
Hybrid Frequency Modulation Network for Image Restoration

Yuning Cui1 , Mingyu Liu1 , Wenqi Ren2∗ and Alois Knoll1
1Technical University of Munich

2Shenzhen Campus of Sun Yat-sen University
{yuning.cui, liumi, knoll}@in.tum.de, renwq3@mail.sysu.edu.cn

Abstract
Image restoration involves recovering a high-
quality image from its corrupted counterpart. This
paper presents an effective and efficient frame-
work for image restoration, termed CSNet, based
on “channel + spatial” hybrid frequency modula-
tion. Different feature channels include different
degradation patterns and degrees, however, most
current networks ignore the importance of chan-
nel interactions. To alleviate this issue, we pro-
pose a frequency-based channel feature modulation
module to facilitate channel interactions through
the channel-dimension Fourier transform. Further-
more, based on our observations, we develop a
multi-scale frequency-based spatial feature modu-
lation module to refine the direct-current compo-
nent of features using extremely lightweight learn-
able parameters. This module contains a densely
connected coarse-to-fine learning paradigm for en-
hancing multi-scale representation learning. In ad-
dition, we introduce a frequency-inspired loss func-
tion to achieve omni-frequency learning. Extensive
experiments on nine datasets demonstrate that the
proposed network achieves state-of-the-art perfor-
mance for three image restoration tasks, including
image dehazing, image defocus deblurring, and im-
age desnowing. The code and models are available
at https://github.com/c-yn/CSNet.

1 Introduction
As a fundamental task in computer vision, image restoration
involves recovering a high-quality image from its corrupted
counterpart by removing degradations and restoring content
details [Cui et al., 2023b]. As this task plays an impor-
tant role in many fields, such as transportation systems, un-
manned platforms, and photography, it increasingly garners
attention from the industrial community and academia. Due
to its ill-posedness property, manifold traditional approaches
have been proposed based on various hand-crated features to
reduce the solution space. However, these attempts are inap-
plicable when the assumption is not satisfied.
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Figure 1: Comparisons between our CSNet and the state-of-the-art
algorithms on the SOTS dataset [Li et al., 2018] for image dehazing.
The circle size indicates the number of parameters.

Recently, methods based on convolutional neural net-
works (CNNs) have significantly ameliorated the above issue
and produced more promising results than conventional ap-
proaches. This is achieved by steering clear of human knowl-
edge and learning generalizable priors from large-scale col-
lected datasets. To improve the performance of these net-
works, many ingenious functional modules have been devised
to obtain high-quality predicted images. For example, Qin el
al. utilize various attention units, such as channel and pixel
attention, for image dehazing, considering totally different
weighted information contained in different channel features
and uneven haze distribution among the spatial pixels [Qin
et al., 2020]. Son et al. leverage multiple atrous convolu-
tions with different rates to deal with spatially-varying de-
focus blurs [Son et al., 2021]. These advanced mechanisms
have significantly boosted the performance of image restora-
tion. Nevertheless, the inherent drawback of convolution, i.e.,
local connectivity, prohibits its further applications.

Fortunately, inspired by the success of Transformer mod-
els in natural language processing and high-level vision tasks,
such as object detection and segmentation, many efforts have
been made to tailor Transformer for image restoration prob-
lems. For instance, Guo et al. first introduce the strengths
of Transformer for haze removal [Guo et al., 2022]. To im-

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

722

https://github.com/c-yn/CSNet


prove the efficiency of Transformer models, some researchers
attempt to reduce the operation regions of self-attention [Tsai
et al., 2022]. Zamir et al. creatively apply the self-attention
operator to the channel dimension rather than spatial re-
gions [Zamir et al., 2022]. Thanks to the powerful ability
of self-attention, these models can effectively capture long-
range dependencies and have remarkably advanced state-of-
the-art performance for image restoration tasks. Nonetheless,
efficiency is a key factor for practical applications, and how to
reduce the complexity of self-attention remains a formidable
challenge.

To pursue global perceptive fields while remaining highly
efficient, a few recent works resort to embedding frequency
processing in deep networks. For example, Mao et al. in-
corporate the fast Fourier transform (FFT) into the residual
block to enable both low- and high-frequency learning for im-
age deblurring [Mao et al., 2021]. Guo et al. propose a novel
window-based frequency attention to solve the frequency res-
olution mismatch problem [Guo et al., 2023]. According to
the Fourier theorem, these algorithms can effectively model
global signals while bridging the frequency gap between de-
graded and sharp image pairs. However, they only apply the
Fourier transform to the spatial dimension, ignoring the im-
portance of channel interactions [Zhang et al., 2023].

To alleviate the above issues, we propose an efficient and
effective network based on hybrid dual-dimension frequency
modulation. Concretely, to facilitate information exchange
between channels that contain different degradation patterns,
we develop a novel frequency-based channel feature modula-
tion module by applying FFT to the channel dimension. By
doing this, each pixel can perceive signals encompassing dif-
ferent degradation patterns from the same location across all
channels. Compared to the pure channel attention that only
learns a single attention weight for each channel [Hu et al.,
2018], our approach operates at the pixel-wise granularity,
offering efficacy in managing spatially varying degradations.
Additionally, our module can achieve channel-dimension in-
teractions in multiple spectral spaces by using FFT.

