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Abstract
Traditional text-image person retrieval methods
heavily rely on fully matched and identity-
annotated multimodal data, representing an ideal
yet limited scenario. The issues of handling incom-
plete multimodal data and the complexities of la-
beling multimodal data are common challenges en-
countered in real-world applications. In response to
these challenges encountered, we consider a more
robust and pragmatic setting termed unsupervised
incomplete text-image person retrieval, where per-
son images and text descriptions are not fully
matched and lack the supervision of identity la-
bels. To tackle these two problems, we propose the
Enhancing Cross-modal Completion and Align-
ment (ECCA) method. Specifically, we propose
a feature-level cross-modal completion strategy for
incomplete data. This approach leverages the avail-
able cross-modal high semantic similarity features
to construct relational graphs for missing modal
data, which can generate more reliable completion
features. Additionally, to address the cross-modal
matching ambiguity, we propose weighted inter-
instance granularity alignment as well as enhanced
prototype-wise granularity alignment modules that
can map semantically similar image-text pairs more
compact in the common embedding space. Exten-
sive experiments on public datasets, fully demon-
strate the consistent superiority of our method over
SOTA text-image person retrieval methods.

1 Introduction
The goal of the person re-identification (ReID) task is to
match images of individuals who share the same person iden-
tity across various camera viewpoints. Categorized based
on the query object’s data type, ReID can be segmented
into three primary categories: image-based ReID [Sun et
al., 2018; Xuan and Zhang, 2021; Yu et al., 2019; Gong
et al., 2023a], text-based person search [Liu et al., 2019;
Chen et al., 2018; Jing et al., 2020b; Gong et al., 2023b]
and video-based ReID [Hou et al., 2021; Bai et al., 2022;
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Figure 1: (a) Conventional text-image person retrieval methods. (b)
Unsupervised text-image person retrieval. (c) Incomplete multi-
modal data problem is a common challenge in real-world applica-
tions. (d) Unsupervised text-image person retrieval approaches en-
counter cross-modal matching ambiguity.

Hou et al., 2019]. Text-based person ReID is a cross-modal
fine-grained retrieval task, and its objective is to explore the
fine-grained information shared between visual and linguistic
domains while simultaneously establishing their tighter fine-
grained alignment. In recent years, numerous effective text-
image representation learning methods [Ding et al., 2021;
Shao et al., 2022] have made remarkable advancements.
These studies adhere to a similar scheme: 1) They employ the
cross-modal alignment loss to align visual and textual rep-
resentations into a shared embedding space. 2) Text-based
person ReID models are trained on fully matched and la-
beled image-text pairs. These approaches heavily depend
on completely matched and labeled image-text pairs, as de-
picted in Figure 1 (a). Indeed, this assumption is idealistic
and constrained by an array of inevitable practical factors,
e.g., privacy protection [Zhang et al., 2022; Dou et al., 2022;
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Tang et al., 2016; Li et al., 2018], data missing [Xiang et
al., 2023], and data corruption [Xian et al., 2023]. There-
fore, previous approaches that relied on complete and labeled
modality data to construct ranking loss for exploring text and
image alignment do not perform effectively in these scenar-
ios. As depicted in Figures 1 (b) and (c), real-world applica-
tions frequently confront challenges involving unlabeled and
incomplete multimodal data. In this work, we first propose a
more robust and practical setting referred to as unsupervised
incomplete text-based person ReID, where person images and
text descriptions are not fully matched and lack the supervi-
sion of identity labels during the training phase.

Certainly, unsupervised incomplete text-image ReID must
address two key challenges: (1) How to effectively handle
incomplete multimodal training data? (2) How to estab-
lish alignment between distinct fine-grained features across
images and texts in the absence of true label supervision,
and devise cross-modal alignment loss functions? To tackle
the aforementioned concerns, we propose a novel Enhancing
Cross-modal Completion and Alignment (ECCA) method,
as shown in Figure 2, which comprises four key modules:
cross-modal nearest neighbors construction with high seman-
tic similarity, cross-modal feature-level completion for miss-
ing data, weight inter-instance granularity alignment, and en-
hanced prototype-wise granularity alignment. Specifically,
we propose the high semantic similarity neighbor genera-
tion method, in which a new Jaccard distance metric is pro-
posed to calculate the distance between two nearest neigh-
bor samples and select the most reliably k-reciprocal nearest
neighbors from cross-modality and self-modality. Relational
graphs for missing features are then built using the nearest
neighbors with high semantic similarity to the incomplete
modality data that is reconstructed by weighting the neigh-
bors. In addition, to address the challenge of cross-modal
matching ambiguity as shown in Figure 1 (d), we propose
weighted inter-instance granularity alignment as well as en-
hanced prototype-wise granularity alignment modules that
can encourage the model to map semantically similar image-
text pairs more compact in the common embedding space.

