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Abstract
The remarkable prowess of diffusion models in im-
age generation has spurred efforts to extend their
application beyond generative tasks. However, a
persistent challenge exists in lacking a unified ap-
proach to apply diffusion models to visual per-
ception tasks with diverse semantic granularity re-
quirements. Our purpose is to establish a unified vi-
sual perception framework, capitalizing on the po-
tential synergies between generative and discrim-
inative models. In this paper, we propose Ver-
mouth1, a simple yet effective framework com-
prising a pre-trained Stable Diffusion (SD) model
containing rich generative priors, a unified head
(U-head) capable of integrating hierarchical repre-
sentations, and an Adapted-Expert providing dis-
criminative priors. Comprehensive investigations
unveil potential characteristics of Vermouth, such
as varying granularity of perception concealed in
latent variables at distinct time steps and various
U-net stages. We emphasize that there is no ne-
cessity for incorporating a heavyweight or intri-
cate decoder to transform diffusion models into po-
tent representation learners. Extensive comparative
evaluations against tailored discriminative models
showcase the efficacy of our approach on zero-
shot sketch-based image retrieval (ZS-SBIR), few-
shot classification, and open-vocabulary (OV) se-
mantic segmentation tasks. The promising results
demonstrate the potential of diffusion models as
formidable learners, establishing their significance
in furnishing informative and robust visual repre-
sentations.

1 Introduction
Over the years, there has been a keen interest in the represen-
tation learning capabilities of generative models, given their
proficiency in generating vivid images. Consistent with the
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1Our model is named after vermouth. Indeed, the properties of

diffusion and blending of wines and herbs in vermouth share simi-
larities with our design.
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Figure 1: We transfer priors of the SD model in a unified framework
for different visual perception tasks.

perspective that a generative model must attain the seman-
tic understanding ability to produce high-fidelity samples.
Early works [Vincent et al., 2008; Vincent et al., 2010] have
demonstrated that generative models can be employed for dis-
criminative tasks through non-trivial methods.

Recently, diffusion models have emerged with stunning
performance in the image generation field, creating realistic
and incredibly detailed images [Dhariwal and Nichol, 2021;
Ho and Salimans, 2022; Ho et al., 2020]. Specifically, large-
scale text-to-image diffusion models [Rombach et al., 2022;
Parmar et al., 2023] can seamlessly integrate and modify se-
mantic information in an end-to-end manner, which allows
the synthesis of images featuring diverse objects, scenes, and
styles [Zhang et al., 2023b; Brooks et al., 2023]. Given
this phenomenon, we deem that large text-to-image diffusion
models, such as SD [Rombach et al., 2022] model, have ac-
quired high-level and low-level semantic cues through exten-
sive exposure to large-scale image-text pairs. Nevertheless,
the question of how to extract the latent knowledge embed-
ded in the diffusion process and harness this knowledge for
visual perception tasks remains an unsolved challenge.

Visual perception tasks necessitate the establishment of
distinct decision boundaries pθ(y|x) among categories, an
objective not initially envisioned in the design of diffusion
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models. This achievement is typically attained through su-
pervised learning [Liu et al., 2021; Liu et al., 2022], unsuper-
vised contrastive learning [Caron et al., 2021], and masked
image modeling followed by supervised fine-tuning [He et
al., 2022; Bao et al., 2021]. In contrast, diffusion models as-
pire to model the inherent probability distributions pθ(x|z)
of a dataset. Consequently, an inherent incompatibility ex-
ists between diffusion models and visual perception tasks.
As shown in Figure 1, various methods [Zhao et al., 2023;
Karazija et al., 2023] have attempted to address this issue by
integrating off-the-shelf and heavy decoders or encoders with
SD models. Nevertheless, the exploration of how to effec-
tively leverage hierarchical features within SD models in a
unified framework are inadequate.