Furthermore, we observe that replacing the direct-current
(DC) component of the degraded image with that of the
ground truth results in a sharper image, as illustrated in Fig-
ure 2. This fact inspires us to propose a frequency-based spa-
tial feature modulation module that only refines the DC com-
ponent in spectra. To achieve this, we utilize the global av-
erage pooling technique to obtain the DC part of the features
and then apply lightweight learnable parameters to refine it,
which bypasses the use of FFT and IFFT, saving computation
overhead. We further inject this mechanism into a densely
connected coarse-to-fine paradigm for multi-scale represen-
tation learning. Moreover, as the DC component is a kind of
low-frequency signal, to facilitate omni-frequency learning,
we enhance high-frequency information learning by introduc-
ing a frequency-based loss function.

By incorporating the above designs into a U-shaped CNN,
the proposed CSNet achieves state-of-the-art performance
on several image restoration tasks. For dehazing, our
model outperforms the recent Transformer-based method,
MB-TaylorFormer-B [Qiu et al., 2023] by 0.63 dB PSNR
on the widely-used SOTS [Li et al., 2018] dataset with sim-

9.08 dB 14.00 dB +∞

7.42 dB 19.63 dB +∞

Hazy Image Result GT

Figure 2: Replacing the direct-current component of the hazy image
with that of the ground truth leads to a cleaner result. From left to
right: hazy images, the obtained results, and ground truth.

ilar computation overhead, as illustrated in Figure 1. Also,
our CSNet shows the strong capability of defocus deblurring
by providing a gain of 0.07 dB PSNR over FocalNet [Cui
et al., 2023a] in the combined category of the DPDD [Abuo-
laim and Brown, 2020] dataset. Furthermore, CSNet achieves
38.13 dB PSNR on the CSD [Chen et al., 2021] dataset, an
improvement of 0.95 dB over FocalNet [Cui et al., 2023a].

Overall, we summarize the main contributions of this arti-
cle as follows:

• We propose a frequency-based channel feature modu-
lation module to enhance channel interactions in mul-
tiple spectral spaces using the Fourier transformer, en-
abling each pixel to perceive different degradation pat-
terns from other channels.

• We introduce a multi-scale frequency-based spatial fea-
ture modulation module that refines the direct-current
component at multiple scales to bring the degraded im-
age closer to ground truth. We also present a frequency-
based loss for omni-frequency representation learning.

• Employing hybrid dual-dimension frequency learning,
the proposed network achieves state-of-the-art perfor-
mance on nine datasets for three image restoration tasks.

2 Related Work
Image Restoration Networks. As a fundamental computer
vision task, image restoration involves recovering missing de-
tails and removing degradations in corrupted images [Cui et
al., 2023d]. Traditional approaches mainly stand on various
hand-crafted features and assumptions, inevitably facing the
issue of inappropriateness in practical scenarios [He et al.,
2010]. With the rapid development of deep learning, multi-
farious CNN-based frameworks have been proposed for di-
verse image restorations, such as image dehazing [Qin et al.,
2020], desnowing [Liu et al., 2018], and deblurring [Son et
al., 2021], showcasing more promising performance than the
conventional predecessors [Cui et al., 2023c]. Various ad-
vanced units and modules have been devised to further boost
restoration performance [Cui et al., 2024]. The recent suc-
cess of Transformer models in high-level vision tasks facil-
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Figure 3: The architectural details of the proposed CSNet. (a) CSNet consists of three encoder blocks and three decoder blocks. (b)
The Encoder/Decoder block comprises N regular residual blocks and a modified one that includes our multi-scale frequency-based spatial
feature modulation module (MFSFM). (c) The frequency-based channel feature modulation module (FCFM) performs FFT across the channel
dimension. (d) MFSFM refines the direct-current component of spatial features in a coarse-to-fine manner with dense connection.

itates the paradigm shift from CNN to Transformer mod-
els in image restoration [Qiu et al., 2023; Guo et al., 2022;
Song et al., 2022; Valanarasu et al., 2022]. These models
have significantly advanced state-of-the-art performance by
effectively providing long-distance information interactions.

Attention Mechanisms. Attention mechanisms have been
commonly adopted in image restoration tasks to attend to in-
formative regions. For example, Liu et al. adopt the channel-
wise attention mechanism to flexibly fuse features from dif-
ferent scales for image dehazing [Liu et al., 2019]. Za-
mir et al. leverage the supervised attention module to con-
trol information flow between different stages [Zamir et al.,
2021]. Cui et al. introduce a strip attention module to har-
vest multi-scale contextual information [Cui et al., 2023e].
On the other hand, the recent self-attention module has put
the Transformer models in the spotlight [Song et al., 2022;
Guo et al., 2022]. Despite a few remedies, the high complex-
ity of self-attention is still an intractable problem. Different
from these attention-based methods, we develop lightweight
attention modules from the perspective of frequency and ad-
here to the “channel + spatial” paradigm. Our proposed mod-
ules can model global information in spatial and channel di-
mensions and leverage frequency discrepancies between de-
graded and clean image pairs.

Spectral Networks. Recently, spectral networks have pro-
duced promising results for image restoration by revitalizing
frequency processing, which is widely used in traditional al-
gorithms [Mao et al., 2021; Yu et al., 2022; Guo et al., 2023].
The common practice adopted by these methods is first to
transfer the spatial features into the spectral domain using the
Fourier or Wavelet transforms. The resulting spectra are then
refined by a few convolutional layers. The inverse transforms
are finally utilized to convent the modulated representation

into the spatial domain. The above process is mostly applied
in the spatial dimension. In this paper, we present a hybrid
dual-dimension frequency learning strategy to enhance chan-
nel interactions and refine spatial global information.

3 Method
In this section, we first introduce the overall pipeline of
our network. Then, we present the details of the core
components: frequency-based channel feature modulation
(FCFM), multi-scale frequency-based spatial feature modu-
lation (MFSFM), and frequency-based loss function (FLF).

