
FreqFormer: Frequency-aware Transformer for
Lightweight Image Super-resolution

Tao Dai1,2 , Jianping Wang1 , Hang Guo3 , Jinmin Li3 , Jinbao Wang1,2,∗ , Zexuan Zhu1,2,∗

1College of Computer Science and Software Engineering, Shenzhen University
2National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University

3Tsinghua Shenzhen International Graduate School, Tsinghua University
{daitao, wangjb, zhuzx}@szu.edu.cn, wangjianping2022@email.szu.edu.cn

Abstract
Transformer-based models have been widely and
successfully used in various low-vision visual
tasks, and have achieved remarkable performance
in single image super-resolution (SR). Despite the
significant progress in SR, Transformer-based SR
methods (e.g., SwinIR) still suffer from the prob-
lems of heavy computation cost and low-frequency
preference, while ignoring the reconstruction of
rich high-frequency information, hence hindering
the representational power of Transformers. To
address these issues, in this paper, we propose a
novel Frequency-aware Transformer (FreqFormer)
for lightweight image SR. Specifically, a Frequency
Division Module (FDM) is first introduced to sep-
arately handle high- and low-frequency informa-
tion in a divide-and-conquer manner. Moreover,
we present Frequency-aware Transformer Block
(FTB) to extracting both spatial frequency atten-
tion and channel transposed attention to recover
high-frequency details. Extensive experimental re-
sults on public datasets demonstrate the superiority
of our FreqFormer over state-of-the-art SR meth-
ods in terms of both quantitative metrics and vi-
sual quality. Code and models are available at
https://github.com/JPWang-CS/FreqFormer.

1 Introduction
Single image super-resolution (SR), aiming at reconstructing
high-resolution (HR) images from their low-resolution (LR)
counterpart, has received much attention in computer vision
and has a variety of potential applications [Wang et al., 2020;
Zhang et al., 2023; Cui et al., 2024; Li et al., 2023b; Guo et
al., 2024], such as medical imaging and video surveillance
[Ren et al., 2019]. Recently, various CNN-based [Dai et al.,
2023] and Transformer-based SR methods [Dai et al., 2019;
Liang et al., 2021] have been developed and achieved supe-
rior performance in image super-resolution.

In particular, vision Transformer with window self-
attention has received much attention due to its superior per-
formance in image restoration tasks. Among them, SwinIR
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Figure 1: The power spectrum of intermediate feature maps pro-
duced by SwinIR [Liang et al., 2021] (left) and our method (right).
SwinIR shows a significant amplitude drop in the high-frequency
phase (e.g., phase π), while ours shows an opposite amplitude in-
crease in the high-frequency phase.The thumbnail illustrates the
transformation trend of feature maps as the model depth increases.
Lines in darker colors correspond to features from deeper layers.

[Liang et al., 2021] obtains remarkable performance by
adopting self-attention on a local window. ELAN [Zhang et
al., 2022] improves SwinIR by computing self-attention with
different window sizes. Recently, SRFormer [Zhou et al.,
2023] develops permuted self-attention with fewer parame-
ters and computations.

Despite the great success of Transformer-based SR meth-
ods, these methods usually contains several drawbacks. First,
these methods are usually computational intensive, due to the
huge model parameters, thus hindering the practical use of
SR models in real applications. For example, the advanced
SwinIR contains more than 11M parameters. Second, it is
found that Transformer-based SR methods prefer to retain
low-frequency information (see Fig.1) while ignoring the re-
construction of rich high-frequency information, hence hin-
dering the representational power of Transformers.

As shown in Fig.1, we compute the power spectrum of
the feature maps of different layer depths produced from
SwinIR. We can see that SwinIR shows a significant am-
plitude drop in the high-frequency phase as the layer goes
deep, which indicates that the vanilla attention prefers to
focus on low-frequency information while neglecting high-
frequency information which is important to SR. Thus,
these observations raise a natural question: How to reduce
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model size while restoring high-frequency image details for
Transformer-based SR methods?

