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Abstract

Accurate segmentation of breast tumors in dy-
namic contrast-enhanced magnetic resonance im-
ages (DCE-MRI) is critical for early diagnosis of
breast cancer. However, this task remains chal-
lenging due to the wide range of tumor sizes,
shapes, and appearances. Additionally, the com-
plexity is further compounded by the high dimen-
sionality and ill-posed artifacts present in DCE-
MRI data. Furthermore, accurately modeling fea-
tures in DCE-MRI sequences presents a challenge
that hinders the effective representation of essential
tumor characteristics. Therefore, this paper intro-
duces a novel Temporal-Spatial Enhanced Network
(TSESNet) for breast tumor segmentation in DCE-
MRI. TSESNet leverages the spatial and temporal
dependencies of DCE-MRI to provide a compre-
hensive representation of tumor features. To ad-
dress sequence modeling challenges, we propose a
Temporal-Spatial Contrastive Loss (TSCLoss) that
maximizes the distance between different classes
and minimizes the distance within the same class,
thereby improving the separation between tumors
and the background. Moreover, we design a novel
Temporal Series Feature Fusion (TSFF) module
that effectively integrates temporal MRI features
from multiple time points, enhancing the model’s
ability to handle temporal sequences and improv-
ing overall performance. Finally, we introduce a
simple and effective Tumor-Aware (TA) module
that enriches feature representation to accommo-
date tumors of various sizes. We conducted com-
prehensive experiments to validate the proposed
method and demonstrate its superior performance
compared to recent state-of-the-art segmentation
methods on two breast cancer DCE-MRI datasets.

⇤Corresponding author: zhiming.luo@xmu.edu.cn

1 Introduction
Breast cancer is the leading cause of cancer death in women
worldwide. Early detection of malignancy is crucial for
improving the prognosis of breast cancer patients [Zhao et
al., 2023b]. Dynamic contrast-enhanced magnetic resonance
imaging (DCE-MRI) is a non-invasive imaging technique that
can reveals both temporal and spatial characteristics of the
physiological tissue. It plays an important role in the diag-
nosis and staging of breast tumors [Zhou et al., 2022]. The
standard DCE-MRI protocol involves acquiring a precontrast
3D image prior to the injection of an intravenous contrast
agent, followed by sequential acquisition of postcontrast 3D
images. A representative illustration of DCE-MRI sequences
can be seen in the first row in Fig. 1. The response to con-
trast enhancement varies between tumor and non-tumor tis-
sues. Tumor tissues typically exhibit significantly higher en-
hancement and increased sensitivity in images compared to
non-tumor tissues.
As shown in Fig. 1, the second and third rows illustrate

two specific cases consisting precontrast MRI slice V0 and
postcontrast MRI slice {Vi, i 2 1 · · ·T}, along with the sub-
traction image between Vi�V0. From the figure, we can find
that the subtraction images can provide better tumor visual-
ization (highlighted in the yellow box). However, temporal
changes manifest differently at distinct time points. In Case 1
(second row), V5�V0 is more appropriate for tumor segmen-
tation, whereas the tumor area in V1 � V0 is incomplete. On
the other hand, in Case 2 (third row), we can observe that
the enhanced tumors and glands are adhesion in V8 � V0,
and V3 � V0 is more suitable choice for tumor segmentation.
Consequently, physicians are still unable to accurately differ-
entiate tumors from other enhanced tissues, such as vessels
and glands, based solely on intensity changes at a single time
point in DCE-MRI.
Despite the extensive focus on general tumor segmenta-

tion, the research on breast tumor segmentation in DCE-MR
images is relatively limited [Qi et al., 2023; Milletari et al.,
2016]. Common methods usually perform the segmentation
in a single 3D MRI image based on maximum intensity pro-
jection (MIP), which may ignore the temporal characteristics
of tumors within the image sequence [Zhang et al., 2019;
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Figure 1: Illustration of the DCE-MRI and two cases. The first row
shows a full DCE-MRI sequences, which contains a precontrast V0

and T postcontrast V1 · · ·VT (after injecting). For the second and
third rows, V0 slice is precontrast MRI slice sample, and Vi�V0 slice
is the subtraction between the i postcontrast and precontrast slice
sample. GT is ground truth. The right corner is the local enlargement
result within the yellow box.

