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Abstract
In text recognition, self-supervised pre-training
emerges as a good solution to reduce dependence
on expansive annotated real data. Previous stud-
ies primarily focus on local visual representation by
leveraging mask image modeling or sequence con-
trastive learning. However, they omit modeling the
linguistic information in text images, which is cru-
cial for recognizing text. To simultaneously capture
local character features and linguistic information
in visual space, we propose Symmetric Superimpo-
sition Modeling (SSM). The objective of SSM is to
reconstruct the direction-specific pixel and feature
signals from the symmetrically superimposed in-
put. Specifically, we add the original image with its
inverted views to create the symmetrically super-
imposed inputs. At the pixel level, we reconstruct
the original and inverted images to capture charac-
ter shapes and texture-level linguistic context. At
the feature level, we reconstruct the feature of the
same original image and inverted image with dif-
ferent augmentations to model the semantic-level
linguistic context and the local character discrim-
ination. In our design, we disrupt the charac-
ter shape and linguistic rules. Consequently, the
dual-level reconstruction facilitates understanding
character shapes and linguistic information from
the perspective of visual texture and feature se-
mantics. Experiments on various text recognition
benchmarks demonstrate the effectiveness and gen-
erality of SSM, with 4.1% average performance
gains and 86.6% new state-of-the-art average word
accuracy on Union14M benchmarks. The code is
available at https://github.com/FaltingsA/SSM.

1 Introduction
Reading text from images is a fundamental and valuable task
in computer vision with practical applications such as multi-
modal analysis, visual search, self-driving cars, and more.
Since labeled real text images are scarce and expensive, var-
ious self-supervised text recognition methods have been uti-
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Figure 1: The comparison with mainstream self-supervised text
recognition methods and our SSM. Win-Level SCL and Char-
Level SCL represent window-level and character-level sequence
contrastive learning, respectively. Rotate, VFlip and HFlip Views
represent the symmetrically augmented image created through 180-
degree rotation, vertical flipping, and horizontal flipping. HS, VS,
and RS views respectively represent images formed by superimpos-
ing HFlip, VFlip, and Rotate View with the Origin View.

lized to exploit the intrinsic knowledge of unlabeled real data
to alleviate the data scarcity issues. These self-supervised text
recognition methods can be categorized into two main types:
1) Sequence Contrastive Learning (SCL), and 2) Mask Im-
age Modeling (MIM). Benefiting from representation learn-
ing on unlabeled data, these methods have effectively en-
hanced Scene Text Recognition (STR) performance. How-
ever, these methods face the challenge of achieving linguistic
learning, which is proven essential for text recognition (e.g.
ABINet [Fang et al., 2021] , LPV [Zhang et al., 2023]).

For SCL methods, SeqCLR [Aberdam et al., 2021] and
CCD [Guan et al., 2023] are representative works. As shown
in Fig. 1(a), SeqCLR ensures the local representation consis-
tency between the same instance window across the two aug-
mented views. Fig. 1(b) shows that CCD [Guan et al., 2023]
further ensures the character-level representation consistency
based on the self-supervised segmentation. Hence, both of
the two methods essentially focus on performing discrimina-
tive consistency learning on local character representations.

For MIM-like methods, MAERec [Jiang et al., 2023] has
attracted considerable attention in self-supervised text recog-
nition. As discussed in MAERec, MIM-like methods essen-
tially forces the model to infer the whole character from a few
smallest parts of a character, due to covering a large portion of
the text image. However, masking 75% image patches drops
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nearly all text foreground areas, as shown in Fig. 1(c). Thus,
MIM-like methods also focus on local character features but
overlook linguistic information (spelling rules between char-
acters) in the text image.

Based on the analysis above, we can derive an observation
that the previous self-supervised STR methods mainly focus
on learning robust visual features of characters, overlooking
the linguistic relationship between characters. Hence, it is
meaningful to simultaneously capture character features and
the implicit linguistic information in visual space.

To this end, we propose a novel self-supervised learn-
ing paradigm, named Symmetric Superimposition Modeling
(SSM). The pretext task of SSM is to reconstruct the
direction-specific pixel and feature signals from the symmet-
rically superimposed input. We adopt a Siamese network
with an online branch and target branch to implement SSM.
Specifically, we first construct inverted images by randomly
selecting from three inversion enhancement techniques: hor-
izontal flip, vertical flip, and 180-degree rotation. Then we
superimpose it onto the origin image to create the symmetric
superimposed input. For pixel reconstruction, we directly re-
cover the original and inverted images (with online branch),
as shown in Fig. 1(d). The original and inverted images
are the pixel targets to guide the decoupling of the superim-
posed input. For feature reconstruction, we utilized the target
branch to decouple the same symmetric superimposed input
with irregular views, creating the original and inverted target
feature on the fly. Subsequently, the online branch reconstruc-
tion the original and inverted target feature of the irregular
view at the semantic level. We jointly use discriminative con-
sistency loss and dense reconstruction loss to supervise the
feature reconstruction process. Compared to MIM-like meth-
ods, we do not mask any patches and skillfully use symmetric
superposition to disrupt character shapes and linguistic rules.
Consequently, the pretext task of pixel and feature reconstruc-
tion from the superposed input can facilitate the learning of
character shape features and linguistic information from the
perspective of visual texture and feature semantics. In sum-
mary, our contributions mainly include:

• We propose a novel pre-training framework based on
Symmetric Superimposition Modeling, which is the
first self-supervised STR method dedicated to linguistic
learning in visual space.