Our key contributions can be summarized three-fold: (1)
We pioneer a new unsupervised incomplete text-image ReID
task, aiming to improve the robustness and generalization
of text-based ReID. (2) We put forward cross-modal neigh-
bor construction with high semantic similarity and feature-
level missing modality completion modeling to achieve reli-
able missing modal feature completion. (3) We propose the
weighted inter-instance granularity alignment and enhanced
prototype-wise granularity alignment modules, which can re-
duce the effect of cross-modal matching ambiguities.

2 Related Work
2.1 Text-Based Person Re-Identification
The existing text-based person ReID methods can essentially
be classified into two categories: cross-modal interaction-
based and cross-modal interaction-free methods. The for-
mer [Niu et al., 2020; Gao et al., 2021; Ding et al., 2021;
Wang et al., 2020] mainly utilizes various attention schemes
to establish word-patch [Ding et al., 2021; Chen et al., 2018;

Li et al., 2017a; Li et al., 2017b] or phrase-region [Jing et al.,
2020b; Niu et al., 2020] multi-granularity alignment relations
and predict the matching score for image-text pairs. The lat-
ter [Gao et al., 2021; Niu et al., 2020] primarily focuses on
learning global features without interactive attention mech-
anisms for global alignment. Such methods often employ
different model structures and optimizing functions [Zhang
and Lu, 2018] to align the image and text embeddings in a
shared latent feature space. Recently, some works applied
image and text modal pre-training of CLIP [Li et al., 2022;
Shao et al., 2022] and achieved significant improvement.

2.2 Unsupervised Text-Image Retrieval
Research on unsupervised text-based person ReID tasks is
scarce. There are only a few studies on unsupervised image-
text cross-modal retrieval. Patel et al. [Patel et al., 2019] pro-
pose an unsupervised cross-modal retrieval framework that
leverages a latent Dirichlet allocation topic modeling frame-
work to supervise the training of deep CNN. Liu et al. [Liu et
al., 2022] propose an unsupervised deep cross-modal method
that exploits unsupervised contrastive learning to model the
relationship among intra- and inter-modality instances. Dif-
ferent from general unsupervised text-image retrieval, the
text-based ReID task explores more fine-grained cross-modal
semantic alignment. Therefore, we utilize text-IoU guided
weights to facilitate cross-modal instance discriminate learn-
ing, and leverage unified prototypes to predict soft prototype
assignments to minimize intra-class variations and maximize
inter-class variations between different modalities.

2.3 Incomplete Cross-modal Retrieval
There is currently no work on the unsupervised incomplete
text-based ReID research. Most related to our unsupervised
incomplete text-based person ReID task is the traditional in-
complete image-text retrieval task. Guo et al. [Guo and Zhu,
2019] propose a collective affinity learning method (CLAM)
to recover the missing adjacency information. Jiang et al.
[Jing et al., 2020a] exploit the dual-aligned variational au-
toencoders (DAVAE) to generate completion features. Zeng
et al. [Zeng et al., 2021] investigate a prototype-based adap-
tive network (PAN) to reconstruct the completion samples
by prototype propagation scheme. Our unsupervised incom-
plete text-based ReID method is fundamentally different from
them in the following aspects: (1) CLAM is based on hashing
to cope with partial cross-modal problems in hash space. Our
method focuses more on improving accuracy in text-based
ReID. (2) DAVAE and PAN are supervised incomplete or im-
balanced image-text retrieval methods, which cannot effec-
tively learn modality alignment representations without labels
to generate complete representations.