Vidal et al., 2022]. Recent methods have begun to explore the
segmentation of breast tumors in 3D sequences [Zhang et al.,
2023; Lv and Pan, 2021; Lv et al., 2022; Zhao et al., 2023a].
However, the high dimension of the data poses challenges
in modeling sequence features, and the tumor segmentation
model consumes too much computing resources [Yeung et
al., 2022]. Consequently, achieving efficient and effective
modeling of tumor features within the DCE-MRI sequence
is crucial for accurate segmentation.
To this end, we propose a novel end-to-end Temporal-

Spatial Enhanced Network (TSESNet) for DCE-MRI breast
tumor segmentation. This approach enhances tumor feature
representation by jointly considering the spatial and temporal
contextual dependency of inter-sequence, enabling accurate
segmentation of tumors of 4D DCE-MRI images. Specifi-
cally, the TSESNet utilizes a shared-weight encoder archi-
tecture and a Temporal Series Feature Fusion (TSFF) mod-
ule to address the issue of excessive parameterization. The
TSFF module efficiently integrates MRI feature maps from
different time points while concurrently reducing the param-
eters. Additionally, we propose a novel temporal-spatial con-
trastive loss that constrains the feature representations of dif-
ferent classes in both spatial and temporal domains. The aim
is to maximize the discrimination between tumor and back-
ground samples. Additionally, we also designed a Tumor-
Aware (TA) module based on multi-scale-attention technical
to improve the perception of tumors with different scales.
In summary, the main contributions of the proposed

method are as follows:
• We proposed a novel TSESNet for breast tumor segmen-
tation in DCE-MRI by exploiting spatial and temporal
contextual dependencies. Extensive experiments on two
breast DCE-MRI datasets demonstrate the effectiveness
of TSESNet, achieving the state-of-the-art performance.

• We propose a Temporal-Spatial Contrastive Loss

(TSCLoss), which captures spatial complexity and ef-
fectively models the temporal dynamics in DCE-MRI
sequences. By addressing the distinctive challenges of
capturing temporal-spatial features, TSCLoss elevates
feature representation and significantly strengthens the
performance in breast tumor segmentation tasks.

• We proposed a novel Temporal Series Feature Fusion
(TSFF) module that effectively integrates temporal MRI
features from multiple time points. This module en-
hances the model’s ability to handle temporal sequences
and improves overall performance.

• We designed a simple and effective Tumor-Aware (TA)
module that enriches the feature representation to han-
dle tumors of various sizes. Additionally, the attention
mechanism and the residual-like structure in TA assist in
minimizing the number of learnable parameters.

2 Related Works
2.1 Breast Tumor Segmentation
Breast tumor segmentation plays a vital role in early diag-
nosis of breast cancer. With the advent of deep learning,
several CNN-based architectures, such as the popular U-
Net, are widely used in breast tumor segmentation [Benjel-
loun et al., 2018; Piantadosi et al., 2018; Qin et al., 2022;
Haq et al., 2022]. However, the above methods focus on 2D
slices obtained from 3D MRI data, leading to the spatial con-
textual information missing. To handle this issue, 3D convo-
lutional kernels are performed on 3D MRI volume data.
Vidal et al [Vidal et al., 2022] proposed a 3D U-Net

method for breast tumor segmentation in DCE-MRI. Wang
et al [Wang et al., 2021] proposed a 3D segmentation method
using the comparison of precontrast and postcontrast MRI.
Zhou et al [Zhou et al., 2022] proposed a new multi-branch
integrated network based on 3D affinity learning for accurate
breast tumor segmentation in DCE-MRI. These methods usu-
ally rely on Maximum Intensity Projection (MIP) to convert
the 4D DCE-MRI sequence into a single MRI. Although this
simplification aids in computational efficiency, it neglects the
crucial inter-sequence relationships within DCE-MRI.
Recently, some studies have begun to segment breast tu-