• We present a dual architecture for the joint reconstruc-
tion at both the pixel and feature level. This design en-
ables joint learning of character visual features and im-
plicit linguistic information from the texture-level and
semantic level, further improving representation quality.

• Experiments demonstrate that SSM achieves state-of-
the-art performance on various text recognition bench-
marks. The 4.1% average performance gains on various
STR methods also highlight the SSM’s generality. Ad-
ditionally, compared to other self-supervised methods,
SSM has a 15.5% and 1.5% performance gain in multi-
lingual text recognition with individual training and joint
training settings, respectively.

2 Related Work
2.1 Text Recognition
Scene Text Recognition (STR) methods can be summarized
into language-free and language-aware methods. Language-
free methods [Shi et al., 2017; Wang and Hu, 2017; Du et
al., 2022] treat STR as a character classification task, fo-
cusing on how to extract robust visual features. Language-
aware methods can leverage linguistic information to improve
robustness. The attention-based methods [Yu et al., 2020;
Litman et al., 2020; Lee et al., 2020; Sheng et al., 2019] use
various attention mechanisms to implicitly model linguistic
rules. LISTER [Cheng et al., 2023a] designs neighbor atten-
tion decoding for long text recognition. MGP-STR [Wang et
al., 2022] and PARSeq [Bautista and Atienza, 2022] focus on
learning an internal Language Model(LM) during visual pre-
dicting. Some alternative approaches like ABINet [Fang et
al., 2021] and LevenOCR [Da et al., 2022] propose to refine
the visual predictions via an external LM.

2.2 Self-Supervised Text Recognition
Self-supervised learning technologies have been widely used
for various works such as ML-LMCL [Cheng et al., 2023b],
TKDF [Cheng et al., 2023c] and MESM [Liu et al., 2024].
The most representative paradigms for computer vision are
Contrastive Learning [Chen et al., 2021] and Masked Im-
age Modeling (MIM) [He et al., 2022; Bao et al., 2022;
Chen et al., 2023]. Recently, these self-supervised meth-
ods have been adopted for text recognition. SeqCLR [Ab-
erdam et al., 2021] is the pioneering work that proposes to
model Contrast Learning on high-level sequence features for
the first time. PerSec [Liu et al., 2022] further performs Con-
trast Learning(CL) on both stroke-level features in shallow
layers and Semantic-level features in deep layers. Later, DiG
[Yang et al., 2022] proposes to learn discriminative and gen-
erative features by integrating the CL and MIM. To explic-
itly focus on character structures and ensure sequence consis-
tency, Guan proposes a character-level self-distillation frame-
work [Guan et al., 2023] based on unsupervised text segmen-
tation maps. Recently, Union14M-U[Jiang et al., 2023], a
10M scale unlabeled real data has been presented together
with MAERec-S, which uses MAE for self-supervised text
recognition. In addition, MaskOCR [Lyu et al., 2022] and
DARLING [Zhang et al., 2024] use synthetic data for text
recognition pre-training.

3 Methodology
The architecture of our proposed SSM is shown in Fig. 2,
which comprises a Symmetric Superimposed Input Construc-
tor, an online branch (blue arrow), and a target branch (orange
arrow). We use the superimposed image of the original im-
age and the horizontally flipped image as the input case to
illustrate the whole workflow of our SSM.

3.1 Symmetrically Superimposed Input
Symmetrically Superimposed Input Constructor To en-
sure a large character overlapping area of the superimposed
inputs, we considered three symmetrical augmenting opera-
tions: Horizontal Flipping Hf(·), Vertical Flipping Vf(·), and
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Figure 2: The pre-training framework of SSM. The blue arrow and green arrow stand for the workflow of the online branch and target branch
respectively. Origin View: original image, HFlip View: horizontally flipped image, VFlip View: vertically flipped image, Rotate View:
180-degree rotated image. TP and Tn correspond to the original and the reversed text direction, respectively.