3.1 Overall Pipeline
As illustrated in Figure 3, our CSNet adopts the widely-used
encoder-decoder architecture and consists of three scales for
effective multi-scale representation learning. Figure 3 (a)
shows that each decoder/encoder contains N normal residual
blocks and a modified one that accommodates our MFSFM in
the middle of two 3×3 convolutions. Our FCFM is employed
in the bottleneck position of CSNet.

Given any input degraded image of shape 3 × H × W ,
where 3 denotes the number of channels and H × W spec-
ifies the spatial locations in each channel, CSNet first lever-
ages a single 3×3 convolutional layer to produce embedding
features of size C × H × W , which are then fed into three
encoders to obtain the in-depth features. During this process,
the channels are expanded, and the resolutions are downsam-
pled using the strided convolutions with the kernel size of 3
and stride of 2. After being refined by our FCFM, the re-
sulting features pass through three decoder blocks to recover
sharp features. In this process, the resolution is gradually re-
stored to the original size through transposed convolutions
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(kernel size=4, stride=2), while the channel capability is re-
duced. The residual sharp image is produced via a 3 × 3
convolution, and the final output of CSNet is generated by
additionally adding the original degraded input image. Next,
we delineate the core components.

3.2 FCFM
Our frequency-based channel feature modulation module
(FCFM) is illustrated in Figure 3 (c). It applies FFT among
the channel dimensions to enhance channel interactions. As
a result, each pixel can integrate information from the same
location across all channels in multiple spectral spaces. Fur-
thermore, our module operates at the pixel-wise granular-
ity, which is conducive to managing spatially varying blurs.
Specifically, given any input features X ∈ RC×H×W , FFT
is used across channels to obtain the real and imaginary com-
ponents, which are then concatenated among the channel di-
mension. The concatenated spectra are modulated through a
1 × 1 convolution layer. The output of FCFM is yielded via
the channel-dimension IFFT. The above process can be for-
mally expressed as:

X̂ = C− IFFT(Conv1×1([R(X), I(X)])), (1)

where R and I are the real and imaginary compo-
nents, respectively; [·, ·] denotes the concatenation operation;
Conv1×1 represents a convolutional layer with the kernel size
of 1 × 1; and C-IFFT applies IFFT among the channel di-
mension. Although our lightweight FCFM has simple opera-
tion, it significantly improves performance over the baseline
model, which will be shown in the ablation studies.

3.3 MFSFM
In addition to FCFM, which provides channel-dimension
modulation, we further propose a multi-scale frequency-
based spatial feature modulation module (MFSFM) to refine
spatial features from the frequency perspective. From Fig-
ure 2, we can see that replacing the direct-current (DC) com-
ponent of the degraded image with that of the ground truth
leads to a sharper result. This fact inspires us to refine the
DC component for spatial feature modulation, which can also
model global information. Furthermore, we inject this mech-
anism, termed FSFM, into a densely connected coarse-to-fine
learning paradigm to achieve multi-scale spatial feature re-
finement. In the following, we first introduce FSFM and then
present its multi-scale version.

Similarly, with the input features X ∈ RC×H×W , we
utilize the global average pooling to directly obtain the DC
component instead of using FFT, resulting in lower compu-
tation overhead. The resulting DC part is recalibrated by the
lightweight attention parameters optimized by backpropaga-
tion. Next, the improved DC part is fused with the remaining
features, followed by a depthwise convolution for refinement.
The above process can be expressed as:

X̂ = FFSFM (X)

= DConv3×3(X −GAP(X) +W ⊙GAP(X)),
(2)

where GAP is the global average pooling operation;
W ∈ RC×1×1 is the channel-wise attention parameters;

DConv3×3 is a 3× 3 depthwise convolution; and ⊙ denotes
the element-wise multiplication, where the size difference be-
tween W and features are bridged via the broadcast mecha-
nism of the programming framework.

To enhance multi-scale representation learning, we in-
ject FSFM into a densely connected coarse-to-fine learning
paradigm, illustrated in Figure 3 (d). Specifically, the input
features are downsampled to multiple feature spaces and then
refined by the above FSFM. The resulting features of a branch
are delivered to all subsequent branches for feature fusion and
coarse-to-fine restoration. The final output of MFSFM is gen-
erated by applying a 3 × 3 convolution to the added features
from all branches. Similarly, given any input tensor X , the
process of MFSFM can be formally expressed as:

X̂ = Conv3×3(
∑
i

X̂i ↑24−i +X), (3)

X̂i = FFSFM (X ↓24−i +
i−1∑
j=1

X̂j), (4)

where i ∈ {1, 2, 3} indexes the branch; X̂j represents the
upsampled result of a preceding branch; ↑24−i denotes the
upsampling operator with the rate of 24−i; and X̂0=0.

3.4 FLF
As the DC component can be considered as a kind of low-
frequency signal, we further propose a frequency-based loss
function (FLF) as a complementary part of FSFM to refine
omni-frequency signals. Denoting the predicted image of
CSNet and the ground truth as Î and G, respectively, FLF
is given by:

LFLF = ∥Î −GAP(Î)− (G−GAP(G))∥1, (5)

where GAP is the global average pooling technique. By doing
this, we bring the high-frequency component of Î closer to
that of G. In our case, the high frequency is obtained by
removing the DC part from the images.