mors throughout the DCE-MRI sequence [Zhang et al., 2023;
Zhao et al., 2024]. Although these methods enforce global
contextual dependencies, they often overlook the spatial and
temporal correlations between sequences within DCE-MRI
images. Additionally, the high dimensionality of DCE-MRI
data aggravates the calculation, and the diversity in tumor
shapes and sizes further complicates breast tumor segmen-
tation, making it a challenging task.

2.2 Contrastive Learning
Supervised contrastive learning has emerged as a highly
effective technique for representation learning. The key
idea is generating positive and negative sample pairs, and
then learning discriminative feature representations by min-
imizing the embedding distance among positive pairs and
maximizing that among negative pairs [Zhang et al., 2022;
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Figure 2: Architecture of the proposed TSESNet. (a) is the overall structure, (b) is a schematic diagram of temporal-spatial contrastive loss,
and (c) is the temporal series feature fusion module

Lee et al., 2023; You et al., 2022]. By incorporating pixel-
level supervision, these models can effectively capture dis-
criminative features and thus improve segmentation accuracy.
Instance discrimination serves as an approach to super-

vised contrastive learning for medical image segmentation.
In this approach, each pixel is treated as an instance, and the
task is to learn the discrimination between pixels belonging
to the same class and pixels from different classes. [Wang
et al., 2023] proposed a pixel-level contrastive branch to pre-
train both the encoder and decoder. This offers the advantage
of improving the reconstruction of high-resolution features
at different scales. [Zeng et al., 2021] propose a novel po-
sitional contrastive learning (PCL) framework, which gener-
ates contrastive data pairs by leveraging the position informa-
tion within volumetric medical images. However, previous
methods have primarily focused on either single-image seg-
mentation or 3D volume segmentation, overlooking the spa-
tial correlations between slices and the temporal correlations
between sequences in DCE-MRI images.

3 Method
3.1 Overview
In Fig. 2 (a), the proposed TSESNet consists of four main
components: Weight-share encoder, Temporal-Spatial Con-
trastive Loss, Temporal Series Feature Fusion, and De-
coder. Specifically, for a DCE-MRI represented as V =
{V0, V1, . . . , VT }, where T represents the number of contrast-
enhanced samples, we apply a weight-shared encoder to each
volume Vi. This encoder extracts diverse hierarchical fea-
ture maps F = F

l at different downsampling levels l. Then,
these temporally sampled feature maps at the same level are
merged into temporal-spatial features {fi 2 F

l
, i 2 0 . . . T}.

The entire encoder leverages the Tumor-Aware (TA) module
introduced in Sec. 3.2 to enhance the capture capability of
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Figure 3: Tumor-Aware Module (TA).

tumor features across various shapes and sizes while reduc-
ing computational complexity. Simultaneously, the encoder
is guided by the Temporal-Spatial Contrastive Loss, ensuring
that the represented spatiotemporal feature sequence exhibits
higher separability.
Subsequently, by employing temporal attention mecha-

nisms, the model effectively leverages inter-sequence corre-
spondences while preserving the incremental nature of tem-
poral context. As a result, the temporal feature sequence is
fused into a spatiotemporal feature map. Finally, this fused
feature map is propagated to the decoder to generate predic-
tions for DCE-MRI tumor segmentation.

3.2 Tumor-Aware Module
Multi-scale information can provide rich semantic features
for the segmentation of breast tumor with various sizes. Thus,
we proposed a TA module that use attention strategy to fuse
the channel dependence between different feature maps of
varying resolutions and scales, as depicted in Fig. 3.
Specifically, we used three atrous convolutions with differ-

ent kernel sizes (i.e., 5 ⇥ 5 ⇥ 5, 3 ⇥ 3 ⇥ 3, and 1 ⇥ 1 ⇥ 1)
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to extract multi-scale feature maps to increase the attention
for tumors. Meanwhile, residual mechanisms are used to im-
prove the communication between features, thus promoting
the fusion. The detailed calculation is as follows:

f
0
i
=

8
<

:

f i = 1
Conv1(f) i = 2
Convi(f + f

0
i�1) 2 < i  4.