The goal of this paper is to scrutinize the release of in-
ternal priors within diffusion models and their transfer to
non-generative tasks in a unified manner. In contrast to ap-
proaches involving various decoders, we propose a simple yet
effective method applicable to tasks with diverse granularity
requirements within a unified framework. Specifically, for the
input image, we introduce suitable noise and project it into
the latent space of the SD model under accurate text guid-
ance. Subsequently, ours U-head blends latent representa-
tions from different granularities, eliminating the need for de-
signing complex and tailored decoders. Moreover, this archi-
tecture demonstrates remarkable flexibility, enabling smooth
integration with the priors of Adapted-Expert, resulting in en-
hanced compatibility with visual perception tasks. Leverag-
ing the flexibility and effectiveness of this module and the rich
semantic features embedded within diffusion, we can seam-
lessly transfer the fused features to diverse tasks.

To comprehensively analyze the most effective way for
unlocking the knowledge within the SD model, we inves-
tigated three downstream tasks across a range of near-real-
world scenes, including ZS-SBIR, OV semantic segmenta-
tion, and few-shot classification tasks to evaluate our method.
Experiment results on over 20+ datasets reveal that, despite
its inherent mismatch with visual perception tasks, the SD
model can still be regarded as a promising learner.

In summary, our contributions are as follows:
• To the best of our knowledge, we are the first to propose

a unified framework to apply diffusion to visual percep-
tion tasks demanding different granularity semantics.

• We design a unified head capable of effectively fusing
the generative priors of SD models with discriminative
priors from the Adapted-Expert.

• Comprehensive experiments and analyses unveil ob-
served rules for hyperparameters such as the noise level
of latents, which can provide constructive insights and
suggestions for future researches.

2 Related Work
2.1 Vision Models in Perception Task
The paradigm of pre-training and transfer learning has sig-
nificantly advanced the domain of computer vision. In the
early years, convolutional neural networks [He et al., 2016]
and Vision Transformer (ViT) [Dosovitskiy et al., 2020] were

viewed as standard architectures for various vision tasks, due
to their exceptional perception capabilities. Nevertheless, the
conventional pre-training on fixed-label datasets constrains
their applicability in some complex scenarios.

Recently, CLIP [Radford et al., 2021] has garnered signifi-
cant attention in various fields as its efficient visual language
alignment pre-training. Some approaches leverage CLIP for
tasks such as few-shot classification [Gao et al., 2023], image
retrieval [Saito et al., 2023], and image segmentation [Zhou
et al., 2022], which demonstrates the remarkable and rapid
learning capabilities. In this paper, our focus shifts to the SD
model, aiming to investigate whether it has the same ability
and how to harness this potential capabilities.

2.2 Perceptual Learning with Diffusion Models
The research of transferring generative models to discrim-
inative tasks, exemplified by BigBiGAN [Donahue and Si-
monyan, 2019], has sustained substantial interest over an ex-
tended period. Diffusion models [Ho et al., 2020], such as
the SD model, have not only excelled in the field of image
synthesis but have also drawn considerable attention in other
fields. Harnessing latent features, the SD model exhibits ver-
satile applications in diverse domains, including classifica-
tion [Wei et al., 2023], image segmentation [Xu et al., 2023;
Li et al., 2023], and depth estimation [Ji et al., 2023;
Zhao et al., 2023]. However, these methods require task-
specific design such as encoders and decoders that makes
them complex. In contrast, we sidestep this tailored proce-
dure and advocate a unified framework capable of accommo-
dating various scenarios.

We noted that the methods most akin to ours are
VPD [Zhao et al., 2023] and Grounded-Diffusion [Li et al.,
2023]. VPD employs tailored decoders for distinct tasks and
utilizes ambiguous prompts for text guidance. Grounded-
Diffusion relies on an additional pre-trained grounding model
and employs iterative denoising from pure Gaussian noise to
get clean images. In comparison to VPD, our architecture
is more lightweight, unified, and flexible. Compared with
Grounded-Diffusion, our application scenarios are broader
and do not necessitate additional model-assisted.