Inspired by the above observations, we propose Freq-
Former, a Frequency-aware Transformer for lightweight im-
age super-resolution. As shown in Fig. 2, our FreqFormer
mainly contains Frequency Division Module (FDM) and
Frequency-aware Transformer Block (FTB), which integrates
spatial, channel, and frequency information to reconstruct the
high-frequency representation. Specifically, FDM is used to
separately handle high- and low-frequency information, and
recover high-frequency details. Then, Frequency-aware Cas-
cade Attention (FCA) in FTB is introduced to mix the high-
frequency information from the shallow feature extraction
with the channel information, and perform high-frequency
recovery of the shallow extracted information. To obtain bet-
ter feature representation, we further incorporate spatial fre-
quency attention and channel transposed attention in FCA.
In this way, our FreqFormer can capture spatial, frequency,
and channel contexts, facilitating inter-block feature aggre-
gation across dimensions and compensating for the loss of
long-distance detail information in attention. Moreover, for
the further fusion of feature representations, we design a Dual
Frequency Aggregation Feed-Forward Network (DFFN), in-
troducing a frequency gate in the middle of the fully con-
nected layer to aggregate frequency information. Overall, our
FreqFormer enhances high-frequency features within atten-
tion blocks, supplements high-frequency details externally,
and achieves a comprehensive enhancement of global infor-
mation from attention mechanism outputs.

Our main contributions are summarized as follows:

• We design a novel Frequency-aware Transformer, Freq-
Former, which integrates spatial, channel, and frequency
information to reconstruct the high-frequency represen-
tation in vanilla transformers.

• We propose the Frequency Division Module (FDM)
to process high- and low-frequency information in a
divide-and-conquer manner, and introduce Frequency-
aware Transformer Block (FTB) to accomplish high-
frequency restoration and multi-feature aggregation.

• Extensive experiments demonstrate that our FreqFormer
outperforms existing state-of-the-art methods while
maintaining low computational complexity and model
size.

2 Related Work
2.1 CNN-based SR Methods
Since the introduction of CNNs by SRCNN [Dong et al.,
2016a] into the field of image super-resolution, significant
success has been achieved. SRCNN is a groundbreaking
work that not only utilizes CNNs but also surpasses tradi-
tional methods. Subsequently, numerous works and meth-
ods [Tai et al., 2017; Kim et al., 2016b] have delved deeper
into network layers, exploring improved performance and
structures. Some methods [Lim et al., 2017; Zhang et al.,
2018; Dong et al., 2016a; Tai et al., 2017] employ abundant
skip connections to accelerate network convergence and en-
hance reconstruction quality. For expediting SR inference,

FSRCNN [Dong et al., 2016b] extracts features at the LR
scale and performs upsampling operations at the network’s
end. This pixel-shuffling [Sun et al., 2023; Shi et al., 2016]
upsampling framework has been widely adopted in subse-
quent models. To augment the representational capacity of
SR models, some models have introduced channel atten-
tion [Zhang et al., 2018]. Recently, some works [Chen et al.,
2023] have explored the aggregation of spatial and channel
features to further enhance SR performance.

2.2 Vision Transformer Based Methods
In recent years, Transformers have demonstrated significant
potential in both natural language processing and computer
vision tasks, such as image classification [Dosovitskiy et
al., 2021; Liu et al., 2021; Li et al., 2021] and segmenta-
tion [Wang et al., 2021; Wu et al., 2020]. Notably, the Vi-
sion Transformer (ViT) [Dosovitskiy et al., 2021] has demon-
strated the advantages of Transformers in feature encoding
over CNNs. While ViT excels in modeling long-range depen-
dencies in features, a body of work has established that CNNs
and Transformers can be complementary. Due to their im-
pressive performance, Transformers have been introduced for
low-level visual tasks, including image SR [Chen et al., 2024;
Wang et al., 2022]. For example, SwinIR performs self-
attention on a local window for image restoration, while SR-
former [Zhou et al., 2023] develops permuted self-attention
to enlarge receptive field.

Unlike previous works that extract features in spatial do-
main, we propose a novel frequency-aware Transformer,
called FreqFormer, which integrates spatial, channel, and fre-
quency information to reconstruct the high-frequency repre-
sentation.