3 Methodology
In the unsupervised incomplete text-based person ReID
task, the fully matched training dataset is defined as X =
{(Ii, Ti)}K1

i=1, where Ii represents the i-th image instance, Ti

is the i-th corresponding text description for that image Ii,
and K1 denotes the total number of fully matched image-
text pairs. Incomplete multi-view data comprises missing vi-
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Figure 2: Illustration of the enhancing cross-modal completion and alignment (ECCA) framework for unsupervised incomplete text-image
person retrieval. FMC, HSNG, WIGA and EPGA represent feature-level missing modality completion, high semantic similarity neighbor
generation, weighted inter-instance granularity alignment and enhanced prototype-wise granularity alignment. The orange is shared proto-
types across the image and text modalities for modal interaction and semantic alignment.

sual modality data Xt only with text modality data and miss-
ing text modality data Xv only with image modality data,
where Xt = {Ĩm, Tm}K2

m=1, Xv = {In, T̃n}K3
n=1, Ĩm and

T̃n is missing (unavailable, inaccessible, incomplete) data,
and Tm, In as well as (Ii, Ti) are available (accessible) data
during training. Here, K2 and K3 represent the total num-
ber of missing visual data and missing text data, respectively.
K1 +K2 +K3 = N denotes the total number of samples.

3.1 Feature-level Cross-modal Completion
Firstly, we introduce the feature extraction networks for both
the visual and textual modalities. For each image instance Ii
and text instance Ti, the initial visual embedding zvi and the
initial textual embedding zti can be generated using the visual
encoder fv(Ii, θ

v) with trainable parameters θv , as well as
textual encoder f t(Ti, θ

t) with trainable parameters θt. To
project features from distinct modalities into a joint embed-
ding space that ensures substantial modality interaction and
semantic alignment at the feature level, we adopt the shared
prototypes across images and texts for local fine-grained im-
plicit alignment. In specific terms, we define the shared pro-
totypes as D ∈ Rs×d across the image and text modalities.
Here, s signifies the number of prototypes, while d denotes
the dimension of features. The prototypes are randomly ini-
tialized, and the prototypes and common representations are
jointly learned in the subsequent training process. For the fu-
sion of image (text) representation, the shared prototype D
serves as the query Q, while the original image (text) repre-
sentation zvi (zti ) is employed as the key K and value V in
the transformer’s cross-attention operation. Hence, the fused
visual and textual feature representations by,

vi = MHA(D, zvi , z
v
i ), (1)

ti = MHA(D, zti , z
t
i), (2)

here, vi and ti represent the reconstructed visual and tex-
tual contextualized features. The operation MHA(.) refers
to a transformer block, which comprises multi-head cross-
attention and a feed-forward network [Vaswani et al., 2017].

High Semantic Similarity Neighbor Generation. We
propose the high semantic similarity neighbor generation
(HSNG) method, in which a new Jaccard distance metric is
proposed to calculate the distance between two nearest neigh-
bor samples and selects the most reliably k-reciprocal near-
est neighbors from cross-modality and self-modality. Specif-
ically, for missing image feature ṽm shown in Figure 3, we
can acquire the corresponding textual embedding feature tm.
Additionally, we calculate cross-modal cosine similarity be-
tween tm and all existing image features {vi}K1+K3

i=1 . By uti-
lizing the k-nearest neighbor algorithm, we rank and identify
the k most similar image embeddings to the textual represen-
tation tm, denoted by,

Nk(tm) = {v1, v2, ..., vk}. (3)

Further, for vl ∈ Nk(tm), we calculate cross-modal co-
sine similarity between vl and all existing text representa-
tions, and can obtain the k-nearest neighbor set for vl as
Nk(vl) = {t1, t2, ..., tk}. Accordingly, the cross-modality k-
reciprocal nearest neighbors Rk(tm) for tm are formulated,

Rk(tm) = {vl|(vl ∈ Nk(tm)) ∩ (tm ∈ Nk(vl))}. (4)

Furthermore, for vi, vj ∈ Nk(tm), we can calculate intra-
modal cosine similarity between vi, vj and all existing image
representations, and can obtain the k-nearest neighbor set for
vi and vj defined as Nk(vi) and Nk(vj). Accordingly, we
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define the self-modality k-reciprocal nearest neighbor as,

Rk(vi) = {vj |(vj ∈ Nk(vi)) ∩ (vi ∈ Nk(vj))}. (5)