3 Method
To directly apply the SD model in non-generative domains
within a unified framework, we propose Vermouth. It is de-
vised to transfer the prior knowledge of the SD model for dif-
ferent visual perception tasks, eliminating the need for task-
specific designs. We will start with the preliminaries of dif-
fusion models in Section 3.1. Subsequently, the U-head for
obtaining the final representation and the Adapted-Expert to
enhance compatibility between the SD priors and discrimina-
tive tasks are detailed in Section 3.3 and Section 3.4.

3.1 Preliminaries
Diffusion models constitute a category of likelihood-based
models non-equilibased on brium thermodynamics. These
models can characterize the data distribution p(x) by learn-
ing to reverse the forward process, which incrementally in-
troduces noise to the data. The forward diffusion process at
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Figure 2: An overview of our framework. We employ the pre-trained BLIP model to acquire an accurate description and utilize the SD model
to generate representations guided by text embedding. The introduction of the U-head is intended to fuse the two representations from the SD
model and the Adapted-Expert, aiming to enhance compatibility in discriminative tasks with different semantic granularity requirements.

t-th time-step can be modeled as Markov: zt ∼ q(zt|zt−1) =
N (
√

1− βtzt−1, (βt)I), where βt is associated with the
noise schedule [Ho et al., 2020]. By employing a reparame-
terization trick, we can simplify this expression into a more
manageable form:

q (zt | z0) = N
(
zt;
√
ᾱtz0, (1− ᾱt) I

)
, (1)

ᾱt =
t∏

s=1

αs =
t∏

s=1

(1− βs). (2)

Generally, diffusion models introduce noise to inputs until
zT ∼ N (0, I) and samples iteratively by denoising the la-
tent variables:

p(z0:T ) = p(zT )

T∏
t=1

p(zt−1|zt). (3)

Through the proper simplification, one can predict the noise
component ε by neural network εθ(xt; t) implemented by a
U-net to learn how to reconstruct the input data:

Lsimple = Ezt,ε∼N (0,1)

[
‖ε− εθ(zt; t, c)‖22

]
, (4)

where c is an additional condition such as text prompts.
The SD model employs a VQ-VAE [Van Den Oord et al.,

2017] encoder to project the input into the latent space, de-
noted as z0 = E(x). Subsequently, a decoder is utilized to
reconstruct the input, expressed as x̂ = D(ẑ0). For latent
modeling, the SD model adopts an asymmetric U-net, which
is structured into three stages: down-sample, bottleneck, and
up-sample, encompassing a total of 18 blocks. See the sup-
plementary for the architectural details of the SD model.

3.2 Latent Prior in SD Model
Given the presence of multi-scale pattern in the U-net, one
can extract desired features in specific blocks.

FSD = U-net(zt, t, c), (5)

where FSD = {fi ∈ RHi×Wi×Ci |i ∼ B} and B is indexes
of the specific blocks.

Recent works [Zhao et al., 2023; Xu et al., 2023] have
opted for different blocks, combining with specific decoders
to extract features for discriminative tasks. However, there re-
mains a lack of clear insight regarding which blocks’ output
are more semantically rich. This challenge stems from the
non-trivial nature of selecting specific blocks among a total
of 18. We opt for a macro level to investigate the semantics
within the SD model by viewing the stages as the research
granularity to explore semantic information at various levels.

fi = U-netstage i(zt, t, c), (6)
where stage i represent the stages index.

As a text-to-image model, the text prompt plays a crucial
role in feature extraction as it serves as guidance for seman-
tic synthesis. An intuitive approach involves using all class
names s in the dataset D to form the text context:

c = T (concat([s|s ∈ D])), (7)

where T is the text encoder of CLIP. However, employing
the global context may lead to potential misalignment, es-
pecially considering that different inputs will contain differ-
ent objects. In contrast, we enhance alignment by utilizing
BLIP [Li et al., 2022] caption model as shown in Figure 2 to
derive the image-aligned text prompt s = Cap(x). The multi-
modally pre-trained BLIP model, for a given image, excels in
generating accurate descriptions while preserving semantics,
encompassing both the object and its surroundings present in
the image s ∈ X ⊂ D.