3 Methodology
As shown in Fig. 2a, our proposed FreqFormer comprises
three components: shallow feature extraction, deep feature
extraction, and high-resolution image reconstruction. For-
mally, given a LR image ILR, a 3×3 convolution layer is used
to extract the shallow feature FS ∈ RH×W×C . Then FS will
go through the proposed Frequency Division Module (FDM)
to process high- and low- frequency features in a divide-and-
conquer manner. After that, several stacked Frequency-aware
Transformer Block (FTB) is employed followed by several
convolutions and a skip connection to obtain the deep fea-
tures FD. Finally, Pixel-Shuffle is used to up-sample the res-
olution of FD and generate the super-resolved images ISR.
More details are described in the following sections.

3.1 Frequency Division Module
As shown in the previous work [Park and Kim, 2022], high-
frequency information in the original image would be eas-
ily lost when extracting feature in spatial domain. For this
reason, we develop Frequency Division Module to separately
handle high- and low- frequency in the FS , and recover the
high-frequency details before entering deeper layers.

Inspired by the work [Patro and Agneeswaran, 2023], we
first use Dual-Tree Complex Wavelet Transform (DTCWT)
to separate the high- and low-frequency information of FS .
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(a) The framework of FreqFormer.

(b) Frequency-aware Cascade Attention (FCA) (c) Dual Frequency Aggregation FFN (DFFN)

(d) Spatial-Frequency Attention (SFA) (e) Channel Transposed Attention (CTA)

Figure 2: The overall architecture of our Frequency-aware Transformer (FreqFormer), which mainly consists of Frequency Division Module
(FDM) and Frequency-aware Transformer Block (FTB).

Specifically, the real part of the DTCWT results can be for-
mulated as

XF (u, v) = Xϕ(u, v) +Xψ(u, v),

Xϕ(u, v) =
H−1∑
h=0

W−1∑
w=0

cM,h,wϕM,h,w,

Xψ(u, v) =

M−1∑
m=0

H−1∑
h=0

W−1∑
w=0

6∑
k=0

dkm,h,wΨ
k
m,h,w,

(1)

where Xϕ denotes the low-frequency scaling component and
Xψ denotes the high-frequency wavelet component. M refers
to resolution, and k refers to directional selectivity.

Similarly, we can also obtain the imaginary part of the
DTCWT and finally obtain Lin and Hin. Lin ∈ RC×H×W

represents the low-frequency component of the image. We
then use 1 × 1 and depth-wise convolution to capture both
global low-frequency information and local detailed informa-
tion, resulting in Lout ∈ RC×H×W .

However, obtaining useful features from the high-
frequency components Hin ∈ Rk×C×H×W×2 is a signifi-
cant challenge. This is because the presence of multiple an-
gles increases the dimensions by a factor of k, and due to the
inclusion of real and imaginary values, the actual parameter
count increases by 2k times. We aggregate channel and high-
frequency information using fully connected layers. For com-
putational simplification, we divide channels into Cb blocks,

each with cd channels, i.e., Hin ∈ R2×k×H×W×Cb×Cd .
Along the last dimension, two linear transformations of high-
frequency information provide fine-grained details such as
edges, patterns, and small features. After that, we perform
the inverse transform to bring the spectrum back to the physi-
cal domain, obtaining FFDM ∈ RH×W×C . Additionally, we
employ residual connections to transfer the high-frequency
information extracted by FFDM through DTCWT to differ-
ent depths of the network.

3.2 Frequency-aware Transformer Block
As shown in previous work [Park and Kim, 2022], self-
attention can be considered as a low-pass filter, and thus
cannot work well in reconstructing high frequency details.
For this reason, we propose the Frequency-aware Trans-
former Block (FTB) with Frequency-aware Cascade Atten-
tion (FCA) as well as Dual Frequency Aggregation Feed-
Forward Network (DFFN) to help reconstruct the high-
frequency details. As seen in Fig. see Fig. 2b, FCA mainly
consists of two cascaded attention modules, i.e., spatial-
channel attention and the channel transposed attention.

Spatial-Frequency Attention. To give the high-frequency
components more focus, we propose the Spatial-Frequency
Attention (SFA) shown in Fig. 2d, which combines high-
frequency and channel information into self-attention to en-
hance recovery of high-frequency details.

