the original frame Xt+1 and predicted
frame X̂t+1 as well as the matching error between dynamic
feature FSD and its prototype Γ∗ are used to calculated the
anomaly score (detailed in Section 3.5). At the training phase,
we employ a prediction loss to constrain the PDLP, which is
defined as

Lpre = ‖Xt+1 − X̂t+1‖22 + ‖Xt+1 − X̂t+1‖1. (2)

3.3 Dynamic Prototype Matching Learning
Inspired by [Lee et al., 2021], we introduce a long short-term
dynamic prototype matching scheme to accurately match the
long-term dynamic with the short sequence. Figure 2 illus-
trates the overall training procedure of our prototype module.
The prototype module is trained alternately with two steps:
1) learning long-term dynamic prototypes from normal long
sequence; and 2) recalling the corresponding normal long-
term dynamic prototypes with the short sequence. Notably,
the prototype module is updated only at the first step.

Long-term Dynamic Prototypes Learning
As for the first step, the normal long sequence Vlong

N with
N consecutive frames is taken as the input. Then, the corre-
sponding residual sequence Rlong

N−1 is fed into the long-term
dynamic context encoder ELDC to extract the long-term dy-
namics fLDC . fLDC = {fLDCk }Kk=1 (K = h× w) is divided
to exploit local dynamic contexts. Notably, the local dynamic
features fLDCk ∈ Rc are regarded as the query items.

The prototype module Γ = {Γ i}Bi=1 contains B prototype
items Γ i with c channels. A matching matrix M = {mk}Kk=1

is created to address the location of prototype module, and
each vector mk is used to match a query feature fLDCk with
all prototype items. Each element value mk,i of mk can be
used as the matching probability, which is calculated as

mk,i =
exp(d(fLDCk ,Γ i))∑B
j exp(d(fLDCk ,Γ j))

, (3)

where d(·, ·) is the cosine similarity. The prototype
module outputs the local prototypical features fprok =∑B
i=1mk,i · Γ i. The prototypical feature Fpro = {fprok }Kk=1

is derived as an ensemble of K local feature fprok . Finally,
Fpro is integrated into PDLP to help the short sequence
Vshort
n predict the long-term target frame Xt+1, as described

in Section 3.2.
As for the parameters updating of prototype module, we

update the prototype item Γ i with all query features whose
nearest prototype item is Γ i. Let Zi indicate the set of the
corresponding query features for Γ i. Similar to Eq. 3), the
attention weight is calculated by

ωk,i =
exp(d(fLDCk ,Γ i))∑K
j exp(d(fLDCj ,Γ i))

, (4)

and renormalized with the query features in Zi as ω̂k,i =
ωk,i

maxj∈Zi
ωj,i

. The parameter updating is represented as

Γ i ← N (Γ i +
∑

k∈Zi

ω̂k,i · fLDCk ), (5)

where N (·) denotes `2 norm.

Prototypes Matching Learning
At the second step, the short sequence Vshort

n with n (n <
N ) consecutive frames is taken as the input of model. The
goal is to train our model to learn how to recall the long-term
dynamic contexts stored in the prototype module using the
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short inputs. Similar to the first step, the residual sequence
Rshort
n−1 is used to obtain the corresponding dynamics. The

short-term dynamic feature fSD is extracted by a short-term
dynamic matching encoder ESDM . The local dynamic feature
fSDk of fSDM = {fSDk }Kk=1 (K = h× w) is adopted as the
query item. The prototype matching progress is same as the
first step. Then the recalled prototypical feature is embedded
into LPLP for video prediction. At this step, the parameters of
prototype module are fixed. Except for the prototype module,
all network parameters are optimized.

3.4 Feature Discrimination
The feature discrimination contains two components, i.e.,
prototype dispersion and feature compactness. They are re-
spectively embedded into the first and second training step for
preserving the diversity of prototypes and reducing the intra-
class variances of normal patterns. Specifically, the prototype
dispersion enables the prototype module to learn represen-
tative prototypes of normal patterns by enforcing prototypes
far away from each other at the first training step. Inspired
by [Lai et al., 2021], we evaluate the dispersibility between
prototypes from the perspective of interclass scatter matrix by

D =
∑B

i=1

ki
K

(Γ i − Γ̄ )>(Γ i − Γ̄ )), (6)

where ki denotes the number of query features that Γ i is their
nearest prototype, and Γ̄ indicates the mean vector of all pro-
totypes in the prototype module. The trace Tr(D) of inter-
class scatter matrix can be used to measure the dispersibility
of prototypes. Thus, we encourage the prototype module to
learn various long-term dynamic prototypes by maximizing
Tr(D), and the prototype dispersion loss can be represented
as Ldis = −Tr(D). Notably, Ldis only optimizes the proto-
type module at the first training step.