Considering both cross-modality and self-modality k-
reciprocal nearest neighbors, a new Jaccard distance metric
is given by,

d(tm, vi) = 1− |Rk(tm) ∩Rk(vi)|
|Rk(tm) ∪Rk(vi)|

. (6)

Under such constraints, we can find reliable cross-modal k-
reciprocal nearest neighbors to improve the reliability of the
nearest neighbor generation. Finally, we can obtain the high
semantic similarity neighbor generation set formulated as,

Nk′ (tm) = {v1, v2, ..., vk′}. (7)

The same applies to the missing text features as well.
Feature-level Missing Modal Completion. To efficiently

complete missing modality embeddings, we introduce a
feature-level missing modality completion (FMC) method.
Specifically, for missing image feature ṽm and missing text
feature t̃n, we can build the most relevant nearest neighbor
sets of cross-modal features by the aforementioned neighbor
generation method with high semantic similarity, defined as
Nk′ (tm) = {v1, v2, ..., vk′} and Nk′ (vn) = {t1, t2, ..., tk′}.
The reconstructed visual representation ṽm of Ĩm and textual
representation t̃n of T̃n are formulated as,

ṽm = Av · [tm, Nk′ (tm)], t̃n = At · [vn, Nk′ (vn)], (8)

where Av denotes the affinity matrix of [tm, Nk′ (tm)] =
[tm, v1, v2, ..., vk′ ] = [g1, g2, ..., gk′+1], and At denotes the
affinity matrix of [vn, Nk′ (vn)] = [vn, t1, t2, ..., tk′ ]. Each
value of the affinity matrixes Av and At represents the degree
of semantic similarity between two instances, formulated as,

Av = Z−1 · S, (9)

where Z−1 represents the normalized Laplacian matrix of S,
and each element Sij ∈ S is calculated by,

Sij = exp(⟨gi, gj⟩), (10)

here ⟨, ⟩ denotes the cosine similarity between two instances.
Similarly, this calculation process also applies to At. This
approach is essentially equivalent to constructing graph rela-
tionships, enabling information to be transmitted across dif-
ferent samples based on the graph, thus enhancing the fea-
tures of completion. Here, the affinity matrix Av is the edges
and the feature [tm, Nk′ (tm)] is the nodes. To mitigate the
modal discrepancy between the generated representations and
the original corresponding representations, the feature-level
missing modality completion (FMC) is formulated as,

LFMC =
1

K2

K2∑
m=1

∥ṽm− tm∥22+
1

K3

K3∑
n=1

∥t̃n−vn∥22. (11)
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Figure 3: Illustration of high semantic similarity neighbor genera-
tion (HSNG) for missing image features.

3.2 Weighted Instance Granularity Alignment
To address the challenge of cross-modal matching ambigu-
ity caused by the absence of true label supervision as shown
in Figure 1 (d), we propose a weighted inter-instance gran-
ularity alignment module (WIGA). which adaptively applies
different weights according to the matching probability be-
tween different instances, and adaptively adjusts the align-
ment of texts and images in the shared space. Our study is
based on an empirical observation that noun phrases within
two textual descriptions originating from the same pedestrian
identity consistently exhibit either the same or synonymous
attributes. For the provided textual description Ti, we em-
ploy NLTK [Loper and Bird, 2002] to extract relevant noun
phrases from the text Ti, which are represented as,

P (Ti) = Ri = {r1, r2, ..., rl}, (12)

where P denotes the noun phrase extractor and l represents
the count of noun phrases. Next, the Intersection over Union
(IoU) based on the textual descriptions is defined as,

IoUi,j =
|Ri ∩Rj |
|Ri ∪Rj |

, (13)

here, |Ri ∩ Rj | represents the count of synonymous noun
phrases shared between Ri and Rj . |Ri ∪ Rj | indicates the
number of noun phrases in the union between Ri and Rj . The
matching probability weights between different instances can
be obtained by,

Wi,j =
IoUi,j∑N
k=1 IoUi,k

. (14)

The WIGA dynamically adjusts the alignment of different in-
stances by adding different similarity weights as,

Li2t
WIGA =

1

N

N∑
i=1

N∑
j=1

(αIi,j + (1− α)Wi,j)L(vi, tj), (15)