In detail, we first partition the input into rectangular win-
dows of dimensions H×W

wh×ww , where wh and ww denote the
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height and width of the rectangular window. For the i-th
rectangular window feature Xi ∈ R(wh×ww)×C , we set the
queries, keys, and values as Qi

SF , Ki
SF , and V i

SF , generated
by linear projection matrices without bias. The self-attention
computation process is expressed as

Y i
SF -A = SoftMax(Qi

SF (K
i
SF )

T /
√
d+B) · V i

SF , (2)

where B represents relative position encoding. Additionally,
following the Swin Transformer [Liu et al., 2021], we use a
shifting window operation to capture more spatial informa-
tion. Finally, reshaping and concatenating all Y i

SF -A results
in the output spatial self-attention feature YSF -A.

To extract spatial, frequency, and channel features, we per-
form multi-feature extraction using YSF -A, X , and VSF . This
involves Spatial-Projection (SP), Channel-Projection (CP),
and Frequency-Projection (FP) modules. Initially, we employ
a series of 1× 1 convolutions and depth-wise convolution on
VSF for global and local feature fusion, obtaining prelimi-
nary channel features YC . Subsequently, we perform multi-
dimensional mapping on the features separately for spatial,
channel, and frequency dimensions as

YS = fSP (YSF -A),

YF = fFP (Linear(X)),

YC , YC2 = fCP (YC), (3)

where YS represents the output after spatial mapping. We ex-
tract spatial information from YSF -A using a set of 1× 1 con-
volutions and depth-wise convolution, followed by channel-
wise division. To learn more complex spatial feature repre-
sentations, we introduce non-linear relationships for one-half
of the channels. Finally, aggregation along the channel di-
mension completes the spatial feature mapping.

On the other hand, YF represents the extraction and trans-
formation of frequency features. We initially map X to the
frequency feature space using a fully connected layer. Global
high-frequency information is extracted through a 1× 1 con-
volution , followed by 3 × 3 max-pooling and a series of
1 × 1 convolutions and activation layers to aggregate global
and local high-frequency information, resulting in the high-
frequency enhanced YF . We simulate a 19 × 19 convolu-
tion using depth-wise dilation convolution (DWD-Conv) to
increase the receptive field, achieving significant informa-
tion extraction within channels. This convolution combina-
tion considers both spatial and channel information, greatly
reducing parameter count.

Two types of outputs are provided, YC1 and YC2. The for-
mer further enhances YC , while the latter focuses on feature
extraction and mapping in the channel dimension. Next, we
aggregate high-frequency and low-frequency information. In
addition to fusing high-frequency information, we aim to pre-
serve low-frequency information as much as possible. There-
fore, no additional fusion is applied to the self-attention out-
put YSF -A. For the high-frequency feature YF , we add YSF -A
and YC2 to it to ensure that low-frequency information still
dominates. For the extracted channel information YC2 and

frequency information YF , to reduce computational complex-
ity, we pass their global information to YSF -A through aver-
age pooling layers.

Finally, we perform feature fusion through cross-branch
weighting. The feature fusion process is as follows:

YSF =YSF -A · f(AvgPool(YF · YC2))+

YC1 · f(Y F · Y S) + YF , (4)

where f(·) represents the sigmoid function. Through the
cross-branch weight fusion approach, we attempt to inte-
grate the missing channel and frequency information in self-
attention and the globally focused low-frequency informa-
tion.
Channel Transposed Attention. Channel Transposed Atten-
tion (CTA) adopts a different strategy compared to SFA, con-
ducting self-attention computation along the channel dimen-
sion. We employ a similar approach by dividing the channels
into multiple heads, applying channel attention as illustrated
in Fig. 2e. Let the input be YSF , the calculation of queries,
keys, and values (QC , KC , and VC) in the self-attention pro-
cess is expressed as

YC-A = SoftMax
(
(QC)