180-degree rotation Ro(·). For the input image X, we ran-
domly select one of Hf(·), Vf(·), and Ro(·) to obtain the cor-
responding inverted image XR, where XR ∈ {Xh f , Xv f , Xro}.
For the original image X, the original direction index Ip is
fixedly set to 0. For the inverted image XR, the inverted direc-
tion index In is selected from {1, 2, 3} according to the type
of inverted image, where (1, 2, 3) is assigned to (Xh f , Xv f ,
Xro), respectively. These indexes are subsequently encoded
to guide direction-specific reconstruction. Finally, we get the
symmetrically superimposed input XS by superimposing the
original image X and its inverted images XR. In the case of
Fig. 2, Xh f is selected and the In is set to 1 (red color).
Data Augmentation The superimposed image XS undergoes
weak augmentations (e.g., gaussian blur, and grayscale con-
version) to create a regular view Xreg

S as the final input of
online branch. The X and XR are also transformed to Xreg

and Xreg
R to supervise the image reconstruction of the online

branch. For the target branch, we utilize the combination of
both weak augmentations and geometry-based augmentations
(e.g., affine transformation and perspective warping) to gen-
erate a pair of irregular views: Xirr

S , Xirr and Xirr
R .

3.2 Symmetric Superimposition Modeling
1) Pixel-level Image Reconstruction We employ an
Encoder-Regressor-Decoder architecture to perform the im-
age reconstruction according to the specific direction index
pair in the online branch. Specifically, we first leverage the
ViT Encoder F (·) to map the Xreg

S as latent feature Fs ∈

R
HW
p2 ×d, where the p is the patch size and the d is the em-

bedding dim. Meanwhile, we utilize the Prompt Generator

G(·) to encode the direction index pair (Ip, In) into the direc-
tion prompt token pair (Tp, Tn) with the same dimension of
the ViT Encoder.

Tp = FFN(Embed((Ip))
Tn = FFN(Embed((In)),

(1)

where the Prompt Generator G(·) consists of an embedding
layer, two-layer FFN with normalization.

After that, Tp and Tn are each concatenated with the la-
tent feature of superimposed input Fs and then sent into the
Transformer Regressor R(·) for feature decoupling in sym-
metric directions. The Transformer Regressor R(·) is a series
of vision transformer blocks. Thanks to the global interaction
capabilities of the attention mechanism, Regressor R(·) can
extract the original direction feature Fp and the feature Fn
corresponding to symmetrically reversed direction from the
mixed features Fs. The process can be formulated as follows:

Fp = R([Tp,F (Xreg
S )]) ∈ R

HW
p2 ×d

Fn = R([Tn,F (Xreg
S )]) ∈ R

HW
p2 ×d

(2)

Next, we use a lightweight pixel decoder to predict the
RGB pixels of the corresponding views Xreg and Xreg

R from
latent features Fp and Fn. To prevent the pixel decoder’s
parameters from dominating the learning process, we form
the pixel decoder using only two linear layers with GELU.
Finally, the L2 loss function is adopted to optimize the im-
age reconstruction process, and the complete loss function of
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pixel-level image reconstruction can be defined as follows:

Lpix =
1
N

N∑
i=1

(
∥∥∥yi

p − ŷi
p

∥∥∥2 + ∥∥∥yi
n − ŷi

n

∥∥∥2) (3)

where yi
p, ŷ

i
p, ∈ R3 and yi

n, ŷ
i
n ∈ R3 are the prediction-target

pair of xreg
p and xreg

n , respectively; N is the number of pixels.
2) Feature-level Representation Reconstruction To en-
hance the feature discriminability of character semantics and
to model the spatial context between character visual se-
mantics, we apply feature reconstruction in high-dimensional
space. Specifically, we add the projectorH(·) followed by the
Regressor R(·) in the online branch. H(·) aggregates the de-
coupled features (Fp and Fn) into window-level features by
adaptive mean-pooling and then maps them into high-level
feature space, forming the corresponding prediction feature
queries (Qp and Qn). To construct the target representation,
we introduce a target branch with the same structure as the
online branch, except for the pixel decoder. Xirr

S is fed into
the target branch to obtain the window-level target feature
keys (Kp and Kn) on the fly. Next, we jointly employ the
discriminative consistency loss Ldis and dense reconstruction
loss Lden to supervise the reconstruction from Qp to Kp and
Qn to Kn across the regular and irregular views. The loss Ldis
is to enhance the character classification representation at the
semantic level, which can be formulated as:

Ldis = − log
exp(Qp · K+p /τ)

exp(Qp · K+p /τ) +
∑

K−p exp(Qp · K−p /τ)

− log
exp(Qn · K+n /τ)

exp(Qn · K+n /τ) +
∑

K−n exp(Qn · K−n /τ)

(4)

where K+ stands for the matched positive samples and K−
indicates the negative samples collected from the same batch
for both (Qp,Kp) and (Qn,Kn). τ denotes the temperature.