(1)

f
0 = C[f 0

1, f
0
2, f

0
3, f

0
4], (2)

where f 2 fi is a temporal-spatial feature map, C[·] is the
concatenation operation.
The scale attention is used to weigh the feature channels

at different scales, thus making the network focused on the
effective features [Chen et al., 2017]. The scale-attention
mechanism is calculated as follows. Firstly, the global av-
erage pooling is used to embed the global spatial information
into the scale vector:

gs =
1

W ⇥H ⇥D

DX

d=1

HX

h=1

WX

w=1

f
0(h,w), (3)

whereD,H,W represent the depth, height and width, respec-
tively. f 0 is the multi-scale feature map.

The scale-attention weight vector is calculated based on the
average pooling vector as follows:

w = Sigmoid(Wf2(ReLU(Wf1(gs)))), (4)
where Wf1 andWf2 are the weights of two linear layers.
The final output feature map is a weighted sum of feature

maps of different scales and their attention weights:

f̂ =
4X

i=1

wi ⇤ f 0
. (5)

3.3 Temporal-Spatial Contrastive Loss
Breast tumor segmentation in DCE-MRI, it is important to
consider not only the spatial relationship between individ-
ual MRIs, but also the temporal features across sequences.
Here, we propose a novel Temporal-Spatial Contrastive Loss
(TSCLoss) to enhance feature separability within the encoder.
The goal of TSCLoss is to enforce closer feature distances for
pixels of the same class in both spatial and temporal domains,
while enlarging the feature distances of different classes. This
helps enhance the discriminative capabilities of the encoder’s
feature maps, and thus increase the performance of breast tu-
mor segmentation. The TSCLoss is shown in Fig. 2 (b).
Spatial Domain: In the spatial domain, we utilize the feature
maps fi at a given time point to encourage aggregation of
features from the same class and dispersion of features from
different classes. Consider the feature vectors zp 2 R

d for
each pixel p in fi, where d is the dimensionality of the fea-
ture vectors. Pixel pairs of zp and zp0 belonging to the same
class are regarded as positive pairs (zp, zp0) 2 ⌦+. Pixel
pairs of zp and zq belong to different classes and are treated
as negative pairs (zp, zq) 2 ⌦�. We use the cosine simi-

larity sim(zi, zj) =
zi · zj

||zi||||zj ||
to measure the similarity be-

tween feature vectors zi and zj within a single feature map
fi [Caliskan, 2023].

Temporal Domain: Across the temporal sequence f0 to fT ,
we treat pixels at the same spatial location as positive pairs,
denoted as (zp, ztp) 2 ⌦+. Here, zp and z

t

p
represent fea-

ture vectors for pixels at the same spatial location but differ-
ent time points. Likewise, the cosine similarity sim(zp, ztp)
measures the similarity between feature vectors zp, ztp across
different time points fi and fj .
Temporal-Spatial Contrastive Loss: The Temporal-Spatial
Contrastive Loss (TSCLoss) aims to minimize the feature dis-
tance between positive pairs (zp, z0p) 2 ⌦+ and maximize the
feature distance between negative pairs (zp, zq) 2 ⌦� in the
spatial domain, as well as enforcing proximity between posi-
tive pairs (zp, ztp) 2 ⌦+ across in the temporal domain. This
is achieved by maximizing similarity between similar fea-
tures and minimizing similarity between dissimilar features:

L(z, ez) = � log
e
sim(z,ez)/⌧

esim(z,ez)/⌧ +
P

ẑ2⌦� esim(z,ẑ)/⌧
, (6)

where ⌦� is the set of indices of negative samples. ⌧ is the
temperature used to smooth or sharpen the distribution.
To obtain the global loss of the entire training set, we av-

eraged the single loss value of all pixel areas and applied the
loss to different sampling layers (deep supervised):