TKC/α
)
· VC , (5)

where α is a learnable temperature parameter used to adjust
the dot product. Finally, we obtain the channel attention fea-
ture YCA by reshaping the connections of different attention
heads. Unlike SFA, to reduce computational overhead, we
only aggregate spatial and channel features in channel atten-
tion. However, for other feature dimensions, we use the same
projection approach to obtain YC1, YC2, and YS . We then
proceed with information extraction and cross-weight trans-
fer as

YCA = YC1 · f(YS) +DW -Conv(VC) · f(YC2), (6)

where f(·) represents the sigmoid function. Finally, we
weight the channel attention output with spatial features, par-
allelly cross-weighting the extraction of channel features with
spatial information. This complementary approach aggre-
gates spatial and channel information.
Dual Frequency Aggregation Feed-Forward Network. To
better integrate the advantages of Transformer and CNN for
dual-frequency aggregation, we present the Dual Frequency
Aggregation Feed-Forward Network (DFFN) (see Fig. 2(c)).
Specifically, the input YSF or YCA is first projected onto Xin

through a fully connected layer, followed by a GELU activa-
tion function. Then, a frequency gate fg is used to extract
information in the frequency domain. The frequency gate
is a submodule comprising two convolution layers that sepa-
rate the input feature into low-frequency and high-frequency
information, respectively. Then the low-frequency informa-
tion remains unchanged, while the high-frequency informa-
tion undergoes a series of 1× 1 convolutions and depth-wise
convolution(DW -Conv) to enhance details as

Xfg = Xin ·DW -Conv(Conv1×1(Xin)), (7)
Xfg represents the multiplication of the information from the
two parts, resulting in a feature map that combines both low
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Method Years Scale Params Set5 Set14 BSD100 Urban100 Manga109
(K) PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

VDSR CVPR16

×2

666 36.66 / 0.9542 33.05 / 0.9127 31.90 / 0.8960 30.76 / 0.9140 37.22 / 0.9750
EDSR CVPRW17 1,555 37.99 / 0.9604 33.57 / 0.9175 32.16 / 0.8994 31.98 / 0.9272 38.54 / 0.9769
CARN ECCV18 1,592 37.76 / 0.9590 33.52 / 0.9166 32.09 / 0.8978 31.92 / 0.9256 38.36 / 0.9765
IMDN MM19 694 38.00 / 0.9605 33.63 / 0.9177 32.19 / 0.8996 32.17 / 0.9283 38.88 / 0.9774
LatticeNet ECCV20 756 38.15 / 0.9610 33.78 / 0.9193 32.25 / 0.9005 32.43 / 0.9302 - / -
ESRT CVPRW22 777 38.03 / 0.9600 33.75 / 0.9184 32.25 / 0.9001 32.58 / 0.9318 39.12 / 0.9774
SwinIR ICCVW21 878 38.14 / 0.9611 33.86 / 0.9206 32.31 / 0.9012 32.76 / 0.9340 39.12 / 0.9783
SwinIR-NG CVPR23 1181 38.17 / 0.9612 33.94 / 0.9205 32.31 / 0.9013 32.78 / 0.9340 39.20 / 0.9781
CRAFT ICCV23 737 38.23 / 0.9615 33.92 / 0.9211 32.33 / 0.9016 32.86 / 0.9343 39.39 / 0.9786
SRFormer-light ICCV23 853 38.23 / 0.9613 33.94 / 0.9209 32.36 / 0.9019 32.91 / 0.9353 39.28 / 0.9785
FreqFormer Ours 870 38.31 / 0.9616 34.12 / 0.9220 32.41 / 0.9026 33.25 / 0.9374 39.65 / 0.9792