4 Experiments
In this section, we first introduce the implementation details
and evaluation metrics. Then, we compare our results with
state-of-the-art algorithms on nine different datasets for three
representative image restoration tasks: image dehazing, im-
age defocus deblurring and image desnowing. Ablation ex-
periments are performed in the final part. In the tables, the
top-performing scores are highlighted in purple. In the fig-
ures, PSNR is computed for comparisons.

4.1 Implementation Details
Unless mentioned otherwise, we adopt the following hyper-
parameters to train our CSNet. Specifically, the model is
trained using the Adam optimizer on 256× 256 patches with
a batch size of 8. The initial learning rate is 2−4, which is
gradually reduced to 1e−6 with cosine annealing. We adopt
the horizontal flips for data augmentation. According to the
complexity of different tasks, we set N (Figure 3 (b)) to 3 for
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Figure 4: Qualitative comparisons on the SOTS [Li et al., 2018] dataset for image dehazing.

SOTS Dense-Haze NH-HAZE O-HAZE
Methods Venue PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
DehazeNet [Cai et al., 2016] TIP’16 19.82 0.821 13.84 0.43 16.62 0.52 17.57 0.77
AOD-Net [Li et al., 2017] ICCV’17 20.51 0.816 13.14 0.41 15.40 0.57 15.03 0.54
GridDehazeNet [Liu et al., 2019] ICCV’19 32.16 0.984 - - 13.80 0.54 - -
MSBDN [Dong et al., 2020] CVPR’20 33.67 0.985 15.37 0.49 19.23 0.71 24.36 0.75
FFA-Net [Qin et al., 2020] AAAI’20 36.39 0.989 14.39 0.45 19.87 0.69 22.12 0.77
AECR-Net [Wu et al., 2021] CVPR’21 37.17 0.990 15.80 0.47 19.88 0.72 - -
PFDN [Dong and Pan, 2020] ECCV’20 32.68 0.976 - - - - - -
DeHamer [Guo et al., 2022] CVPR’22 36.63 0.988 16.62 0.56 20.66 0.68 - -
MAXIM-2S [Tu et al., 2022] CVPR’22 38.11 0.991 - - - - - -
FSDGN [Yu et al., 2022] ECCV’22 38.63 0.990 16.91 0.58 19.99 0.73 - -
PMNet[Ye et al., 2022] ECCV’22 38.41 0.990 16.79 0.51 20.42 0.73 24.64 0.83
DehazeFormer-L [Song et al., 2022] TIP’23 40.05 0.996 - - - - - -
SANet [Cui et al., 2023e] IJCAI’23 40.40 0.996 - - - - - -
MB-TaylorFormer-B [Qiu et al., 2023] ICCV’23 40.71 0.992 16.66 0.56 - - 25.05 0.79
FocalNet [Cui et al., 2023a] ICCV’23 40.82 0.996 17.07 0.63 20.43 0.79 25.50 0.94
CSNet Ours 41.34 0.996 17.33 0.65 20.43 0.80 25.60 0.94

Table 1: Quantitative comparisons on the synthetic and real-world datasets for image dehazing.

Methods PSNR↑ SSIM↑
NDIM [Zhang et al., 2014] 14.31 0.526
GS [Li et al., 2015] 17.32 0.629
MRPF [Zhang et al., 2017] 16.95 0.667
MRP [Zhang et al., 2017] 19.93 0.777
OSFD [Zhang et al., 2020] 21.32 0.804
HCD [Wang et al., 2024] 23.43 0.953
FocalNet [Cui et al., 2023a] 25.35 0.969
CSNet (Ours) 26.13 0.971

Table 2: Image dehazing comparisons on the NHR [Zhang et al.,
2020] dataset for nighttime scenes.

Methods PSNR↑ SSIM↑
GS [Li et al., 2015] 21.02 0.639
MRP [Zhang et al., 2017] 20.92 0.646
Ancuti et al [Ancuti et al., 2016] 20.59 0.623
CycleGAN [Zhu et al., 2017] 21.75 0.696
Yan et al [Yan et al., 2020] 27.00 0.850
Jin et al [Jin et al., 2023] 30.38 0.904
CSNet (Ours) 31.55 0.914

Table 3: Nighttime image dehazing comparisons on the GTA5 [Yan
et al., 2020] dataset.

dehazing and desnowing, and 15 for deblurring. All experi-
ments are carried out on an NVIDIA Tesla A100 GPU.

We measure the widely-used peak signal-to-noise ratio
(PSNR) and structural similarity index (SSIM) [Wang et al.,

2004] for all datasets, and additionally, adopt the mean ab-
solute error (MAE) and learned perceptual image patch simi-
larity (LPIPS) [Zhang et al., 2018] for the DPDD [Abuolaim
and Brown, 2020] dataset.

4.2 Results
Image Dehazing. We evaluate our model on both daytime
and nighttime dehazing datasets. For daytime scenes, the
numerical results on a synthetic (SOTS [Li et al., 2018])
and three real-world datasets, i.e., Dense-Haze [Ancuti et al.,
2019], NH-HAZE [Ancuti et al., 2020], and O-HAZE [An-
cuti et al., 2018], are presented in Table 1. As seen, our model
produces top-performing results on most metrics across syn-
thetic and real-world datasets. In particular, CSNet outper-
forms the recent strong Transformer-based algorithm, MB-
TaylorFormer-B [Qiu et al., 2023], by 0.63 dB PSNR on the
SOTS dataset with similar computation overhead, as illus-
trated in Figure 1. Compared to another recent algorithm,
FocalNet [Cui et al., 2023a], our method is more effective in
removing real-world haze degradations by providing perfor-
mance gains of 0.26 dB and 0.10 dB PSNR on Dense-Haze
and O-HAZE, respectively. Figure 4 shows the visual results
on SOTS [Li et al., 2018]. The image produced by our model
is much closer to the ground truth.