In addition to the output features fi at each level, the
attention maps of U-net may also capture semantics. In-
spired by recent work [Zhao et al., 2023] considering cross-
attention map as the diffusion prior equally, we are moti-
vated to investigate the impact of the cross-attention map
A = Softmax(QK

T

√
d

), where Q and K denote the image and
text hidden states. However, we find that this approach did
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not consistently yield positive results, as detailed in our ex-
perimental findings.

3.3 U-Head for Perception Tasks
Our U-head is designed to receive multi-scale features ex-
tracted from the SD model, facilitating the capture of
language-aware visual features. As illustrated in Figure 2,
to obtain global features, this module progressively fuses
high-resolution features containing detailed semantics to low-
resolution features with global semantics along the down-
sample flow:

h = U-head(F ), (8)
where h is the final representation. Contrarily, detailed pixel-
level features can be acquired along the up-sample flow. This
approach encourages the capture of visual features at vari-
ous levels of granularity, seamlessly blending coarser to finer
semantic cues. Consequently, the need for customized redun-
dant decoders2 is mitigated to a certain extent. Then, the final
output can be obtained through attention pooling or a single
convolution layer noted by v = W · h.

We follow several works [Gu et al., 2021; Gao et al.,
2023] that utilize the output features of the CLIP text en-
coder as the final classifier weight to align v with text features
t = T (S), where S means prompt constructed by categories
names. This strategy is beneficial to the creation of a more fa-
vorable feature space for recognition [Radford et al., 2021].
We ensure the alignment through cosine similarity:

p(y|x) =
v · t
‖v‖ · ‖t‖

. (9)

This method offers flexibility for expanding to unseen labels
by merely adjusting the input prompt S and facilitates the
learning of language-aware visual representations.

3.4 Combining the Discriminative Prior
To effectively transfer learned features to discriminative tasks
while ensuring compatibility, an intuitive approach is to intro-
duce the prior knowledge of the recognition model. Leverag-
ing the high flexibility of our U-head, we can readily fuse the
diffusion prior with the discriminative prior:

h = U-head([FSD;Fexp]), (10)
where [·; ·] and Fexp means concatenation and discriminative
prior respectively.

We employ ResNet-18 [He et al., 2016] to introduce dis-
criminative prior Fexp = ResNet(x) due to its inherent pos-
session of multi-resolution features. Thanks to the flexibil-
ity of our method, in fact, any discriminative model such as
DINO-v2 [Oquab et al., 2023] can be introduced. More re-
sults can be found in supplementary material.

Furthermore, to enhance the integration between dis-
criminative and generative prior, we incorporated an
Adapter [Houlsby et al., 2019] following the discriminative
model as illustrated in Figure 2. Experiments demonstrate
improved performance with the adapted features. Recogniz-
ing its role in enhancing compatibility with visual perception
tasks, we refer to it as the “Adapted-Expert”.

2We use the terms decoder and head to distinguish modules of
different magnitudes. In general, the decoder is larger than the head
and has more parameters.

3.5 Details of Training
Initially, for the input image, we employ BLIP to obtain an
accurate description. Subsequently, we employ the text en-
coder to derive the conditions, denoted asc = T (s). Follow-
ing the method proposed in the previous sections, the final
representations are obtained as Equation 10. After getting the
prediction according to Equation 9, the cross-entropy loss is
applied for training:

L =
1

N

N∑
ŷ log p(y|x). (11)

4 Experiments
We verify the effectiveness of our method compared to other
traditional vision models over 20+ different datasets grouped
into 3 tasks, including ZS-SBIR, OV semantic segmentation,
and few-shot classification. In addition, we also show our
results on a faster training schedule and validate the effec-
tiveness of each key component of our method.

4.1 Experimental Settings
Unless specified, we use SD 1-5 [Rombach et al., 2022] and
freeze all the parameters of the SD model to preserve la-
tent knowledge. For system-level comparisons, we select a
few typical methods that employ different pre-training strate-
gies, such as DINO [Caron et al., 2021] (contrastive learn-
ing), ConvNeXt [Liu et al., 2022], Swin-Transformer [Liu
et al., 2021] (supervised learning), MAE [He et al., 2022]
(masked image modeling), and BeiTv3 [Wang et al., 2023]
(Multi-modality learning).