Moreover, the feature compactness enforces the query fea-
tures close to their nearest prototypes in the latent space for
reducing the intraclass variations. In this way, query features
with the same dynamic patterns can be accurately matched to
the same prototype. Here, we adopt a feature compactness
loss [Park et al., 2020] which measures the average distance
between query feature and their prototypes

Lcom =
1

K

∑K

k=1
‖fSDk − Γ ∗k‖2, (7)

where Γ ∗k is the most-relevant prototype of fSDk .

3.5 Training and Inference
Training. As mentioned above, the optimization of PDM-
Net contains two steps. At the first step, the network weights
of long-term dynamic context encoder ELDC (θ), prototype
model F (Γ) and PDLP networks P (φ) are optimized by
L1st = Lpre + λ(Ldis + Lcom). The prototype model Γ is
updated according to Eq. 5. At the second step, the weights of
short-term dynamic matching encoder ESDM (γ) and PDLP
networks P (φ) are optimized by L2nd = Lpre + λLcom. In
this step, the network weights of prototype module are fixed.
The optimization of model is described as Algorithm 1.

Algorithm 1: Optimization of our PDM-Net

Input: Vshort
n , Vlong

N , Target frame Xt+1

Output: The network parameters {θ, φ, γ, Γ}
1 Initialize the network parameters {θ, φ, γ, Γ};
2 for each iteration do
3 Step 1: Learn Long-term Dynamic Prototype
4 Calculate residual sequence: Rlong

N−1;
5 Long-term dynamic: fLDC = ELDC(Rlong

N−1);
6 Extract prototypical feature: Fpro = F(fLDC);
7 Predict target frame: X̂t+1 = P([Vshort

n ; Fpro]);
8 Calculate loss: L1st = Lpre + λ(Ldis + Lcom);
9 Update {θ, φ} using Stochastic Gradient:

10 θ ← θ −∇θ(Lpre + λ(Ldis + Lcom));
11 φ← φ−∇φ(Lpre + λ(Ldis + Lcom));
12 Update the prototype model F :
13 Γ i ← N (Γ i +

∑
k∈Zi

ω̂k,i · fLDCk );
14 Step 2: Prototypes Matching Learning
15 Calculate residual sequence: Rshort

n−1 ;
16 Short-term dynamic: fSD = ESDM (Rshort

n−1 );
17 Recall long-term prototypes: Fpro = F(fSD);
18 Predict target frame: X̂t+1 = P([Vshort

n ; Fpro]);
19 Calculate loss: L2nd = Lpre + λLcom;
20 Update {γ, φ} using Stochastic Gradient:
21 γ ← γ −∇γ(Lpre + λLcom);
22 φ← φ−∇φ(Lpre + λLcom);
23 end

Inference. As shown in Figure 1, our PDM-Net only takes
short sequence as the input at the testing phase. The LDPM
branch extracts the short-term dynamic features to match the
long-term dynamic prototypes from the prototype module for
assisting the PDLP branch to generate the predicted frame
X̂t+1. To quantify the abnormal extent of a video frame, the
prediction error between the predicted frame X̂t+1 and actual
frame Xt+1 is used to calculate the anomaly score. Besides,
we also evaluate the matching error between the query feature
fSDk and its prototype Γ ∗k. Here, we apply the peak signal to
noise ratio to measure the prediction error, namely Spre. The
lower Spre indicates poorer prediction and Xt+1 tends to be
abnormal. We calculate the matching error as

Smat =
1

K

∑K

k=1
‖fSDk − Γ ∗k‖2. (8)

The query feature fSDk is similar to the corresponding normal
prototype Γ ∗k indicates Xt+1 is normal. Following the previ-
ous methods, we adopt the same normalization function [Liu
et al., 2018] to normalize Spre and Smat to [0, 1]. The final
anomaly score is calculated as