In addition, we provide nighttime dehazing results on two
datasets, NHR [Zhang et al., 2020] and GTA5 [Yan et al.,
2020], in Table 2 and Table 3, respectively. Our model is
superior to FocalNet [Cui et al., 2023a] with a performance
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Figure 5: Qualitative comparisons on the NHR [Zhang et al., 2020] dataset for image dehazing.
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Figure 6: Qualitative comparisons on the GTA5 [Yan et al., 2020] dataset for image dehazing.
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Figure 7: Qualitative comparisons on the DPDD [Abuolaim and Brown, 2020] dataset for image defocus deblurring.

Indoor Scenes Outdoor Scenes Combined
Methods PSNR↑ SSIM↑ MAE↓ LPIPS↓ PSNR↑ SSIM↑ MAE↓ LPIPS↓ PSNR↑ SSIM↑ MAE↓ LPIPS↓
EBDB [Karaali and Jung, 2017] 25.77 0.772 0.040 0.297 21.25 0.599 0.058 0.373 23.45 0.683 0.049 0.336
DMENet [Lee et al., 2019] 25.50 0.788 0.038 0.298 21.43 0.644 0.063 0.397 23.41 0.714 0.051 0.349
JNB [Shi et al., 2015] 26.73 0.828 0.031 0.273 21.10 0.608 0.064 0.355 23.84 0.715 0.048 0.315
DPDNet [Abuolaim and Brown, 2020] 26.54 0.816 0.031 0.239 22.25 0.682 0.056 0.313 24.34 0.747 0.044 0.277
KPAC [Son et al., 2021] 27.97 0.852 0.026 0.182 22.62 0.701 0.053 0.269 25.22 0.774 0.040 0.227
IFAN [Lee et al., 2021] 28.11 0.861 0.026 0.179 22.76 0.720 0.052 0.254 25.37 0.789 0.039 0.217
DRBNet [Ruan et al., 2022] - - 25.73 0.791 - 0.183
Restormer [Zamir et al., 2022] 28.87 0.882 0.025 0.145 23.24 0.743 0.050 0.209 25.98 0.811 0.038 0.178
NRKNet [Quan et al., 2023] - - 26.11 0.810 - 0.210
FocalNet [Cui et al., 2023a] 29.10 0.876 0.024 0.173 23.41 0.743 0.049 0.246 26.18 0.808 0.037 0.210
CSNet (Ours) 29.20 0.881 0.023 0.147 23.45 0.752 0.049 0.206 26.25 0.815 0.037 0.178

Table 4: Image defocus deblurring comparisons on the DPDD [Abuolaim and Brown, 2020] dataset.

gain of 0.78 dB in terms of PSNR on NHR. Also, our CSNet
outperforms the recent algorithm [Jin et al., 2023] by 1.17 dB
PSNR, although it is specially designed for nighttime scenes.
Visual comparisons in Figure 5 and Figure 6 illustrate that
our model is robust in nighttime scenarios.

Image Defocus Deblurring. For this task, we conduct ex-
periments on the widely used DPDD [Abuolaim and Brown,
2020] dataset. The quantitative results are shown in Ta-
ble 4. The proposed network outperforms state-of-the-art al-
gorithms in most scenes. Specifically, our model significantly
outperforms the strong Transformer-based Restormer [Za-

mir et al., 2022] by 0.27 dB PSNR in the combined cat-
egory. In comparison to the recently proposed methods,
NRKNet [Quan et al., 2023] and FocalNet [Cui et al., 2023a],
our method continues to achieve superior scores, surpassing
them by 0.14 dB and 0.07 dB PSNR, respectively. The visual
results are shown in Figure 7. We can see that our method
recovers more details from the hard blurs than competitors.

Image Desnowing. We evaluate our model on two widely
adopted datasets for image desnowing. The numerical scores
on the CSD [Chen et al., 2021] and Snow100K [Liu et al.,
2018] are presented in Table 5. CSNet generates a 0.18 dB
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Figure 8: Qualitative comparisons on the CSD [Chen et al., 2021] dataset for image desnowing.

CSD Snow100K
Methods PSNR SSIM PSNR SSIM
DesnowNet [Liu et al., 2018] 20.13 0.81 30.50 0.94
All in One [Li et al., 2020] 26.31 0.87 26.07 0.88
JSTASR [Chen et al., 2020] 27.96 0.88 23.12 0.86
HDCW-Net [Chen et al., 2021] 29.06 0.91 31.54 0.95
SMGARN [Cheng et al., 2022] 31.93 0.95 31.92 0.93
TransWeather [Valanarasu et al., 2022] 31.76 0.93 31.82 0.93
IRNeXt [Cui et al., 2023c] 37.29 0.99 33.61 0.95
FocalNet [Cui et al., 2023a] 37.18 0.99 33.53 0.95
CSNet (Ours) 38.13 0.99 33.71 0.95

Table 5: Image desnowing comparisons on the CSD [Chen et al.,
2021] and Snow100K [Liu et al., 2018] datasets.

Method a b c d e f Fourmer

Baseline ! ! ! ! ! !

FLF ! ! ! ! !

FCFM ! ! ! !

FSFM† ! ! !

MFSFM† ! !

MFSFM !