ZS-SBIR. Following the general setting [Liu et al., 2019],
we report the mean Average Precision (mAP) of our method
on three datasets: Sketchy, TU-Berlin, and QuikDraw. Given
the heterogeneity of the sketch and image domain, this task
serves as a robustness test. We train our model for 1 epoch,
and the learning rate is set to 1e-4.

OV Semantic Segmentation. Following the general set-
ting [Zhou et al., 2022], we train on the COCO-Stuff dataset
and evaluate on the validation set of five datasets: ADE20K-
150 (ADE-150), ADE20K-847 (ADE-847), Pascal VOC
(VOC), Pascal Context-59 (PC-59), and Pascal Context-459
(PC-459). Training our model for 120k iterations under weak
data augmentation default and 8k iterations for the fast sched-
ule, we report the mean Intersection over Union (m-IoU) at a
single scale.

Few-shot Classification. Following the setting of CLIP-
Adapter [Gao et al., 2023], we report the 16-shot classifica-
tion accuracy on 11 datasets: ImageNet, Caltech101, Oxford-
Pets, StanfordCars, Flowers102, Food101, FGVCAircraft,
EuroSAT, UCF101, DTD, and SUN397. We train our model
for 100 epochs by default and 10 epochs for a fast training
schedule.

Detailed information on training procedures and datasets
can be seen in the supplementary material.

4.2 Main Results
In this section, we present the main results and compare with
the counterparts under the default settings. The configuration
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config Classification Segmentation ZS-SBIR
prompt BLIP

time steps 200 10 200
attention map w. up cross-att. map w.o cross-att. map

clip proj w.o. projection w. projection
noise schedule ddpm schedule ddim inv
stage in U-net mid + down mid + up

Table 1: Main configuration of our method.

Time steps=200 Time steps=50Time steps=500

Figure 3: Feature visualization of different categories of sketches
and images in different time steps.

across three tasks is outlined in Table 1. Each row corre-
sponds to a key configuration. Detailed explanations of each
configuration provided in Section 4.3.

ZS-SBIR
ZS-SBIR is an appealing task as it resembles real-world sce-
narios. For a given sketch query xs, natural images xi of
the same category are retrieved based on feature similarity,
which is usually measured by mAP. This task requires models
to balance domain heterogeneity between sketch and image
and identify unseen categories. To fairly assess the perfor-
mance, we augment the counterpart models with an Adapter
and align visual features with the text features, as mentioned
in Equation 9 to facilitate knowledge transfer and mitigate the
semantic gap.

As demonstrated in Table 2, our method outperforms all the
traditional models, indicating that internal features in the SD
model are more adept at handling abstract representations of
sketches. This phenomenon is illustrated in Figure 3, where
the disparity between images and sketches diminishes as a
result of light perturbation introduced at the appropriate time
step (e.g., t = 200). This leads to a more regular distribution
within the feature space.

OV Semantic Segmentation
OV semantic segmentation is the most challenging task, re-
quiring the model trained on limited categories to achieve
precise recognition of arbitrary or even noisy categories (e.g.,

model
mAP Sketchy TU-Berlin QuickDraw

MAE-L 39.23 41.99 11.71
BeiTv3-G 54.54 50.93 13.67
Swinv2-L 43.39 45.51 12.08
DINO-B 38.51 25.49 10.15
Vermouth 56.8 52.83 15.11

Table 2: Main results on ZS-SBIR task. Compared to traditional
visual models, we achieve the best results, which is marked in bold

model
m-IoU # pa

ram

ADE-15
0

PC-59
VOC20

ADE-84
7

PC-45
9

COCO

MAE-L 442 17.5 53.27 93.51 3.42 8.82 44.88
ConvNeXt-L 235.3 18.65 53.42 94.62 3.53 9.53 48.0
Swin-L 234 18.8 53.37 94.76 3.8 9.42 49.41
DINO-B 144.4 17.13 47.84 92.44 3.16 7.75 42.78
Vermouth 5.9 19.0 52.88 92.87 3.7 9.0 46.44

Table 3: OV semantic segmentation results on six datasets, where
param means learnable parameters. We achieve comparable results
while minimizing the number of tunable parameters. Results on the
training set are marked in gray

.