Lt2i
WIGA =

1

N

N∑
i=1

N∑
j=1

(αIi,j + (1− α)Wi,j)L(ti, vj), (16)
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L(vi, tj) = −log
exp(⟨vi, tj⟩/τ)∑N
k=1 exp(⟨vi, tk⟩/τ)

, (17)

L(ti, vj) = −log
exp(⟨ti, vj⟩/τ)∑N
k=1 exp(⟨ti, vk⟩/τ)

, (18)

where ⟨, ⟩ represents the cosine similarity, and τ represents
an temperature factor. N is the total number of image-text
pairs, and α ∈ [0, 1] is the prior probability that image vi
is matched with its paired text tj . When α = 1, we should
use the one-hot labels Iij for contrastive learning. However,
to better align unpaired text feature tj with image feature
vi, αIij provides supervision for paired image-text samples,
while (1−α)Wij supervises the unpaired samples. The over-
all objective of our WIGA loss is computed as,

LWIGA = Li2t
WIGA + Lt2i

WIGA. (19)

3.3 Enhanced Prototype-wise Alignment
Besides, we propose the enhanced prototype-wise granular-
ity alignment (EPGA) module that can achieve a more ef-
fective alignment of global visual and textual embeddings
by utilizing cross-modal unified prototypes for both image
and text modality as intermediaries. To begin, we establish
trainable unified prototypes for both image and text modali-
ties, denoted as C = {c1, c2, ..., cK}, where K signifies the
count of trainable prototype vectors. More precisely, for each
image-text embedding pair (vi, ti), we assign vi and ti to K
unified prototypes in C, and obtain two soft prototype assign-
ment codes qv,i ∈ RK and qt,i ∈ RK by using the Sinkhorn
Knopp algorithm [Cuturi, 2013]. Following this, we compute
the visual and textual softmax probabilities, pv,i ∈ RK and
pt,i ∈ RK , respectively. Here pv,i and pt,i can be acquired
by applying the softmax function to the cosine similarities be-
tween vi and all cross-modal unified prototypes in C, as well
as between ti and all cross-modal unified prototypes in C as,

pkv,i =
exp(v⊤i ck/τ)∑
k′ exp(v⊤i ck′/τ)

, (20)

pkt,i =
exp(t⊤i ck/τ)∑
k′ exp(t⊤i ck′/τ)

, (21)

where τ denotes a cluster-level temperature factor, and k rep-
resents the k-th vector in unified prototypes C. EPGA can be
achieved by optimizing the cross-entropy loss as,

L(vi, qt,i) = −
∑
k

qkt,ilogpkv,i, (22)

L(ti, qv,i) = −
∑
k

qkv,ilogpkt,i, (23)

where the EPGA is executed by utilizing the soft text pro-
totype assignment qt,i as the “pseudo-label” for training the
visual embedding vi, while the soft image assignment qv,i is
employed as the “pseudo-label” for training the textual em-
bedding ti. The overall LEPGA objective is calculated by,

LEPGA =
1

2N

N∑
i=1

(L(vi, qt,i) + L(ti, qv,i)). (24)

By employing the losses LWIGA, LEPGA and LFMC , our
model is trained by minimizing the loss as,

L = LWIGA + LEPGA + LFMC . (25)