S = β(1−M(Spre)) + (1− β)M(Smat), (9)

where β is the balance weight, andM(·) is the normalization
function over the whole video frames.
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Method SHTech Ped1 Ped2 Avenue
Conv-AE[Hasan et al., 2016] 60.9 75.0 90.0 70.2
CLSTM-AE[Luo et al., 2017] 55.0 75.5 88.1 77.0
FP[Liu et al., 2018] 72.8 83.1 95.4 85.1
MemAE[Gong et al., 2019] 71.2 - 94.1 83.3
PCM [Ye et al., 2019] 73.6 - 96.8 86.2
DeepOC[Wu et al., 2019] - 75.5 96.9 86.6
MNAD [Park et al., 2020] 70.5 - 97.0 88.5
IPR[Tang et al., 2020] 73.0 - 96.3 85.1
ClusterAE [Chang et al., 2020] 73.3 - 96.5 86.0
ISTL[Nawaratne et al., 2020] - 75.2 91.1 76.8
SSPCA [Ristea et al., 2022] 69.8 - - 84.8
SSMC [Madan et al., 2022] 70.6 - - 84.6
ITAE [Cho et al., 2021] 71.8 - 96.8 85.5
FastAno [Park et al., 2022] 72.2 - 96.3 85.3
ITAEGM [Cho et al., 2021] 73.0 - 97.3 86.0
MESDnet [Fang et al., 2021] 73.2 - 95.6 86.3
Multispace [Zhang et al., 2021] 73.6 - 95.4 86.8
F2PN[Luo et al., 2022] 73.0 84.3 96.2 85.7
AMMCN [Cai et al., 2021] 73.7 - 96.6 86.6
PDM-Net 74.2 85.2 97.7 88.1

Table 1: Comparison with other methods. [AUC (%)]

4 Experiments
4.1 Experimental Setup
We conduct experiments on four unsupervised VAD bench-
marks, UCSD Ped1 [Li et al., 2013], UCSD Ped2 [Li et
al., 2013], CUHK Avenue [Lu et al., 2013], and Shang-
haiTech [Luo et al., 2021] to evaluate performance. Under
the unsupervised setting, the training set only consists of nor-
mal videos. Following prior works [Liu et al., 2018], Area
Under ROC (AUC) is adopted as the evaluation metric. We
resize each input frames to intensity of [0, 1] and resolution
of 256 × 256. Adam with the initial learning rate of 0.0002
is adopted to optimize our PDM-Net. The number B of pro-
totypes in the prototype module is set as 100. The lengths of
long and short sequences are set as to 13 and 9, respectively.
λ and β are set as 0.1 and 0.6.

4.2 Comparison with Other Methods
We compare our PDM-Net with state-of-the-art VAD ap-
proaches. The detailed results are listed in Tabel 1. On
ShanghaiTech, PDM-Net is superior to all the methods in-
volved in the comparison with an average AUC of 74.2%,
which is higher 0.5% points than that of AMMCN. Our
PDM-Net outperforms the vanilla prediction framework-
based methods FP and PCM, which validates the effective-
ness of our PDLP paradigm. On UCSD Ped1, PDM-Net
can obtain a new state-of-the-art performance with an aver-
age AUC of 85.2%, which is higher 0.9% than the previous
best result of 84.3% AUC reported by F2PN. On UCSD Ped2,
PDM-Net is superior to all the baselines involved in the com-
parison with an AUC of 97.7%, which is higher 0.4% than
that of previous state-of-the-art method ITAEGM. Compared
with previous memory-guided methods MemAE and MNAD,
PDM-Net can not only exploit the long-term temporal con-
texts of normal videos, but also lessen the generalization abil-
ity of model to anomalies. The improvement indicates the
superiority of our prototype module with dynamics matching
learning. On Avenue, PDM-Net obtains a competitive perfor-
mance with the averaged AUC of 88.1%.