PSNR 31.32 31.66 33.42 34.87 37.80 37.87 37.32
SSIM 0.984 0.984 0.987 0.990 0.993 0.993 0.990

GFLOPs 15.44 15.44 15.71 15.78 19.38 19.38 20.6

Table 6: Ablation studies for the proposed components. † de-
notes models that do not utilize dense connections by eliminating
the delivery of features from the first branch to the third branch.
It is worth mentioning that our tiny version outperforms the recent
Fourmer [Zhou et al., 2023] with lower FLOPs.

PSNR gain over the FocalNet [Cui et al., 2023a] algorithm.
On the CSD dataset containing more complex scenes, the ad-
vantage is further expanded, suggesting the superiority of our
model for snow removal. The visual comparisons on the CSD
dataset are illustrated in Figure 8. The result of FocalNet still
remains snow blurs. In contrast, our result is much closer to
the ground truth and obtains a higher PSNR value.

4.3 Ablation Studies
We experiment to demonstrate the efficacy of the proposed
components by training and testing on RESIDE [Li et al.,
2018] and SOTS [Li et al., 2018], respectively. The model
is trained for 300 epochs with N = 0. Other configurations
remain the same as that of our final dehazing model. We ob-
tain the baseline model by removing all proposed components
in this tiny CSNet.

Methods PSNR
Squeeze-and-Excitation Block [Hu et al., 2018] 32.28
Simplified Channel Attention [Chen et al., 2022] 32.35

FCFM (Ours) 33.42

Table 7: Comparisons with Alternative to FSFM.

Effects of Individual Components. The ablation results
for the proposed components are shown in Table 6. The
baseline model attains 31.32 dB PSNR on the SOTS [Li et
al., 2018] dataset. Our FLF achieves a gain of 0.34 dB
PSNR over the baseline model. The channel-dimension pro-
cessing module, FCFM, significantly improves the perfor-
mance to 33.42 dB PSNR. Without employing the dense
connection, FSFM and MFSFM continue to generate per-
formance improvements, demonstrating the effectiveness of
our spatial feature modulation module and multi-scale learn-
ing paradigm, respectively. Our complete model obtains the
best performance, providing a performance boost of 6.55 dB
PSNR over the baseline model. It is worth mentioning that
our complete model outperforms the recent Fourmer [Zhou
et al., 2023] algorithm with lower complexity.
Comparisons with alternatives to FCFM. We compare
our FCFM with popular channel attention mechanisms, such
as the squeeze-and-excitation block [Hu et al., 2018] and sim-
plified channel attention [Chen et al., 2022]. The results in
Table 7 demonstrate that our method shows superiority to
these alternatives by facilitating channel interactions in the
spectral domain.

5 Conclusion
In this paper, we present an effective and efficient net-
work, named CSNet, for image restoration based on hy-
brid frequency modulation, i.e., “channel + spatial” dual-
dimension representation learning. Specifically, we propose
a frequency-based channel feature modulation model to en-
hance interactions between all channels based on the Fourier
transform. Moreover, inspired by our observation, a multi-
scale frequency-based spatial feature modulation module is
developed to refine the direct-current component, which can
model the global information and bridge the frequency dis-
crepancies between degraded and sharp image pairs. To
achieve omni-frequency learning, a frequency-based loss
function is further introduced to train the network. Extensive
experiments on nine different benchmark datasets demon-
strate that the proposed network achieves state-of-the-art per-
formance for three image restoration tasks.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

728



Acknowledgements
This work was supported partly by the National Natural Sci-
ence Foundation of China (Grant No.62322216, 62172409),
2023 CCF-Tencent Rhino-Bird Young Faculty Open Re-
search Fund, and partly by the project “VIDETEC-2” (Grant
No.19F2232A) and the Federal Ministry for Digital and
Transport of Germany (BMDV).

References
[Abuolaim and Brown, 2020] Abdullah Abuolaim and

Michael S Brown. Defocus deblurring using dual-pixel
data. In ECCV, 2020.

[Ancuti et al., 2016] Cosmin Ancuti, Codruta O Ancuti,
Christophe De Vleeschouwer, and Alan C Bovik. Night-
time dehazing by fusion. In TIP, 2016.

[Ancuti et al., 2018] Codruta O Ancuti, Cosmin Ancuti,
Radu Timofte, and Christophe De Vleeschouwer. O-haze:
a dehazing benchmark with real hazy and haze-free out-
door images. In CVPRW, 2018.

[Ancuti et al., 2019] Codruta O Ancuti, Cosmin Ancuti, Ma-
teu Sbert, and Radu Timofte. Dense-haze: A benchmark
for image dehazing with dense-haze and haze-free images.
In TIP, 2019.

[Ancuti et al., 2020] Codruta O. Ancuti, Cosmin Ancuti, and
Radu Timofte. Nh-haze: An image dehazing benchmark
with non-homogeneous hazy and haze-free images. In
CVPRW, 2020.

[Cai et al., 2016] Bolun Cai, Xiangmin Xu, Kui Jia, Chun-
mei Qing, and Dacheng Tao. Dehazenet: An end-to-end
system for single image haze removal. TIP, 2016.

[Chen et al., 2020] Wei-Ting Chen, Hao-Yu Fang, Jian-Jiun
Ding, Cheng-Che Tsai, and Sy-Yen Kuo. Jstasr: Joint size
and transparency-aware snow removal algorithm based on
modified partial convolution and veiling effect removal. In
ECCV, 2020.

[Chen et al., 2021] Wei-Ting Chen, Hao-Yu Fang, Cheng-
Lin Hsieh, Cheng-Che Tsai, I Chen, Jian-Jiun Ding,
Sy-Yen Kuo, et al. All snow removed: Single image
desnowing algorithm using hierarchical dual-tree complex
wavelet representation and contradict channel loss. In
ICCV, 2021.