4 Experiments
4.1 Experimental Setup
Datasets. CUHK-PEDES [Li et al., 2017b] comprises
40,206 pedestrian images along with 80,412 text descriptions
corresponding to 13,003 distinct pedestrian identities. Each
individual image is accompanied by a minimum of two cor-
responding text descriptions. The training set includes 34,054
images, 68,108 textual descriptions, and 11,003 person iden-
tities. The test set contains 3,074 images and 6,156 textual
descriptions, with 1,000 distinct person identities. ICFG-
PEDES [Ding et al., 2021] comprises 54,522 images with
4,102 distinct identities. Each person’s image includes a cor-
responding textual description. The training set encompasses
34674 image-text pairs for 3102 different person identities.
The test set consists of 19,848 image-text pairs.
Challenging Data Partitions. We define three distinct set-
tings to represent varying levels of difficulty. For the easy
setting, we use 50% of the training set as the complete image-
text pair data, 25% as missing image data, and 25% as miss-
ing text data, denoted as (50%, 25%, 25%). Similarly, we
establish the medium setting, defined as (30%, 35%, 35%),
and the hard setting as (10%, 45%, 45%) to elevate the train-
ing complexity. We employ Rank-k (where k = 1, 5, 10), a
commonly used metric in text-image person retrieval.
Implementation Details. In our experiments, we adopt
the image encoder and text encoder components of the Clip
[Radford et al., 2021] model to serve as the feature extrac-
tors. During training, image data augmentation is applied
through the incorporation of random horizontal flipping, ran-
dom cropping, and random erasing techniques. All images
are resized to 384 × 128 pixels. For the text modality, the
maximum length of text tokens is set to 80. The model is
optimized via the Adam optimizer [Kingma and Ba, 2014]
with a 0.0001 learning ratio. The batch size is set to 64, and
the training process spans across a total of 60 epochs. The
temperature parameter τ (Equations 19 and 24) is set to 0.02.

4.2 Comparison with State-of-the-Art Methods
Comparisons on Incomplete Modal Data. We initially eval-
uate the proposed ECCA method on the widely-used CUHK-
PEDES and ICFG-PEDES using unsupervised incomplete
modal data. As shown in Tables 1 and 2, our ECCA out-
performs SOTA text-image person retrieval approaches in
three distinct settings, including unsupervised IRRA and su-
pervised AXM-Net, LGUR, SSAN, ViTAA, SCAN, MIA
and CMPM/C methods. More specifically, our ECCA im-
proves the unsupervised IRRA method (same feature extrac-
tor as ours) by 1.43%, 4.61% and 5.96% Rank-1 accuracy on
CUHK-PEDES, by 2.53%, 3.68% and 4.47% Rank-1 accu-
racy on ICFG-PEDES under three different settings, respec-
tively. It can be observed that these methods suffer signifi-
cant performance degradation when encountering incomplete
data. Therefore, the performance improvements on the easy
setting are not as prominent as on the hard setting. Under the
hard setting, our method achieves 56.38% and 42.08% Rank-
1 accuracy on CUHK-PEDES and ICFG-PEDES, which fully
demonstrates that our method can effectively deal with in-
complete data and improve the robustness of the model.
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Methods ID Easy Setting Medium Setting Hard Setting
Rank-1 Rank-5 Rank-10 Rank-1 Rank-5 Rank-10 Rank-1 Rank-5 Rank-10

CMPM/C[Zhang and Lu, 2018] ! 40.79 63.01 74.58 39.82 62.54 74.84 26.96 52.48 63.88
MIA [Niu et al., 2020] ! 46.23 68.56 77.64 43.64 66.37 74.11 29.78 54.94 65.71

SCAN [Lee et al., 2018] ! 49.84 71.96 79.38 46.87 69.43 77.64 31.83 53.77 64.93
ViTAA [Wang et al., 2020] ! 49.32 70.67 79.51 47.24 69.56 78.79 31.48 54.96 65.02
SSAN [Ding et al., 2021] ! 53.41 74.34 82.31 49.05 71.76 79.73 34.04 57.74 68.35

AXM-Net [Farooq et al., 2022] ! 57.28 77.18 84.11 53.23 74.24 81.97 36.64 59.98 69.74
LGUR [Shao et al., 2022] ! 58.77 78.36 85.41 53.95 74.79 81.77 35.61 59.36 69.18

IRRA [Jiang and Ye, 2023] % 63.80 83.28 89.27 59.09 79.50 86.59 50.42 73.76 81.61
ECCA % 65.23 85.14 91.29 63.70 83.11 89.84 56.38 77.24 85.07

Table 1: Performance comparisons under three different settings on the CUHK-PEDES benchmark dataset.