LTSC =
lX

i=1

1

|Z|
X

z2Z

1

|⌦+|
X

ez2⌦+

L(z, ez), (7)

where ⌦+ is the set of indices of positive samples, |⌦+|
stands for the size, |Z| represents the sample count of pixel, l
is the encoder layer number.
By minimizing the temporal-spatial contrastive loss func-

tion, we effectively constrain the spatial and temporal fea-
tures to enhance separability, improving the representation of
the encoded feature maps.

3.4 Temporal Series Feature Fusion
In order to effectively capture the temporal contextual depen-
dency of MRI sequences and reduce model complexity. We
propose the introduction of a Temporal-Spatial Feature Fu-
sion (TSFF) module, which facilitates interactions among the
extracted features and calculates their interdependencies, as
illustrated in Fig. 2 (c). In clinical practice, radiologists typ-
ically confirm the presence of tumors by observing the dy-
namic changes between post-contrast MRIs and pre-contrast
MRI scans. Leveraging this prior knowledge, we model the
relationship between the features of post-contrast MRIs (fi)
and pre-contrast MRI (f0) for feature fusion.
This module is designed to learn the temporal context and

weights to fuse the features effectively. Specially, calculate
attention weights based on the temporal dependencies be-
tween the sequential feature maps f1, · · · , fT with f0 to em-
phasize the importance of each time step in the sequence. The
relationship weight matrix Wi is calculated as follows:

Wi(f0, fi) = Softmax(
f0Wq(f0Wk)T

d
)fiWv, (8)

whereWk,Wq andWv are corresponding learned weight ma-
trices, d is feature dimension. fi 2 {f1 · · · fT }
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The final fused feature map f̂ is obtained by weighting
each fi with its corresponding attention weight matrix Wi

and summing them up:

f̂ = f0 +
TX

i=1

(Wi · fi), (9)

where · denotes element-wise multiplication.

3.5 Loss Function
The model is trained end-to-end with dice loss and TSCLoss.
The loss function is formulated as:

L = ↵LDice + �

lX

i=1

LTSC , (10)

where LDice is dice loss [Ma et al., 2021], LTSC is TSCLoss,
and l is the number of encoder layers. In our experiment, we
set ↵ = 0.7,� = 0.5, and ⌧ = 10�5.

4 Experiment
4.1 Experimental Setup
Datasets: To assess the effectiveness of our proposed method
for breast tumor segmentation, we conduct experiments on
two datasets. The first dataset, known as AI-assistant-
for-breast-tumor-segmentation (BTS) dataset [Zhang et al.,
2023], is a publicly available collection comprising 100 DCE-
MRI cases from seven different institutions. The second one,
named ST177, is a private collection consisting of 177 labeled
DCE-MRI cases. In ST177, all patients underwent preopera-
tive DCE-MRI using a 3.0 Tesla scanner (Signa, GE Health-
care, Milwaukee, WI) with a dedicated 8-channel breast coil.
All included studies contained a fat-saturated gradient echo
T1-weighted pre-contrast sequence and typically five post-
contrast T1-weighted sequences acquired after the adminis-
tration of the contrast agent. Each sequence contained 88 to
108 2D slices acquired with the following parameters: repe-
tition time (TR) ranged [3.9, 4.8] ms, echo time (TE) ranged
[1.7, 1.8] ms, flip angle = 5�, field of view (FOV) = 340⇥340
mm, matrix size = 320⇥ 320, and slice thickness = 1.4 or 1.6
mm. Both datasets comprise 3D DCE-MRI volumes obtained
from multiple contrasts (V0 � V5). These contrasts were ac-
quired before the intravenous injection (V0) and during the
post-injection phase (V1 � V5) using a positive paramagnetic
contrast agent at a dosage of 0.1 mmol/kg.
Preprocessing: Before training, we conducted denoising