Since SiameseMIM [Tao et al., 2023] demonstrates that
predicting dense representations helps improve sensitivity to
global structures, we minimize the distance between the pre-
dicted and the target features by Lmse loss, aiming to achieve
semantic-level context modeling. Assuming that predictions
are Q = {qi ∈ Rd |i = 1, ...,N} and targets is K = {ki ∈ Rd |i =
1, ...,N}, where N is the total number of feature instances in
one batch. The dense reconstruction loss Lden (Lmse) between
the original Q-K pairs (Qp and Kp) as well as inverted Q-K
pairs (Qn and Kn) can be formulated as:

Lden =
1
N

N∑
i=1

(
∥∥∥qi

p − ki
p

∥∥∥2 + ∥∥∥qi
n − ki

n

∥∥∥2) (5)

Finally, the optimization objectives of SSM are as follows:

L = Lpix + α × (

L f eat︷      ︸︸      ︷
Ldis + Lden) (6)

where α is a scaling factor, the training objective of semantic-
level feature reconstruction L f eat is the sum of Ldis and Lden.

3.3 Downstream Tasks
For text recognition downstream tasks, we add a text decoder
after the ViT Encoder inherited from SSM. The text decoder
consists of 6 transformer blocks and a linear prediction layer
with 96 channels to predict the final characters. Besides, the
text super-resolution and text segmentation results are pre-
sented in Appendix B.1 and B.2.

VS

GT 

Pre.

GT-V

Pre.-V

HS

GT 

Pre.

GT-H

Pre.-H

RS

GT 

Pre.

GT-R

Pre.-R

Figure 3: Reconstruction Visualization. GT: the original image.
HS/VS/RS: horizontal/ vertical / roteated superimposed input. Pre.
indicates the pixel prediction of GT. GT-H/ V/ R: the inverted view
of the GT (HFlip, VFlip, 180-degree rotation view, respectively).
Pre.-H/ V/ R:the pixel prediction of GT-H/ V/ R.

4 Experiments
4.1 Datasets
Unlabeled Pre-training Data We utilize the latest unlabeled
real-scene dataset Union14M-U for self-supervised learning,
which contains 10 million instances collected from Book32,
OCR-CC and OpenVINO. Besides, we also conduct pre-
training on the complete OCR-CC dataset(15.77M unlabeled
text images) to facilitate a fair comparison with works such
as CCD [Guan et al., 2023] and DiG [Yang et al., 2022].
Text Recognition Fine-tuning Data We use three types of
labeled data. 1) STD: The synthetic data, comprising 14M
images from MJSynth [Jaderberg et al., 2014] and SynthText
[Gupta et al., 2016]. 2) ARD: 2.78M annotated real data used
by DiG and CCD. 3) Union14M-L: 3.6M real labeled data.
Scene Text Recognition Benchmarks The Common bench-
marks include IC13, SVT, IIIT5K, IC15, SVTP and CUTE80.
Considering the saturation issue with existing benchmarks,
we leverage Union14M benchmarks [2023] to evaluate.
Some other challenging data such as TT, CTW, ArT, Uber,
and COCO are also utilized to test.
Multilingual Text Recognition Benchmarks. Following
MRN [Zheng et al., 2023], we tested the multilingual gen-
eralization capability of SSM on MLT19 [Nayef et al., 2019].

4.2 Implementation Details
Self-supervised Pre-training The pre-training is conducted
on ViT, with image resolution of 32 × 128, an AdamW opti-
mizer, cosine learning rate scheduler with a learning rate of
5e-4, batch size with 1,024, a weight decay of 0.05, β1 = 0.9,
β2 = 0.95, and warm-up for 1 epoch in a total of 20 epochs.
Text Recognition Fine-Tuning Our text recognition network
is fine-tuned with STD or ARD or Union14M-L dataset.
Patch size is 4 × 4. The text decoder consists of a 6-layer
transformer block with an embedding dimension of 384. The
batch size is 384 and the warm-up time is 1 epoch. The
AdamW optimizer and a OneCycle learning rate scheduler
with a learning rate of 1e-4 are employed.
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Method Data IIIT SVT IC13 IC15 SVTP CUTE Avg. Params.
SeqCLR [Aberdam et al., 2021] STD 82.9 - 87.9 - - - - -
SimAN [Luo et al., 2022] STD 87.5 - 89.9 - - - - -
PerSec-ViT [Liu et al., 2022] STD 88.1 86.8 94.2 73.6 77.7 72.7 83.8 -
DiG-ViT-Tiny [Yang et al., 2022] STD 95.8 92.9 96.4 84.8 87.4 86.1 91.8 20M
CCD-ViT-Tiny [Guan et al., 2023] STD 96.5 93.4 96.3 85.2 89.8 89.2 92.6 20M
SSM-ViT-Tiny STD 96.5 ↑ 0.0 94.4 ↑ 1.0 96.3 ↑ 0.0 85.6 ↑ 0.4 89.3 ↓ 0.5 89.9 ↑ 0.7 92.8 ↑ 0.2 20M
DiG-ViT-Small [Yang et al., 2022] STD 96.7 93.4 97.1 87.1 90.1 88.5 93.2 36M
CCD-ViT-Small [Guan et al., 2023] STD 96.8 94.4 96.6 87.3 91.3 92.4 93.6 36M
SSM-ViT-Small STD 97.4 ↑ 0.6 94.6 ↑ 0.2 96.7 ↑ 0.1 86.8 ↓ 0.5 91.3 ↑ 0.0 94.8 ↑ 2.4 93.8 ↑ 0.2 36M