ADE847 contains 847 categories, most of which are noisy).
For the counterpart models, we employ UperNet [Xiao et

al., 2018] architecture and fine-tune the entire model by de-
fault. As shown in Table 3, we achieve comparable or even
superior results compared to the tailored methods that com-
bine specific decoder and discriminant backbone. It’s note-
worthy that we only have 5.9 million learnable parameters
and therefore do not possess an advantage in terms of the
learnable parameters. This is attributed to the fact that we
only fine-tuned the “Normalization” layer (only 0.2 mil-
lion parameters) in U-net. However, leveraging the U-head
with efficient fusion capabilities and the excellent representa-
tion of the SD model, we still achieved a better performance
against some tailored methods.

Few-Shot Classification
Few-shot classification is a challenging task that demands
learning from only a few samples and generalizing efficiently
across multiple scenarios. For the competitor model, we fit
a linear layer (i.e., linear prob) to assess its generalization
ability. Due to space constraints, we only report the top-1
accuracy in the 16-shot setting.

As shown in Table 4, our method outperforms MAE on
all datasets except for UCF101, OxfordPets, and SUN397.
Notably, in comparison to the MAE pre-trained on IN-21K,
we achieve 16.15% improvement on IN-1K. While the over-
all performance does not exceed the discriminative models,
comparable results are attained on specific datasets, such as
FGVCAircraft and EuroSAT. This indicates that the inherent
advantage of discriminative models in recognition tasks, due
to paradigm differences with generative models, is diminish-
ing without using any additional tricks.

An interesting observation reveals that SD models gener-
ally do not perform well on fine-grained datasets since the
model may not fully understand the distinction of each class
at a fine-grained level. Some failure cases are illustrated in
the supplementary material.

4.3 Sensitive Analysis
In this section, we explore the potential factors affecting
the performance of our method through ablation studies
conducted on a faster schedule in ImageNet, Sketchy, and
ADE20K (semantic segmentation). Table 5 reveals several
intriguing properties.
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MAE-L 91.87 92.04 36.51 63.74 87.39 24.15 59.31 62.08 94.45 76.55 39.74 66.17
BeiTv3-G 93.79 97.84 38.34 72.41 86.11 62.58 74.42 71.57 96.9 84.38 86.95 78.66
Swinv2-L 89.65 99.61 29.13 73.1 86.9 37.75 77.41 72.63 97.01 81.06 78.84 74.83
DINO-B 89.32 97.82 48.3 69 91.15 57.17 58.5 62.44 95.57 76.97 67.66 73.99
Vermouth 66.13 92.35 42.52 66.62 88.93 51.05 45.78 58.09 95.83 70.49 55.89 66.74

Table 4: Main results of 16-shot learning on 11 datasets. Compared to MAE, we achieve better results on some datasets and diminish the gap
with professional discriminative models.

stage in U-net IN-1K Sketchy ADE20K
down 36.82 49.8 33.34
up 40.12 54.02 35.39
down + mid 42.73 55.76 36.88
up + mid 42.52 56.8 41.28
all 42.04 53.66 40.53

(a) Stage in U-net. Combining mid stage with the up-sample
or down-sample stage brings better results.

prompt IN-1K Sketchy ADE20K
null 29.46 44.71 39.23
random 30.04 52.28 40.55
BLIP 42.74 56.8 41.28

(b) Prompt. An image-aligned prompt provides better guidance.

clip proj IN-1K Sketchy ADE20K
w.o. proj 42.74 56.41 41.28
w. proj 37.62 56.8 40.07

(c) CLIP projection. The text features af-
ter projected work better.

noise IN-1K Sketchy ADE20K
w.o. 38.59 47.44 39.87
ddim inv 42.08 56.8 41.01
ddpm schedule 42.74 54.97 41.28

(d) Inversion method. The results of different
inversion methods have slight differences.

attention IN-1K Sketchy ADE20K
w.o. 41.32 56.8 41.03
down 42.07 56.5 40.41
up 42.74 56.57 41.28
up + down 42.08 54.51 40.09

(e) Cross-attention map. Cross-attention
map doesn’t always seem to bring benefits.