Methods ID Easy Setting Medium Setting Hard Setting
Rank-1 Rank-5 Rank-10 Rank-1 Rank-5 Rank-10 Rank-1 Rank-5 Rank-10

CMPM/C [Zhang and Lu, 2018] ! 34.69 55.86 65.71 29.73 51.17 60.84 15.62 30.26 41.59
MIA [Niu et al., 2020] ! 39.13 60.34 69.16 36.17 58.52 67.83 19.54 35.44 45.95

SCAN [Lee et al., 2018] ! 42.53 65.41 71.82 41.37 63.95 71.89 22.24 40.27 51.86
ViTAA [Wang et al., 2020] ! 43.79 65.86 73.42 42.78 64.55 72.41 22.61 40.62 51.37
SSAN [Ding et al., 2021] ! 46.27 67.06 75.52 44.86 66.72 74.58 24.83 42.64 53.19

AXM-Net [Farooq et al., 2022] ! 50.31 70.62 77.93 48.26 67.14 76.69 28.26 49.53 59.49
LGUR [Shao et al., 2022] ! 52.73 70.55 78.41 48.32 68.73 76.91 29.73 51.26 60.19

IRRA [Jiang and Ye, 2023] % 51.65 71.66 78.98 47.49 68.56 76.48 37.61 59.22 68.09
ECCA % 54.18 74.34 81.10 51.17 71.04 78.32 42.08 62.95 73.16

Table 2: Performance comparisons under three different settings on the ICFG-PEDES benchmark dataset.

Comparisons on Complete Modal Data. To further ver-
ify the more robust advantage of our ECCA model for fine-
grained cross-modal semantic alignment, we compare our
model with several SOTA text-image person retrieval meth-
ods. In Table 3, for CUHK-PEDES with full modality data,
our model surpasses unsupervised CMMT, MM-TIM and
fully supervised AXM-Net, LGUR, CAIBC, IVT, TextReID
and SSAN methods, and achieves 68.13% on Rank-1, 87.26%
on Rank-5 and 91.88% on Rank-10. These experimental re-
sults fully demonstrate that our method can be applied to
more realistic scenarios, such as the lack of identity labels.

4.3 Ablation Studies
Analysis of Feature-level Missing Modality Completion
(FMC). As illustrated in Table 4, to verify the effectiveness
of our feature-level missing modality completion (FMC), our
method is trained under the medium setting on four distinct
training sets, including 1) only complete modal data, 2) miss-
ing visual data, 3) missing textual data and 4) complete all
missing data. It can be observed from these experimental re-
sults that the accuracy of Rank-1, 5, 10 using only the com-
plete data is the worst. As we reconstruct incomplete visual
data or incomplete text data, experimental performance is
gradually improved. The experimental performance reaches
a maximum until all incomplete data are completed. The
ECCA with complete all missing data improves ECCA with
only complete modal data by 5.23% Rank-1 accuracy and
4.25% Rank-5 accuracy on CUHK-PEDES dataset under the

Methods ID Rank-1 Rank-5 Rank-10
SSAN [Ding et al., 2021] ! 61.37 80.15 86.73

TextReID [Han et al., 2021] ! 64.08 81.73 88.19
IVT [Shu et al., 2022] ! 64.00 82.72 88.95

CAIBC [Wang et al., 2022] ! 64.43 82.87 88.37
LGUR [Shao et al., 2022] ! 64.21 81.94 87.93

AXM-Net [Farooq et al., 2022] ! 64.44 80.52 86.77
IRRA [Jiang and Ye, 2023] ! 73.38 89.93 93.71

MM-TIM [Gomez et al., 2019] % 45.35 63.78 70.63
CMMT [Zhao et al., 2021] % 57.10 78.14 85.23

ECCA (our) % 68.13 87.26 91.88

Table 3: Performance comparisons on CUHK-PEDES benchmark
under the full multimodal data.

medium setting. These results demonstrate that our feature-
level missing modality completion can reduce the impact of
performance degradation caused by incomplete data.
Ablations on High Semantic Similarity Neighbor Gener-
ation. In Table 5, to verify the effectiveness of our feature-
level missing modality completion (FMC) with high seman-
tic similarity neighbor generation (HSNG) in our ECCA, we
conduct ablation experiments on CUHK-PEDES dataset un-
der the easy setting. WIGA + EPGA represents weighted
inter-instance granularity alignment and enhanced prototype-
wise granularity alignment. WIGA + EPGA adding HSNG
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Training Set Setting Rank-1 Rank-5 Rank-10
only complete-modal data 58.47 78.86 86.51

dataset w/o image-modal data 60.65 80.21 87.36
dataset w/o text-modal data 61.03 80.84 87.75

the full dataset 63.70 83.11 89.84

Table 4: Performance comparisons with different training sets on
CUHK-PEDES dataset under the Medium setting.