VDSR CVPR16

×3

666 33.66 / 0.9213 29.77 / 0.8314 28.82 / 0.7976 27.14 / 0.8279 32.01 / 0.9340
EDSR CVPRW17 1,555 34.37 / 0.9270 30.28 / 0.8417 29.09 / 0.8052 28.15 / 0.8527 33.45 / 0.9439
CARN ECCV18 1,592 34.29 / 0.9255 30.29 / 0.8407 29.06 / 0.8034 28.06 / 0.8493 33.50 / 0.9440
IMDN MM19 703 34.36 / 0.9270 30.32 / 0.8417 29.09 / 0.8046 28.17 / 0.8519 33.61 / 0.9445
LatticeNet ECCV20 765 34.53 / 0.9281 30.39 / 0.8424 29.15 / 0.8059 28.33 / 0.8538 - / -
ESRT CVPRW22 770 34.42 / 0.9268 30.43 / 0.8433 29.15 / 0.8063 28.46 / 0.8574 33.95 / 0.9455
SwinIR ICCVW21 886 34.62 / 0.9289 30.54 / 0.8463 29.20 / 0.8082 28.66 / 0.8624 33.98 / 0.9478
SwinIR-NG CVPR23 1190 34.64 / 0.9293 30.58 / 0.8471 29,24 / 0.8090 28.71 / 0.8627 34.24 / 0.9489
CRAFT ICCV23 744 34.71 / 0.9295 30.61 / 0.8469 29.24 / 0.8093 28.77 / 0.8635 34.29 / 0.9491
SRFormer-light ICCV23 861 34.67 / 0.9296 30.57 / 0.8469 29.26 / 0.8099 28.81 / 0.8655 34.19 / 0.9489
FreqFormer Ours 878 34.86 / 0.9307 30.71 / 0.8488 29.35 / 0.8116 29.15 / 0.8710 34.80 / 0.9513

VDSR CVPR16

×4

666 31.35 / 0.8838 28.01 / 0.7674 27.29 / 0.7251 25.18 / 0.7524 28.83 / 0.8870
EDSR CVPRW17 1,518 32.09 / 0.8938 28.58 / 0.7813 27.57 / 0.7357 26.04 / 0.7849 30.35 / 0.9067
CARN ECCV18 1,592 32.13 / 0.8937 28.60 / 0.7806 27.58 / 0.7349 26.07 / 0.7837 30.47 / 0.9084
IMDN MM19 715 32.21 / 0.8948 28.58 / 0.7811 27.56 / 0.7353 26.04 / 0.7838 30.45 / 0.9075
LatticeNet ECCV20 777 32.30 / 0.8962 28.68 / 0.7830 27.62 / 0.7367 26.25 / 0.7873 - / -
ESRT CVPRW22 751 32.19 / 0.8947 28.69 / 0.7833 27.69 / 0.7379 26.39 / 0.7962 30.75 / 0.9100
SwinIR ICCVW21 897 32.44 / 0.8976 28.77 / 0.7858 27.69 / 0.7406 26.47 / 0.7980 30.92 / 0.9151
SwinIR-NG CVPR23 1201 32.44 / 0.8980 28.83 / 0.7870 27.73 / 0.7418 26.61 / 0.8010 31.09 / 0.9161
CRAFT ICCV23 753 32.52 / 0.8989 28.85 / 0.7872 27.72 / 0.7418 26.56 / 0.7995 31.18 / 0.9168
SRFormer-light ICCV23 873 32.51 / 0.8988 28.82 / 0.7872 27.73 / 0.7422 26.67 / 0.8032 31.17 / 0.9165
FreqFormer Ours 889 32.69 / 0.9007 28.95 / 0.7898 27.79 / 0.7444 26.84 / 0.8093 31.59 / 0.9201

Table 1: Quantitative comparison (PSNR/SSIM) for lightweight image SR with state-of-the-art methods on benchmark datasets. The best
and second-best results are marked in red and blue colors.

and high-frequency information. Finally, another fully con-
nected layer maps the fused feature map back to the original
feature space XDFFN . Through this structure, DFFN can ex-
tract frequency domain information while preserving spatial
domain information.

At the end of DFFN, to compensate for the loss of long-
distance detail information resulting from the transition from
DFB to different layers, we incorporate a series of 1× 1 con-
volutions and depth-wise convolution at the end of each FTB
group, based on the depth. This allows us to recover high-
frequency details after the self-attention mechanism using the
High-Frequency Recovery Block (HFRB).