by removing pixels with values falling within the first and
last 0.1% of the range. Following denoising, we performed
grayscale normalization.
Implementation details: To ensure a fair comparison, all

models were implemented using PyTorch and trained on four
NVIDIA RTX 3090Ti GPUs. The ADAM optimizer was em-
ployed for optimization, with an initial learning rate of 1e-4.
Each GPU had a batch size of 1. The training process lasted
for 300 epochs, with an early stop criterion set at 30 steps.
Following [Zhang et al., 2023], sub-volumes of size 96⇥ 96⇥
48 were randomly extracted from DCE-MRI scans as the in-
put for the training stage. In the testing stage, we utilized a

sliding window-based strategy, with the same window size as
in the training stage.
Evaluation metrics: To evaluate the performance of our

method, three commonly used metrics are utilized, i.e., Dice
Similarity Coefficient (DSC: %), 95% Hausdorff Distance
(95% HD: mm), and Sensitivity (Sen: %).

4.2 Comparisons With the State-of-the-Art
Methods

We compare our TSESNet with seven existing DCE-MRI
breast tumor segmentation methods. These methods include:
(1) 2D Slice-based: MA-Net [Peng et al., 2022] and Att-
U-Node [Ru et al., 2023], (2) 3D U-Net based: [Vidal et
al., 2022], (3) Pre- and post-contrast enhancement MRIs
as input-based: ALMN [Zhou et al., 2022] and Tumor-
sen [Wang et al., 2021], (4) Whole DCE-MRI sequence
as input-based: ST-Tumor-Seg [Zhang et al., 2023] and
SwinHR [Zhao et al., 2024].

Quantitative Comparison
ST177 Dataset: As shown in Tab. 1, the TSESNet achieves
the highest DSC of 88.37% on the ST177 dataset, outper-
forming all comparison methods by a large margin. Addi-
tionally, TSESNet demonstrates superior performance in HD
(7.154) and Sen. (83.19%), surpassing the existing state-of-
the-art methods. Notably, methods designed for temporal
analysis, such as SwinHR and ST-Tumor-Seg, leverage tem-
poral information and achieve competitive results. However,
the TSESNet utilizing temporal-spatial contrastive learning,
exhibits a remarkable advancement, notably reducing the HD
and improving Sensitivity significantly.
BTS Dataset: Similar trends can be observed on the

BTS dataset, wherein TSESNet achieves the highest DSC
of 78.95%. Further more, our proposed method demon-
strates outstanding performance in terms of Hausdorff Dis-
tance (HD) with a value of 6.14 and Sensitivity (Sen) at
79.13%, surpassing the comparative approaches.
In summary, the experimental results on both ST177 and

BTS datasets validate the efficacy of our proposed TSESNet
for breast tumor segmentation in DCE-MRI. The incorpora-
tion of temporal-spatial contrastive learning contributes sig-
nificantly to improved segmentation accuracy and delineation
of tumor boundaries when compared to state-of-the-art meth-
ods. The consistent outperformance evaluation metrics un-
derline the robustness and effectiveness of TSESNet in han-
dling the challenges posed by breast tumor heterogeneity and
complex DCE-MRI data.

Qualitative Comparison
In Fig. 4, our proposed TSESNet demonstrates highly consis-
tent segmentation results that closely align with the ground
truth. In contrast, 2D-based models, such as Att-U-Node
and LMA-Net, exhibit intermittent slice losses, resulting par-
tial segmentation discrepancies between slices. On the other
hand, methods relying solely on single 3D MRI inputs, such
as Tumor-sen, ALMN, and 3D U-Net, encounter difficulties
in capturing inter-sequence relationships, leading to segmen-
tation errors. In contrast, our TSESNet, leveraging the tem-
poral series feature fusion module and temporal-spatial con-
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Figure 4: The qualitative segmentation results of two datasets, (a) and (b) from ST177, (c) and (d) from BTS. GT is Ground truth. The red
shows the predictions of tumors. The lower left corner is the local enlargement result within the yellow box. The lower right corner is the 3D
effect of tumor segmentation.