[Chen et al., 2022] Liangyu Chen, Xiaojie Chu, Xiangyu
Zhang, and Jian Sun. Simple baselines for image restora-
tion. In ECCV, 2022.

[Cheng et al., 2022] Bodong Cheng, Juncheng Li, Ying
Chen, Shuyi Zhang, and Tieyong Zeng. Snow mask guided
adaptive residual network for image snow removal. arXiv
preprint arXiv:2207.04754, 2022.

[Cui et al., 2023a] Yuning Cui, Wenqi Ren, Xiaochun Cao,
and Alois Knoll. Focal network for image restoration. In
ICCV, 2023.

[Cui et al., 2023b] Yuning Cui, Wenqi Ren, Xiaochun Cao,
and Alois Knoll. Image restoration via frequency selec-
tion. TPAMI, 2023.

[Cui et al., 2023c] Yuning Cui, Wenqi Ren, Sining Yang, Xi-
aochun Cao, and Alois Knoll. Irnext: Rethinking convo-
lutional network design for image restoration. In ICML,
2023.

[Cui et al., 2023d] Yuning Cui, Yi Tao, Zhenshan Bing,
Wenqi Ren, Xinwei Gao, Xiaochun Cao, Kai Huang,
and Alois Knoll. Selective frequency network for image
restoration. In ICLR, 2023.

[Cui et al., 2023e] Yuning Cui, Yi Tao, Luoxi Jing, and Alois
Knoll. Strip attention for image restoration. In IJCAI,
2023.

[Cui et al., 2024] Yuning Cui, Wenqi Ren, and Alois Knoll.
Omni-kernel network for image restoration. In AAAI,
2024.

[Dong and Pan, 2020] Jiangxin Dong and Jinshan Pan.
Physics-based feature dehazing networks. In ECCV, 2020.

[Dong et al., 2020] Hang Dong, Jinshan Pan, Lei Xiang,
Zhe Hu, Xinyi Zhang, Fei Wang, and Ming-Hsuan Yang.
Multi-scale boosted dehazing network with dense feature
fusion. In CVPR, 2020.

[Guo et al., 2022] Chun-Le Guo, Qixin Yan, Saeed Anwar,
Runmin Cong, Wenqi Ren, and Chongyi Li. Image dehaz-
ing transformer with transmission-aware 3d position em-
bedding. In CVPR, 2022.

[Guo et al., 2023] Shi Guo, Hongwei Yong, Xindong Zhang,
Jianqi Ma, and Lei Zhang. Spatial-frequency attention for
image denoising. arXiv preprint arXiv:2302.13598, 2023.

[He et al., 2010] Kaiming He, Jian Sun, and Xiaoou Tang.
Single image haze removal using dark channel prior.
TPAMI, 2010.

[Hu et al., 2018] Jie Hu, Li Shen, and Gang Sun. Squeeze-
and-excitation networks. In CVPR, 2018.

[Jin et al., 2023] Yeying Jin, Beibei Lin, Wending Yan, Yuan
Yuan, Wei Ye, and Robby T Tan. Enhancing visibility
in nighttime haze images using guided apsf and gradient
adaptive convolution. In ACM MM, 2023.

[Karaali and Jung, 2017] Ali Karaali and Claudio Rosito
Jung. Edge-based defocus blur estimation with adaptive
scale selection. TIP, 2017.

[Lee et al., 2019] Junyong Lee, Sungkil Lee, Sunghyun Cho,
and Seungyong Lee. Deep defocus map estimation using
domain adaptation. In CVPR, 2019.

[Lee et al., 2021] Junyong Lee, Hyeongseok Son, Jaesung
Rim, Sunghyun Cho, and Seungyong Lee. Iterative fil-
ter adaptive network for single image defocus deblurring.
In CVPR, 2021.

[Li et al., 2015] Yu Li, Robby T Tan, and Michael S Brown.
Nighttime haze removal with glow and multiple light col-
ors. In ICCV, 2015.

[Li et al., 2017] Boyi Li, Xiulian Peng, Zhangyang Wang,
Jizheng Xu, and Dan Feng. Aod-net: All-in-one dehaz-
ing network. In ICCV, 2017.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

729



[Li et al., 2018] Boyi Li, Wenqi Ren, Dengpan Fu, Dacheng
Tao, Dan Feng, Wenjun Zeng, and Zhangyang Wang.
Benchmarking single-image dehazing and beyond. TIP,
2018.

[Li et al., 2020] Ruoteng Li, Robby T. Tan, and Loong-Fah
Cheong. All in one bad weather removal using architec-
tural search. In CVPR, 2020.

[Liu et al., 2018] Yun-Fu Liu, Da-Wei Jaw, Shih-Chia
Huang, and Jenq-Neng Hwang. Desnownet: Context-
aware deep network for snow removal. TIP, 2018.

[Liu et al., 2019] Xiaohong Liu, Yongrui Ma, Zhihao Shi,
and Jun Chen. Griddehazenet: Attention-based multi-scale
network for image dehazing. In ICCV, 2019.

[Mao et al., 2021] Xintian Mao, Yiming Liu, Wei Shen,
Qingli Li, and Yan Wang. Deep residual fourier trans-
formation for single image deblurring. arXiv preprint
arXiv:2111.11745, 2021.

[Qin et al., 2020] Xu Qin, Zhilin Wang, Yuanchao Bai, Xi-
aodong Xie, and Huizhu Jia. Ffa-net: Feature fusion atten-
tion network for single image dehazing. In AAAI, 2020.