DiG-ViT-Tiny [Yang et al., 2022] ARD 96.4 94.4 96.2 87.4 90.2 94.1 93.4 20M
CCD-ViT-Tiny [Guan et al., 2023] ARD 97.1 96.0 97.5 87.5 91.6 95.8 94.2 20M
SSM-ViT-Tiny ARD 98.1 ↑ 1.0 96.1 ↑ 0.1 97.8 ↑ 0.3 89.0 ↑ 1.5 92.6 ↑ 1.0 96.5 ↑ 0.7 95.1 ↑ 0.9 20M
DiG-ViT-Small [Yang et al., 2022] ARD 97.7 96.1 97.3 88.6 91.6 96.2 94.7 36M
CCD-ViT-Small [Guan et al., 2023] ARD 98.0 96.4 98.3 90.3 92.7 98.3 95.6 36M
SSM-ViT-Small ARD 98.9 ↑ 0.9 98.0 ↑ 1.6 98.5 ↑ 0.2 90.8 ↑ 0.5 95.0 ↑ 2.3 98.3 ↑ 0.0 96.4 ↑ 0.8 36M

Table 1: Text recognition results compared to other self-supervised text recognizers. DiG, CCD, and SSM are all pre-trained on the OCR-CC.

Method
Union14M Benchmarks Other Challenge Datasets

Artistic Contextless Curve General
Multi-

Oritented
Multi-
Words

Salient Avg TT CTW COCO ArT Uber Avg

Scratch-ViT-S 72.7 81.0 82.6 82.6 78.1 81.7 79.5 79.8 90.5 86.0 75.5 81.5 82.4 83.2
MAE-ViT-S⋆ [He et al., 2022] 76.0 81.6 86.2 82.8 84.0 83.5 83.3 82.5 91.7 87.8 76.6 82.8 83.8 84.6
DiG-ViT-S⋆ [Yang et al., 2022] 77.4 82.5 85.9 83.8 83.5 84.0 84.3 83.0 91.7 87.2 77.7 83.4 84.9 85.0

SSM-ViT-S 78.4 84.7 87.5 84.0 85.8 84.6 85.2 84.3 92.9 88.2 78.1 83.4 86.5 85.8
↑ (+5.7) (+3.7) (+4.9) (+1.4) (+7.7) (+2.9) (+5.7) (+4.5) (+2.4) (+2.2) (+2.6) (+1.9) (+4.1) (+2.6)
△ (+1.0) (+2.2) (+1.6) (+0.2) (+2.3) (+0.6) (+0.9) (+1.3) (+1.2) (+1.0) (+0.4) (+0.0) (+0.6) (+0.8)

Table 2: Comparison with other self-supervised methods on Union14M benchmarks and other challenge datasets. ↑ and △ represent the
performance gains relative to the ”train from scratch” model and the second-best model, respectively. ⋆ stands for our implementation.

4.3 Comparasions With Self-Supervised Methods
Evaluation on Common benchmarks. Tab. 1 shows that
SSM-ViT-Tiny outperforms the SeqCLR by 13.6% and 9.4%
on IIIT and IC13, as well as outperforms PerSec-ViT (us-
ing 100M private data for pre-training) by 9% on average
accuracy. Besides we compare with previous state-of-art
self-supervised methods DiG and CCD, using the same pre-
training data, fine-tuning data (ARD), and network architec-
tures (i.e., Tiny, Small). Tab. 1 illustrates that our methods
achieve a new state-of-the-art average word accuracy on com-
mon benchmarks with 95.1% and 96.4% at the same model
size. When fine-tuning with ARD, our methods achieve av-
erage performance gains of 0.9% and 0.8%. SSM-ViT-small
even beats the CCD-ViT-Base which has a larger model size
(96.4% vs 96.3%). The CCD attains high performance with
explicit segmentation guidance, while our straightforward
method surpasses it without needing extensive segmentation
GT label preparation. These results demonstrate the effective-
ness of guiding text image self-supervised pre-training from
a linguistic learning perspective.
Evaluation on Union14M benchmarks. Considering the
saturation of the common benchmarks, we further compare
SSM with other self-supervised methods on more challeng-
ing benchmarks in Tab. 2. Although we established a strong
baseline model Scratch-ViT-Small, and SSM-ViT-Small still
achieved an average performance gain of 3.5% and 2.6% on
Union14M and other challenging data, respectively. Addi-