WIGA+EPGA HSNG FMC Rank-1 Rank-5 Rank-10
! ! 61.68 81.91 87.21
! ! 62.14 82.56 87.63
! ! ! 65.23 85.14 91.29

Table 5: Ablation Study: Performance comparisons for HSNG on
CUHK-PEDES dataset under the Easy setting.

Loss functions Rank-1 Rank-5 Rank-10
CMPM 59.17 79.38 86.51

Ranking loss 61.76 80.94 87.02
InfoNCE 62.39 81.26 87.71

WIGA (Our) 66.45 85.73 90.01
WIGA+EPGA (Our) 68.13 87.26 91.88

Table 6: Performance comparisons of different losses on CUHK-
PEDES dataset under the full multimodal data.

achieve 61.68 % on Rank-1 and 81.91 % on Rank-5, and
WIGA + EPGA adding FMC with general nearest neighbor
completion achieve 62.14% on Rank-1 and 82.56% on Rank-
5. However, our WIGA + EPGA adding FMC with HSNG
consistently surpasses both cases. This verifies that the FMC
with HSNG can effectively recover the missing features, and
fully mine the side information of the missing data.
Performance comparisons of different losses. To
demonstrate the effectiveness of our proposed weighted
inter-instance granularity alignment (WIGA) and enhanced
prototype-wise granularity alignment (EPGA), as shown in
Table 6, we compare experimental results of the commonly
used CMPM loss [Zhang and Lu, 2018], Ranking loss [Faghri
et al., 2017], InfoNC loss [Oord et al., 2018] with our pro-
posed WIGA and EPGA loss on CUHK-PEDES dataset un-
der the full multimodal data. Specifically, our WIGA +
EPGA achieves 68.13% on Rank-1, 87.26 % on Rank-5 and
91.88% on Rank-10, and consistently outperforms CMPM
loss, Ranking loss, and InfoNC loss by 8.96%, 6.37% and
5.74 % Rank-1 accuracy, respectively. This is because our
WIGA and EPGA effectively handle the cross-modal match-
ing ambiguity caused by the absence of true label supervi-
sion, which encourages the model to map semantically simi-
lar image-text pairs more compactly. This fully validates that
our WIGA and EPGA can achieve tighter fine-grained cross-
modal semantic alignment in unsupervised scenarios.

4.4 Parameter Analysis
In this section, we conduct hyperparameter analysis experi-
ments on the CUHK-PEDES dataset for the temperature τ ,
the number of the shared prototypes s in D of Equations (1)
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Figure 4: Parameter analysis with different values of temperature τ ,
number of prototypes s under full data and nearest neighbors k and
k

′
under the Easy setting on CUHK-PEDES.

and (2) under the full data, the mutual neighbor values k and
k

′
in Equations (5) and (7) under the easy settings. We trans-

form the values of τ , s, k and k
′

in a certain range, report
the corresponding Rank-1 and mAP values, respectively, and
then perform experimental analysis. As illustrated in Figure
4, a) experimental results show that as the value of τ rises,
the Rank-1 and mAP accuracy initially increase and then de-
crease more. Our method achieves a more stable performance
when τ is set to 0.02. b) When s is approximately equal to
400, the model reaches the optimal value, which indicates that
the number of prototypes is sufficient for learning shared fea-
tures between images and texts. c, d) The peak performance
is achieved when k = 6 and k

′
= 4 on the CUHK-PEDES

dataset. This trend underscores that excessively large values
of k and k

′
will increase the probability of false neighbors

belonging to distinct person identities, leading to a reduction
on Rank-1 and mAP.

5 Conclusions
In this paper, we propose a novel enhancing cross-modal
completion and alignment (ECCA) framework for unsuper-
vised incomplete text-image person retrieval task. Specifi-
cally, we introduce a feature-level cross-modal completion
technique tailored for incomplete data. In addition, we
achieve a tighter semantic fine-grained alignment between
images and texts by integrating weighted inter-instance gran-
ularity alignment and enhanced prototype-wise granularity
alignment. Extensive experimental results on public datasets
fully demonstrate the effectiveness of our method in the face
of substantial missing data.
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