3.3 Loss Function

Following the previous work, we use the L1 loss to mini-
mize the distance between the model predictions ISR and the
ground truth IHR, expressed as

L1 = ||ISR − IHR||1 (8)

4 Experiments
4.1 Experimental Setup
Datasets and Metrics. We followed the methodologies es-
tablished in previous studies to train and test our model.
Specifically, experiments were conducted for upscaling fac-
tors of ×2, ×3, and ×4. Two training datasets, DIV2K [Lim
et al., 2017] and Flickr2K [Radu Timofte and Zhang,
2017], were used for model training. Additionally, five
benchmark testing datasets—Set5 [Bevilacqua et al., 2012],
Set14 [Zeyde et al., 2010], B100 [D. et al., 2002], Ur-
ban100 [Huang et al., 2015], and Manga109 [Matsui et al.,
2016]—were used to evaluate the model. Image quality was
evaluated using PSNR and SSIM metrics, computed on the
Y-channel (brightness) in the YCbCr color space. The low-
resolution (LR) images were created by downscaling the cor-
responding high-resolution (HR) images using bicubic inter-
polation.
Implementation Details. In our training setup, the model
was configured with a patch size of 64×64, and a batch size of
32. The training process comprised 500,000 iterations, with
an initial learning rate of 2 × 10−4. The learning rate was
halved at specific milestones: [250K, 400K, 450K, 475K].
Data augmentation techniques, including random horizontal
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Urban100: img 024 (×4)

Bicubic CARN SwinIR Swin-NG

CRAFT SRFormer ours HR

Urban100: img 059 (×4)

Bicubic CARN SwinIR Swin-NG

CRAFT SRFormer ours HR

Urban100: img 092 (×4)

Bicubic CARN SwinIR Swin-NG

CRAFT SRFormer ours HR

Figure 3: Qualitative comparison for lightweight image SR(×4) task in some challenging cases.

FDM SFA CTA Params (K) FLOPs (G) PSNR (dB)

✓ 856 55.2 38.26
✓ 719 46.5 38.16

✓ ✓ 788 50.8 38.27
✓ ✓ ✓ 870 57.4 38.29

(a) Ablation study of alternate strategy.

Spatial-Projection Frequency-Projection Channel-Projection Params (K) PSNR (dB)

✓ 778 38.26
✓ 719 38.25

✓ 769 38.26

(b) Ablation study of Projection, w/o FDM.

Table 2: Ablation studies. The models are trained on DIV2K and Flickr2K, and tested on Set5(×2)

flipping, and rotations at 90°, 180°, and 270°, were applied
to the training set. For optimization, the Adam optimizer was
employed with β1 = 0.9 and β2 = 0.99 to minimize the L1

loss. Additionally, the model was trained using the PyTorch
toolkit on 4 NVIDIA 3090 GPUs.

4.2 Comparison With State-of-the-Arts
We compare the effectiveness of the proposed FreqFormer
with several state-of-the-art Single Image Super-Resolution
(SISR) methods, including VDSR [Kim et al., 2016a],
EDSR [Lim et al., 2017], IMDN [Hui et al., 2019],
LatticeNet [Luo et al., 2020], ESRT [Lu et al., 2022],
SwinIR [Liang et al., 2021] , SwinIR-NG [Choi et al., 2023],
CRAFT [Li et al., 2023a], and SRFormer [Zhou et al., 2023].
Quantitative Results. The quantitative results on five bench-
mark datasets are presented in Table 1. The FreqFormer, pro-
posed in this study, outperforms all comparative methods on
the benchmark datasets, showcasing significant advantages
across all test cases. Compared to traditional CNN-based
methods, such as EDSR, the FreqFormer exhibits notable per-
formance improvements on the Manga109 dataset at scaling
factors of ×2, ×3, and ×4, achieving improvements of 1.11

dB, 1.35 dB, and 1.24 dB, respectively. Notably, when com-
pared to other Transformer architectures with similar param-
eter counts, like SwinIR and ESRT, FreqFormer consistently
achieves superior performance. On Urban100 and Manga109
datasets at scaling factor of ×2, our model also demonstrates
performance gains of 0.34 dB and 0.26 dB. These quantitative
results collectively underscore the effectiveness and necessity
of the self-attention modules in restoring high-frequency in-
formation.
Qualitative Comparison. In Fig. 3, we present qualitative
comparisons at ×4 magnification. For distant high-frequency
details, our model demonstrates state-of-the-art results. In
img 024, we are able to restore high-frequency details that
other models cannot, while alternative methods may result
in blurriness or artifacts in these complex areas. Similar ob-
servations can be found in img 059 and img 092, suggesting
that our approach effectively reduces artifacts, preserves more
structures, and captures surprising details.