Table 5: Sensitive analysis of potential factors affecting model performance in three tasks. The default setting is marked in bold

1000 200 100 50 1500

down up mid+down mid+up

(b) Time steps

(a) Stage in U-net

all

(a) Time step

1000 200 100 50 1500

down up mid+down mid+up

(b) Time steps

(a) Stage in U-net

all

(b) Stage in U-net

Figure 4: Visualization of features captured by our model at different
times steps and stages of U-net

Time steps. To validate the semantic properties of the latents
under different noise-level, we evaluate our model across a
series of time steps. In Figure 5, we observe a consistent trend
in classification and image retrieval tasks, indicating that la-
tent representations at intermediate time steps t ∈ [100, 200]
yield better performance. However, this phenomenon is not
presented in the segmentation task. This characterization is
consistent with the visualization of different time steps in
Figure 4a. Specifically, as the images exhibit slight corrup-
tion, leading to the removal of fine-grained details, interme-
diate time steps focus more on capturing subject-level infor-
mation, whereas forward time steps exhibit a perception of
the entire image. Therefore, for tasks like semantic segmen-

Figure 5: Different time steps bring different results for three tasks.

tation, which demand for local semantics, superior results are
achieved within the time steps t ∈ [10, 100] as these steps
preserve the detailed features.
Stage in U-net. As outlined in Section 3.1, the SD model
comprises distinct stages, each encompassing different fea-
tures. We selected individual stages or their associated com-
binations at stage granularity and examined their perfor-
mance. As shown in Table 5a, exclusively extracting fea-
tures from a single stage yields sub-optimal results due to
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the incompleteness of semantics. However, there is a marked
improvement when combining features from the mid-stage
with either the up-sample or down-sample stage. This phe-
nomenon is consistent with Figure 4b, illustrating that dif-
ferent stages encapsulate semantics at various granularities.
Combining the mid stage with either the up-sample or down-
sample stages results in more comprehensive semantic fusion
and, consequently, superior performance.
Text prompt. The key component of our method is the
image-aligned prompt. In comparison to an empty prompt
(FSD = U-net(zt, t, c = ∅)), image-aligned prompts can
accurately reflect the content of the image and provide pre-
cise guidance. As shown in Table 5b, the prompt obtained by
BLIP brought 12.7%, 4.52%, and 0.73% boosts on the three
tasks compared to the random prompt. We attribute this to the
fact that the image-aligned prompt is consistent with the us-
age of pairwise data pre-training for SD models, which allows
us to retain the semantic bootstrapping abilities, resulting in
better performance reasonably. Contrarily, an empty or ran-
dom text prompt will lead to potentially harmful guidance.
CLIP token. Some methods [Zhang et al., 2023a] have
demonstrated that using the output of the second-last layer
in ViT performs better. In the case of the CLIP, the final
layer is the projection layer. We are interested in ex-
ploring whether a similar phenomenon occurs in our model,
given the significant role of the CLIP text encoder in our
method. As illustrated in Table 5c, utilizing the token from
the second-to-last layer (wo. proj) leads to enhancements
of 5.12% and 1.21% in classification and segmentation re-
spectively. This implies that unprojected text features exhibit
clearer decision boundaries and are more suitable as final
classifier weights. However, performance on Sketchy has a
slight decrease, which we hypothesize to be potentially asso-
ciated with the diverse perceptual characteristics of different
layers in the CLIP text encoder [Gandelsman et al., 2023].
Inversion method. Recently, certain approaches [Mokady
et al., 2023] have revealed that distinct inversion strategies
for acquiring noisy inputs result in varied outcomes in im-
age generation tasks. Therefore, we juxtapose two inversion
methods, specifically, DDIM Inversion [Song et al., 2020],
and the DDPM schedule [Ho et al., 2020]. DDIM inversion
inverts latent variable z0 into its corresponding noised version
zt by continuousizing ordinary differential equations (ODEs).
DDPM schedule adds randomness to the latent variables un-
der the control of βt.