tionally, SSM surpassed MAE and DiG by 1.8% and 1.3% of
average word accuracy on the Union14M benchmarks. The
performance gains on all of Union14M benchmarks’ subsets
demonstrate that SSM effectively learns intrinsic feature rep-
resentations for different fonts, text orientations, and complex
scenes. Surprisingly, SSM shows superior performance for
contextless text images, which may be attributed to the fact
that embedding linguistic learning in visual space can avoid
the text distribution dependence of explicit text correction.

Method Arabic† Korean Japanese Latin Chinese Bangla AVG
Sctrach-S 2.3 7.2 11.2 79.4 1.6 6.1 17.2
MAE-S 48.3 34.8 21.4 83.4 5.3 43.3 40.4
DiG-S 48.6 37.9 23.5 83.6 4.7 50.3 41.4
SSM-S 76.0 60.5 34.1 83.7 14.9 72.6 57.0
△ (+27.4) (+22.6) (+10.6) (+0.1) (+10.2) (+22.3) (+15.5)

(a) Training each language data one by one.
Method Arabic† Korean Japanese Latin Chinese Bangla AVG

Sctrach-S 70.6 55.2 36.6 80.4 23.0 69.5 55.9
MAE-S 72.1 63.5 42.7 82.9 30.1 72.8 60.7
DiG-S 75.2 64.5 42.5 82.9 29.5 76.1 61.9
SSM-S 77.2 66.9 44.2 83.7 31.7 76.6 63.4
△ (+2.4) (+1.5) (+1.7) (+0.8) (+2.2) (+0.5) (+1.5)

(b) Joint training of all language data.

Table 3: Comparison with other self-supervised methods on MLT19.
† stands for the reading of Arabic is naturally right-to-left.

Multilingual Text Recognition Performance. To further
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validate SSM’s ability to learn linguistic information and its
generality, we compare SSM with other self-supervised meth-
ods on MLT19 benchmarks. All methods are pre-trained on
the Union14M-U for a fair comparison. In Tab. 3a, we fine-
tune them on each language data one by one. Tab. 3a shows
that our SSM outperforms the second-best method DiG by
15.5% in the average accuracy (57.0% v.s. 41.4%). Besides,
for the right-to-left Arabic language, SSM even outperforms
the second-best method by 27.4% (76.0% v.s. 48.6%), which
is attributed to that SSM can capture linguistic information
from right-to-left texts during the pre-training phase. These
results demonstrate that SSM is an effective pretext task to
capture linguistic information in multilingual texts and ex-
hibits strong generalization and few-shot capabilities for data-
scarcity languages. Tab. 3b shows that all the methods ben-
efit from jointly learning linguistic information of different
languages, yet SSM still exhibits superior performance with
1.5% average accuracy gains compared to DiG.

4.4 Ablations and Analysis
Effectiveness of architecture. The third row of Tab. 4 indi-
cates that there is a 3.0% average performance improvement
on Union14M benchmarks with the pixel-level reconstruc-
tion, which need the combined effect of prompt generatorG(·)
transformer regressor R(·) and pixel decoder D(·). However,
removing the regressor R(·) results in a slight performance
downgrade. The result demonstrates that the transformer re-
gressor plays an indispensable role in SSM by guiding and
disentangling the features of the original and inverted images.
Based on the pixel reconstruction, the Joint use of the EMA
mechanism and project module H(·) further brings accuracy
gains of 1.3% as it promotes learning discriminative character
semantics and modeling spatial context at the semantic level.
Here, H(·) is mainly used to prevent excessive background
noise in negative sample sampling and to map the decoupling
feature to high-dimensional space. Lastly, the addition of Ir-
regular view augmentations improves the average test accu-
racy up to 84.3% due to diverse perspectives.
Ablations on the types of superimposed input. We com-
pared our superposition strategies with add noise & blur and
randomly add another text image. As shown in Tab. 5a, the
performance gains of add another text image are close to that
of add noise & blur, both of which are lower than existing
superposition strategies. We attribute this to the fact that the
model can easily reconstruct the two images with inconsistent
text content and different background styles from low-level
pixel differences, limiting the exploration of intrinsic charac-
ter semantics and linguistic information. We also found that
individually superposing a 180-degree rotation view is more
effective than individually superposing a specific flip view.
The result suggests that the rotation influences character ori-
entation and sequence reading order, helping capture learning
richer character semantics and spatial context relationships
during reconstruction. Finally, the best performance (84.3%)
is achieved by combining HS, VS, and RS strategies, which
improve the diversity of the superimposed input.
Ablations on the feature-level reconstruction loss. The first
and second rows of Tab. 5b shows that only using distance
measure functions such as MSE Lmse and Cosine Lcos results

G(·) R(·) D(·) EMA H(·) Irr view Avg
Scractch training 79.8
✓ 79.7
✓ ✓ ✓ 82.8
✓ ✓ ✓ ✓ 83.6
✓ ✓ ✓ ✓ ✓ 84.1
✓ ✓ ✓ ✓ ✓ ✓ 84.3

Table 4: Ablations about the effectiveness of architecture. G(·), R(·),
D(·) andH(·) means prompt generator, regressor, pixel decoder, and
projector, respectively. Testing on Union14M benchmarks.