3D GT +BothBackbone +TA +TSCLoss

Figure 5: Ablation studies of core components of TA module and
TSCLoss. GT: Ground truth.

trastive loss, achieves more accurate segmentation than other
4D segmentation models.

Parameters and Complexity
The analysis of model size and complexity (Tab. ??) high-
lights the efficiency trade-offs among different 4D DCE-
MRI segmentation methods. SwinHR exhibits a larger model
size and high computational demand (146.20M parameters,
314.72G FLOPs). ST-Tumor-Seg, with a larger model size
than SwinHR, showcases reduced computational complex-
ity (175.54M parameters, 134.37G FLOPs). Our TSESNet
achieves a smaller model size (103.58M parameters) and re-
duced computational complexity (98.66G FLOPs). This effi-
ciency is attributed to the encoder layer with shared weights
and the temporal feature fusion module.

4.3 Ablation Study
To investigate the effectiveness of different components in the
proposed framework, we conduct a series of ablation studies

on BTS dataset. Quantitative and qualitative comparisons are
shown in Tab. 3 and Fig. 5.
Effectiveness of the TA Module: In Tab. 3, in the sec-

ond line, the inclusion of the Tumor-Aware module leads to
an increase in segmentation accuracy (DSC) from 63.41%
to 70.14% by fusing features from different receptive fields.
This module also refines boundary delineation (95% HD)
from 21.179 to 13.192 and increase sensitivity from 66.36%
to 71.47% by enhancing the perception of small tumors and
complex boundaries. These improvements can be attributed
to the strong learning ability of the Tumor-Aware module in
capturing tumor features. Moreover, by effectively fusing in-
formation from multi-receptive fields, this module enhances
its capability to discern subtle features of small tumors and
intricate boundaries, resulting in a significant improvement
in overall segmentation performance.
Effectiveness of the TSCLoss: In Tab. 3, in the third row,

the utilization of Temporal-Spatial Contrastive Loss leads to
an increase in DSC to 71.51% by enforcing constraints at the
feature representation level, thereby enhancing the discrimi-
native features between the tumor and background. Further-
more, while maintaining a low 95% HD (13.914), TSCLoss
slightly improves sensitivity to 72.18%, thus enhancing the
separability between tumor and non-tumor features.
Combined Impact: In Tab. 3, in the fourth line, the com-

bination of both modules results in a significant performance
boost, achieving a DSC of 78.95%, 95%HD of 6.14, and Sen-
sitivity of 79.13%. The Tumor-Aware module enhances fea-
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DataSets Methods Input Types DSC (%) " 95% HD (mm) # Sen. (%) "

ST177

LMA-Net [Peng et al., 2022] 2D 77.38 26.193 74.19
Att-U-Node [Ru et al., 2023] 2D 81.25 12.917 76.54
3D U-Net [Vidal et al., 2022] 3D 70.88 43.305 70.58
ALMN [Zhou et al., 2022] Two 3D 81.27 17.618 77.18

Tumor-sen [Wang et al., 2021] Two 3D 84.16 15.009 77.36
SwinHR [Zhao et al., 2024] 4D 83.92 14.517 76.31

ST-Tumor-Seg [Zhang et al., 2023] 4D 84.39 14.037 80.51
TSESNet 4D 88.37 7.154 83.19

BTS

LMA-Net [Peng et al., 2022] 2D 63.16 35.708 64.49
Att-U-Node [Ru et al., 2023] 2D 65.17 24.317 68.47
3D U-Net [Vidal et al., 2022] 3D 59.35 59.537 61.91
ALMN [Zhou et al., 2022] Two 3D 65.18 21.175 64.93

Tumor-sen [Wang et al., 2021] Two 3D 67.13 17.413 65.81
SwinHR [Zhao et al., 2024] 4D 67.32 16.509 67.19

ST-Tumor-Seg [Zhang et al., 2023] 4D 69.81 14.170 71.03
TSESNet 4D 78.95 6.140 79.13

Table 1: Quantitative comparison results on ST177 and BTS. For each column, the best result is highlighted in bold.