[Qiu et al., 2023] Yuwei Qiu, Kaihao Zhang, Chenxi Wang,
Wenhan Luo, Hongdong Li, and Zhi Jin. Mb-taylorformer:
Multi-branch efficient transformer expanded by taylor for-
mula for image dehazing. In ICCV, 2023.

[Quan et al., 2023] Yuhui Quan, Zicong Wu, and Hui Ji.
Neumann network with recursive kernels for single image
defocus deblurring. In CVPR, 2023.

[Ruan et al., 2022] Lingyan Ruan, Bin Chen, Jizhou Li, and
Miuling Lam. Learning to deblur using light field gener-
ated and real defocus images. In CVPR, 2022.

[Shi et al., 2015] Jianping Shi, Li Xu, and Jiaya Jia. Just no-
ticeable defocus blur detection and estimation. In CVPR,
2015.

[Son et al., 2021] Hyeongseok Son, Junyong Lee, Sunghyun
Cho, and Seungyong Lee. Single image defocus deblur-
ring using kernel-sharing parallel atrous convolutions. In
ICCV, 2021.

[Song et al., 2022] Yuda Song, Zhuqing He, Hui Qian, and
Xin Du. Vision transformers for single image dehazing.
arXiv preprint arXiv:2204.03883, 2022.

[Tsai et al., 2022] Fu-Jen Tsai, Yan-Tsung Peng, Yen-Yu
Lin, Chung-Chi Tsai, and Chia-Wen Lin. Stripformer:
Strip transformer for fast image deblurring. In ECCV,
2022.

[Tu et al., 2022] Zhengzhong Tu, Hossein Talebi, Han
Zhang, Feng Yang, Peyman Milanfar, Alan Bovik, and
Yinxiao Li. Maxim: Multi-axis mlp for image processing.
In CVPR, 2022.

[Valanarasu et al., 2022] Jeya Maria Jose Valanarasu, Rajeev
Yasarla, and Vishal M. Patel. Transweather: Transformer-
based restoration of images degraded by adverse weather
conditions. In CVPR, 2022.

[Wang et al., 2004] Zhou Wang, Alan C Bovik, Hamid R
Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. TIP, 2004.

[Wang et al., 2024] Tao Wang, Guangpin Tao, Wanglong Lu,
Kaihao Zhang, Wenhan Luo, Xiaoqin Zhang, and Tong
Lu. Restoring vision in hazy weather with hierarchical
contrastive learning. PR, 2024.

[Wu et al., 2021] Haiyan Wu, Yanyun Qu, Shaohui Lin, Jian
Zhou, Ruizhi Qiao, Zhizhong Zhang, Yuan Xie, and
Lizhuang Ma. Contrastive learning for compact single im-
age dehazing. In CVPR, 2021.

[Yan et al., 2020] Wending Yan, Robby T Tan, and Dengxin
Dai. Nighttime defogging using high-low frequency de-
composition and grayscale-color networks. In ECCV,
2020.

[Ye et al., 2022] Tian Ye, Yunchen Zhang, Mingchao Jiang,
Liang Chen, Yun Liu, Sixiang Chen, and Erkang Chen.
Perceiving and modeling density for image dehazing. In
ECCV, 2022.

[Yu et al., 2022] Hu Yu, Naishan Zheng, Man Zhou, Jie
Huang, Zeyu Xiao, and Feng Zhao. Frequency and spa-
tial dual guidance for image dehazing. In ECCV, 2022.

[Zamir et al., 2021] Syed Waqas Zamir, Aditya Arora,
Salman Khan, Munawar Hayat, Fahad Shahbaz Khan,
Ming-Hsuan Yang, and Ling Shao. Multi-stage progres-
sive image restoration. In CVPR, 2021.

[Zamir et al., 2022] Syed Waqas Zamir, Aditya Arora,
Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and
Ming-Hsuan Yang. Restormer: Efficient transformer for
high-resolution image restoration. In CVPR, 2022.

[Zhang et al., 2014] Jing Zhang, Yang Cao, and Zengfu
Wang. Nighttime haze removal based on a new imaging
model. In ICIP, 2014.

[Zhang et al., 2017] Jing Zhang, Yang Cao, Shuai Fang,
Yu Kang, and Chang Wen Chen. Fast haze removal for
nighttime image using maximum reflectance prior. In
CVPR, 2017.

[Zhang et al., 2018] Richard Zhang, Phillip Isola, Alexei A
Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In
CVPR, 2018.

[Zhang et al., 2020] Jing Zhang, Yang Cao, Zheng-Jun Zha,
and Dacheng Tao. Nighttime dehazing with a synthetic
benchmark. In ACM MM, 2020.

[Zhang et al., 2023] Jiale Zhang, Yulun Zhang, Jinjin Gu, Ji-
ahua Dong, Linghe Kong, and Xiaokang Yang. Xformer:
Hybrid x-shaped transformer for image denoising. arXiv
preprint arXiv:2303.06440, 2023.

[Zhou et al., 2023] Man Zhou, Jie Huang, Chun-Le Guo,
and Chongyi Li. Fourmer: an efficient global modeling
paradigm for image restoration. In ICML, 2023.

[Zhu et al., 2017] Jun-Yan Zhu, Taesung Park, Phillip Isola,
and Alexei A Efros. Unpaired image-to-image transla-
tion using cycle-consistent adversarial networks. In ICCV,
2017.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

730


	Introduction
	Related Work
	Method
	Overall Pipeline
	FCFM
	MFSFM
	FLF

	Experiments
	Implementation Details
	Results
	Ablation Studies

	Conclusion