4.3 Real-world Image Super-Resolution
In Fig. 4, we present the visual results generated by different
methods on real-world low-resolution images. In the first row
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LR SwinIR SwinIR-NG CRAFT SRFormer ours

Figure 4: Qualitative comparisons with recent state-of-the-art methods on the real-world image SR(×4) task.

HR LAM Attribution Area of Contribution

SwinIR FreqFormer SwinIR FreqFormer

Figure 5: In challenging reconstruction tasks such as SwinIR [Liang
et al., 2021] (left) and FreqFormer (right), we can observe that Fre-
qFormer achieves superior results across a wide range of pixels.

of visual comparisons, the wall texture created by our Freq-
Former appears more natural, clear, and accurate, eliminating
the edge distortions caused by traditional Transformers. In
the second row, the glass curtain produced by FreqFormer is
sharper and more cohesive. It is evident that our approach
can produce and restore sharper edges, especially noticeable
in visual effects, demonstrating the significant potential ap-
plicability of our method in real-world scenarios.

4.4 LAM Visualization
As seen in Fig. 5, the pixels restored by FreqFormer extend
across almost the entire image, in contrast to SwinIR, which
only aggregates within a limited range. These results indi-
cate that our approach can activate more pixels to reconstruct
low-resolution input images. These observations confirm the
effectiveness of our method and demonstrate the superiority
of our approach from an interpretability perspective.

4.5 Ablation Study
For a fair comparison, we trained models on the DIV2K
dataset and the Flickr2K dataset, and tested them on the Set5
dataset in ablation studies. All models share the same im-
plementation details as FreqFormer, except for the iteration
count, which is set to 300K. Additionally, we set the output
size to 3×256×256 for calculating FLOPs.
Alternate Strategy. To showcase the efficacy of FDM, SFA,

and CTA, we carried out several sets of experiments, as de-
picted in the structure shown in Fig. 2a. Firstly, we com-
pared the performance of DFFN with and without FDM, as
indicated in the first and second rows of the table. We re-
placed all attention blocks with SFA and CTA, respectively.
The third row represents the concatenation of SFA and CTA,
alternately used in the FCA. By comparison, we can observe
that the model using only SFA performs significantly better
than the one using only CTA. However, the best performance
(38.27 dB) is achieved when alternating between CFA and
CTA. Furthermore, the combined use of CFA and CTA re-
sults in a decrease in Params by 68K and FLOPs by 4.4G
compared to using SFA alone. This suggests that CTA serves
as a complementary block to SFA and plays a crucial role in
image restoration. We also performed an ablation study on
FDM, and the results indicate that combining high-frequency
information and channel information after shallow feature ex-
traction effectively restores high-frequency details.
Different Projection. We verify the effectiveness of pro-
jection parts in Table 2b. Firstly, we conducted an ablation
study on Spatial-Projection, providing a PSNR of 38.26dB at
30K iterations. In the second row, we tested the most crit-
ical ablation experiment on Frequency-Projection. Despite
having 719K parameters, the model achieved only 38.25dB
PSNR, indicating the effectiveness and necessity of restor-
ing high-frequency information after the self-attention mech-
anism. The last row, Channel-Projection, demonstrates that
feature restoration solely in spatial dimensions is insufficient.
To make better use of information for image restoration,
channel information needs to be incorporated.

5 Conclusion
In this paper, we propose FreqFormer, a novel Hybrid At-
tention Transformer. Our model integrates spatial, frequency,
and channel information, activating more pixels for recon-
struction through multi-branch aggregation. Additionally, by
blending frequency and channel information, along with var-
ious frequency aggregations, it effectively restores intricate
details in images, such as edges, patterns, and small fea-
tures. Extensive experiments have demonstrated that our Fre-
qFormer outperforms several state-of-the-art methods in var-
ious image super resolution tasks.
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