As illustrated in Table 5d, the disparities between the
DDPM schedule and DDIM inversion are minimal. This ob-
servation suggests that the discriminative cues within the SD
model remain largely unaffected by the method of noise in-
corporation. However, employing the SD model to extract
features from a clean image is suboptimal. This inefficiency
is attributed to the fact that clean latent variables do not be-
long to the latent space of the SD model as it is trained to
predict clean images from noised version.
Cross-attention map. Given the mechanism of injecting
semantics guidance through the cross-attention in the SD
model, we were prompted to investigate whether such a
mechanism could also be advantageous in recognition scenar-
ios. We select the average cross-attention map from different

ZS-SBIR Segmentation 16-shot Classification
Sketchy Avg ADE20K* IN-1K Avg

baseline 54.28 40.29 40.3 37.49 57.32
+fuse 55.43 40.99 40.88 42.38 59.86
+expert 56.8 41.44 41.28 55.89 66.74

Table 6: An ablation study on the key components validates the ef-
fectiveness of our approach. * means trained under the fast schedule

stages in the U-net and concatenate it with our image feature,
denoted as F = [FSD;Fexp;A].

As outlined in Table 5e, only a subtle differences in per-
formance have been observed. The cross-attention map lo-
cated in the up-sample stage yields an improvement of 1.42%
and 0.25% in IN-1K and ADE20k but registers a decrease of
0.23% in Sketchy. This may be caused by inaccurate atten-
tion due to the abstract nature of the sketch.
Discussion. We analyzed to identify the potential factors in-
fluencing the behavior of our model. The experimental results
indicate the existence of shared optimal settings applicable to
both dense prediction and global recognition tasks, such as
text prompts. However, certain factors, including the cross-
attention and clip projection, result in inconsistent responses.

4.4 Ablation Study
We conducted ablation studies on our two pivotal designs,
U-head and Adapted-expert. To assess the effectiveness of U-
head, we established a baseline using a straightforward fusion
technique, involving a convolution operation on the obtained
diffusion features followed by a global summation. A consis-
tent average improvement of 0.7%, 0.58%, and 2.54% is ob-
served when compared to the baseline, which indicates that
U-head ensures both structural unity and effectiveness. Fur-
thermore, when combined with the Adapted-Expert, an addi-
tional improvement of 0.45%, 0.4%, and 6.88% is observed
across all three tasks. This indicates that our method, follow-
ing knowledge fusion with the discriminative model, acquires
more discriminative cues, thereby enhancing discriminative
accuracy. In summary, experiments across all tasks verify the
effectiveness of the crucial design in our method.

5 Conclusion
We introduce Vermouth, a simple yet effective unified frame-
work that is designed to transfer the generative priors of dif-
fusion models to discriminative tasks. Leveraging the BLIP
model, we capture description as context conditions, preserv-
ing the inherent advantage of semantic guidance of SD mod-
els. To accommodate various downstream tasks, we introduce
a lightweight head capable of seamlessly integrating discrimi-
native and diffuse representations within a unified framework.
Experiments involving multi-tasks conducted on the unified
architecture illustrate the generality and efficiency. Through
the careful selection of time steps and other key components,
Vermouth effectively migrates the rich visual semantics of the
SD mode in downstream classification, retrieval, and segmen-
tation tasks and demonstrates a promising performance. This
exploration will not only offer valuable guidance on harness-
ing and optimizing the potential of SD models but also inspire
further research into developing more efficient frameworks.
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