HS VS RS Avg
add noise & blur 80.7
add another image 80.4
✓ 83.1

✓ 82.9
✓ 83.4

✓ ✓ ✓ 84.3

(a) Ablations on the types of su-
perimposed input.

Reconstruction
Loss Avg

Lmse 82.8
Lcos 82.5
Ldino 83.4
Ldis 83.8

Ldis+Lmse 84.3

(b) Ablations on feature-level
reconstruction loss.

Table 5: Ablation studies on the input type and consistency loss.
HS, VS, and RS respectively means superimposing HFlip, VFlip,
and Rotation View with the original image.

in lower word accuracy (82.5% vs 94.3%). We attribute this
to the fact that only minimizing the feature distance between
predictions and targets may lead to feature collapse. Besides,
Tab. 5b shows that our discriminative consistency loss Ldis
outperforms the dino loss Ldino by 0.3%. The combined use
of Ldis and Lmse ultimately yielded the best results. Ldis can
mitigate the feature collapse of Lmse by reducing the similar-
ity between negative samples. Besides, Ldis focuses on en-
hancing discriminative features for character semantics while
Lmse is more sensitive to spatial structures, which helps model
linguistic information in spatial context at the semantic level.
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Figure 4: Comparison of feature
representation evaluation.
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Figure 5: Fine-tuning on ARD
with different ratios.

Feature representation evaluation. We freeze the encoder
and train the decoder with ARD, following the test setting
of DiG. Fig. 4 shows that the pixel-level reconstruction of
SSM (SSR-S) has better feature representation than MAE-S
(61.2% vs59.3%). By introducing feature-level representa-
tion reconstruction, SSM outperforms DiG by 0.7%. We at-
tribute this to strengthening the implicit linguistic representa-
tion through texture-level and semantic-level reconstruction.
Fine-tuning with different data ratios. We fine-tune our
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Type Method
Common Benchmarks Union14M-Benchmark

IIIT
3000

IC13
1015

SVT
647

IC15
2077

SVTP
645

CUTE
288

Avg Cur M-O Art Con Sal M-W Gen Avg Params.

CTC
CRNN [Shi et al., 2017] 90.8 91.8 83.8 71.8 70.4 80.9 81.6 19.4 4.5 34.2 44.0 16.7 35.7 60.4 30.7 8.3M
SVTR [Du et al., 2022] 95.9 95.5 92.4 83.9 85.7 93.1 91.1 72.4 68.2 54.1 68.0 71.4 67.7 77.0 68.4 24.6M

Attention

ASTER[Shi et al., 2019] 94.3 92.6 88.9 77.7 80.5 86.5 86.7 38.4 13.0 41.8 52.9 31.9 49.8 66.7 42.1 -
NRTR[Sheng et al., 2019] 96.2 96.9 94.0 80.9 84.8 92.0 90.8 49.3 40.6 54.3 69.6 42.9 75.5 75.2 58.2 -
DAN[Wang et al., 2020] 95.5 95.2 88.6 78.3 79.9 86.1 87.3 46.0 22.8 49.3 61.6 44.6 61.2 67.0 50.4 -
SATRN[Lee et al., 2020] 97.0 97.9 95.2 87.1 91.0 96.2 93.9 74.8 64.7 67.1 76.1 72.2 74.1 75.8 72.1 55M

RobustScanner[Yue et al., 2020] 96.8 95.7 92.4 86.4 83.9 93.8 91.2 66.2 54.2 61.4 72.7 60.1 74.2 75.7 66.4 -

LM

SRN[Yu et al., 2020] 95.5 94.7 89.5 79.1 83.9 91.3 89.0 49.7 20.0 50.7 61.0 43.9 51.5 62.7 48.5 55M
ABINet[Fang et al., 2021] 97.2 97.2 95.7 87.6 92.1 94.4 94.0 75.0 61.5 65.3 71.1 72.9 59.1 79.4 69.2 37M

VisonLAN[Wang et al., 2021] 96.3 95.1 91.3 83.6 85.4 92.4 91.3 70.7 57.2 56.7 63.8 67.6 47.3 74.2 62.5 33M
MATRN[Na et al., 2022] 98.2 97.9 96.9 88.2 94.1 97.9 95.5 80.5 64.7 71.1 74.8 79.4 67.6 77.9 74.6 44M