Dataset Index Pred. LD-Pred. Prot. FD AUC

Ped1

A ! 82.5%
B ! 82.0%
C ! ! 83.8%
D ! ! 84.5%
E ! ! ! 85.2%

Ped2

A ! 94.1%
B ! 93.7%
C ! ! 95.8%
D ! ! 96.9%
E ! ! ! 97.7%

Avenue

A ! 84.8%
B ! 84.3%
C ! ! 86.1%
D ! ! 87.0%
E ! ! ! 88.1%

Table 2: Results of the ablation studies. [AUC (%)]

4.3 Ablation Study
We study the contribution of each component in our PDM-
Net, and the experimental results are shown in Table 2. A ba-
sic model (module A) adopts vanilla prediction framework,
which is trained with the prediction loss Lpre (Eq. 2). It
obtains 82.5% AUC on UCSD Ped1, 94.1% AUC on UCSD
Ped2, and 84.8% AUC on Avenue. Then, we adopt the long-
distance frame prediction (module B), which only simply in-
creases the distance between the input sequences and target
frames. The performance of module B is degraded by 0.4%
to 0.5% on all datasets compared with Module A. Without
the assistance of long-term dynamic context prototypes in the
prototype module, the model lacks sufficient ability to exploit
the long-term temporal contexts for bridging the large infor-
mation gap between input and target, resulting in poor pre-
diction on both normal and abnormal frames.

Impact of Prototype Module
We embed the prototype module into the model A and B to
construct the module C and D, respectively. Clearly, em-
bedding our prototype module enables module C to obtain
1.3% to 1.7% improvements over the basic module A on all
datasets. Comparing module B and module D, we can ob-
serve that embedding prototype module enables module D
to obtain the performance improvements of 2.5%, 3.2% and
2.7% of AUC scores on three datasets. The significant per-
formance improvements demonstrate the validity of our pro-
totype module.

Impact of PDLP Framework
We adopt our proposed prototype-guided and dynamic-aware
long-distance frame prediction (PDLP) framework (mod-
ule D), i.e, embedding the prototype module into the long-
distance frame prediction-based module B. Compared with
the vanilla frame prediction framework (Module A), PDLP
framework-based module D can achieve the performance
gains of 2.0%, 2.8%, and 2.2% of AUC scores on three
datasets, which demonstrates the superiority of our PDLP
framework. Compared with the module C which is embed-
ded the same prototype module, our PDLP framework can
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Figure 3: Visual demonstration of the frame prediction for detecting anomalies. The first and third rows are the actual frames. The second
and fourth rows are residual frames between actual and predicted frames. Red boxes indicate the abnormal regions.
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Figure 4: Examples of anomaly score curves and representative frames. Light red regions is the ground truth of abnormal events.

improves the performance by 0.7% on UCSD Ped1, by 1.1%
on UCSD Ped2 and by 0.9% on Avenue, which indicates that
the performance gain of our PDLP does not simply come
from the superposition of modules, but from the more effec-
tive coupling between modules.

Impact of Feature Discrimination

Then, we embed the feature discrimination module into
PDLP framework-based module D to construct our overall
model (module E). The feature discrimination enables our
model to obtain improvements of 0.7%, 0.8% and 1.1% on
three datasets, respectively. The performance improvement
demonstrates the effectiveness of feature discrimination.

Visualization of Long-Distance Prediction

We show the actual and residual frames to check the reli-
ability of our model for VAD. In Figure 3, the second and
fourth rows are residual frames between actual and predicted
frames. Red boxes represent the abnormal regions. It is obvi-
ous that the prediction of anomalies by our PDM-Net is sig-
nificantly worse than that of normal regions, which indicates
that our method can achieve the goal of lessening the gener-
alization ability of learned model to anomalies.

Visualization of Anomalous Event Detection
Figure 4 shows some instances of anomaly score curves from
our PDM-Net. It is clear that our PDM-Net is able to correctly
response to normal and abnormal events in time. Specifically,
the curve rises sharply when an anomalous event suddenly ap-
pears and continuously remains at a quite high level when the
anomalous event is in progress. When the objects resulting in
the anomalies disappears, the curves drop to a relatively low
level.

5 Conclusion
In this paper, we propose a novel prototype-guided dynam-
ics matching framework that can jointly exploit the long-term
temporal contexts and preserve the diversity of normal pat-
terns, while lessening the generalization ability of model to
anomalies. Specifically, a prototype-guided and dynamic-
aware long-distance frame prediction (PDLP) framework is
adopted to exploit the temporal contexts of normal events.
Moreover, a prototype module with dynamic matching learn-
ing is designed to provide the short normal inputs with
long-term dynamic prototypes of normal events, which helps
the model to bridge the large information gap for achiev-
ing PDLP. Extensive experimental results on four datasets
demonstrate the superiority of our method.
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