Methods Params(M) FLOPs(G)
SwinHR 146.20 314.72

ST-Tumor-Seg 175.54 134.37
TSESNet 103.58 98.66

Table 2: Model size and complexity.

Methods DSC (%) " 95% HD # Sen. (%) "
backbone 63.41 21.179 66.36
+TA module 70.14 13.192 71.47
+TSCLoss 71.51 13.914 72.18
+Both 78.95 6.140 79.13

Table 3: Ablation studies of core components of TA module and
TSCLoss. The performance is evaluated on the BTS dataset.

ture perception by utilizing varied receptive fields. Simulta-
neously, the Temporal-Spatial Contrastive Loss improves dis-
criminative feature representation. The combination of these
two modules contributes collectively to the improved accu-
racy and boundary delineation in breast tumor segmentation
from DCE-MRI images.

4.4 Performance Analysis for TSFF Module
To assess the impact of Temporal Series Feature Fusion
(TSFF) on the performance of the TSESNet, we experimen-
tally compared TSFF with four different feature fusion meth-
ods. 1) MeanPool: Temporal feature averaging in every
skip connection to reduce dimensionality. 2) CNN: Adap-
tive temporal feature fusion. 3) TSFF(Bottleneck): Incor-
porating TSFF in bottleneck layers, calculating and apply-
ing weights to skip connections. 4) STT (Spatial-Temporal
Transformer): Temporal feature fusion based on the ST-
Tumor-Seg [Zhang et al., 2023]. The detailed experimental
results are reported in Tab. 4.
The results demonstrate the effectiveness of our proposed

TSESNet with the TSFF module, surpassing alternative fu-
sion strategies in terms of all evaluation metrics. Specifically,
in terms of DSC, utilizing the TSFF module only at the bot-
tleneck layer, the TSFF + Bottleneck approach achieved a
significant increase in the DSC score (72.43) compared to
STT (69.54). Despite obtaining a lower score than TSES-

DSC (%) 95% HD Sen. (%) Params(M) FLOPs(G)
TSFF 78.95 6.140 79.13 103.58 98.66

MeanPool 66.31 18.157 64.19 98.31 67.42
CNN 63.17 24.160 61.83 101.16 72.32
STT 69.54 12.415 69.81 169.17 124.58

TSFF (Bottleneck) 72.43 11.325 72.54 98.93 75.42

Table 4: Comparison between TSFF module and other fusion strate-
gies on the BTS dataset.

Net, this improvement validates the contribution of the TSFF
module in enhancing segmentation precision. In computa-
tional efficiency, the TSFF consumes only 98.93M parame-
ters and performs 75.42G FLOPs, which is substantially less
than STT at 169.17M parameters and 124.58G FLOPs. No-
tably, the Bottleneck+TSFF configuration yields competitive
results, highlighting the pivotal role of TSFF in not only re-
ducing model complexity, but also improving the model’s
ability to effectively capture sequential features in DCE-MRI.
The comparison revealed a distinct advantage over existing
approaches, such as STT, thereby demonstrating the effec-
tiveness of our proposed TSFF module in enhancing the per-
formance of breast tumor segmentation.

5 Conclusion

In this study, we propose a novel Temporal-Spatial Enhanced
Network (TSESNet) for Breast Tumor Segmentation in DCE-
MRI. Our approach leverages temporal-spatial contrastive
learning to enhance the model’s feature representation. It in-
tegrates contrast-enhanced features of breast tumors across
different time points and incorporates a tumor-aware module
that adapts to diverse tumor shapes and sizes. Additionally,
the weight-sharing encoder structure and temporal series fea-
ture fusion module effectively capture sequence features in
DCE-MRI while reducing the model’s parameter count and
complexity. Extensive evaluations on two DCE-MRI datasets
validate the effectiveness, adaptability, and robustness of our
proposed method in achieving accurate breast tumor segmen-
tation.
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