PARSeq⋆[Bautista and Atienza, 2022] 98.0 96.8 95.2 85.2 90.5 96.5 93.8 79.8 79.2 67.4 77.4 77.0 76.9 80.6 76.9 24M

Pre-train
MAERec-S[Jiang et al., 2023] 98.0 97.6 96.8 87.1 93.2 97.9 95.1 81.4 71.4 72.0 82.0 78.5 82.4 82.5 78.6 36M

DiG-ViT-Small⋆[Yang et al., 2022] 98.7 97.8 98.5 88.9 92.7 96.5 95.5 85.9 83.5 77.4 82.5 84.3 84.0 83.8 83.0 36M
MAERec-B[Jiang et al., 2023] 98.5 98.1 97.8 89.5 94.4 98.6 96.2 88.8 83.9 80.0 85.5 84.9 87.5 85.8 85.2 142M

Ours

SSM-ViT-Tiny 98.8 97.9 96.8 88.0 93.2 97.2 95.3 81.7 77.9 72.3 79.7 79.7 77.9 81.9 80.7 20M
SSM-ViT-Small 99.0 98.3 97.8 89.5 94.0 98.3 96.1 87.5 85.8 78.4 84.8 85.2 85.0 84.0 84.3 36M

SSM-ViT-Small-Turbo 99.1 98.5 97.7 89.9 94.9 99.0 96.5 91.0 89.4 79.3 86.0 86.5 88.6 85.3 86.6 36M

Table 6: Performance of models fine-tuned on the Union14M-L. All pre-train and our methods are pre-trained on Union14M-U. Bold and
underlined values stands for the 1st and 2nd results in each column. For a fair comparison, IC13 and IC15 are larger versions. Cur, M-O, Art,
Ctl, Sal, M-W, and Gen respectively represent Curve, Multi-Oriented, Artistic, Contextless, Salient, Multi-Words, and General. Avg stands
for the average word accuracy of corresponding benchmarks. ⋆ represents our implementation. ’*-Turbo’ stands for training 20 epochs.
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Figure 6: Performance gains of SSM for various STR Methods.

method with 1%(27.8K), 10%(278K), and 100%(2.78M) of
ARD. Fig. 5 shows that SSM-ViT-Small outperforms the pre-
vious SOTA methods by 2.3%, 2.6% and 1.3%, respectively.
Improvement of Various STR methods. Benefiting from
masking-free operations, our method is not troubled by infor-
mation leakage during feature downsampling. Consequently,
it can be flexibly applied to various types of STR Methods, in-
cluding Conv-based methods (e.g., ABINet-V, ASTER, and
CRNN), multi-scale attention methods (e.g., SVTR), and
vanilla ViT methods (e.g., our baseline ViT-*, and PARSeq).
Fig. 6 shows that SSM can bring a performance gain of 4.1%
to the above STR method on Union14M benchmarks.
Qualitative recognition results. The top and bottom strings
of Fig. 7 are predicted by DiG-S and SSM-S, with red indi-
cating errors. Results show that SSM is robust to reversed
text and complex-textured images. It also can infer complex
characters based on contextual linguistic information.

4.5 Comparisons With State-of-the-Arts
In Tab. 6, we compare SSM and previous SOTA text recog-
nition methods. Specifically, SSM-ViT-Tiny outperforms
all supervised state-of-the-art (SOTA) methods (80.7% vs
76.9%) on more challenging Union14M benchmarks with
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furnet-state
forgettable

Figure 7: Qualitative recognition results of challenging scenarios.

only 20M parameters. Moreover, SSM-ViT-Small out-
performs the other self-supervised pre-train methods with
the same model size by 0.6% and 1.3% average perfor-
mance. Surprisingly, by training 20 epochs, SSM-ViT-Small-
Turbo pushes the new SOTA average performance on Com-
mon benchmarks and Union14M benchmarks to 96.5% and
86.6%, respectively. Note that SSM-ViT-Small-Turbo outper-
forms MAERec-B by 0.3% and 1.4% with only one-fourth of
the parameters of the MAERec-B (36M vs 142M).

5 Conclusion
In this paper, we propose a novel self-supervised text recog-
nition framework, termed SSM. In contrast to previous self-
supervised text recognition methods that only focus on local
visual features, SSM models the global spatial context for im-
plicit linguistic learning. SSM aims to reconstruct direction-
specific pixel and feature signals from symmetrically super-
imposed text images. In this way, SSM captures both the local
character feature and implicit linguistic information. Eventu-
ally, SSM improves the text recognition performance of var-
ious Scene Text Recognition methods and refreshes state-of-
the-art performance on various text recognition benchmarks.
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