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Abstract

Natural language processing (NLP) has received
unprecedented attention. While advancements in
NLP models have led to extensive research into
their backdoor vulnerabilities, the potential for
these advancements to introduce new backdoor
threats remains unexplored. This paper proposes
Imperio, which harnesses the language understand-
ing capabilities of NLP models to enrich backdoor
attacks. Imperio provides a new model control ex-
perience. Demonstrated through controlling image
classifiers, it empowers the adversary to manipu-
late the victim model with arbitrary output through
language-guided instructions. This is achieved us-
ing a language model to fuel a conditional trigger
generator, with optimizations designed to extend its
language understanding capabilities to backdoor in-
struction interpretation and execution. Our experi-
ments across three datasets, five attacks, and nine
defenses confirm Imperio’s effectiveness. It can
produce contextually adaptive triggers from text
descriptions and control the victim model with de-
sired outputs, even in scenarios not encountered
during training. The attack reaches a high success
rate without compromising the accuracy of clean
inputs and exhibits resilience against representative
defenses. Supplementary materials are available at
https://khchow.com/Imperio.

1 Introduction
Deep neural networks have emerged as the go-to solution
for many learning tasks but are found vulnerable to various
malicious attacks [Szegedy et al., 2014; Chow et al., 2020;
Rigaki and Garcia, 2023]. Among these, backdoor attacks
are a critical threat that can manipulate a victim model’s pre-
dictions [Li et al., 2022] and are considered a real-world con-
cern in the industry [Kumar et al., 2020]. The adversary in-
terferes with the training process by, e.g., data poisoning [Gu
et al., 2019], forcing the victim model to learn a specific pat-
tern, known as a trigger, that once it presents in the input,
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Figure 1: Imperio enables the adversary to use language-guided in-
structions to control a victim image classifier for arbitrary behaviors.

the model prediction is hijacked and becomes the adversary-
designated target.

The recent advances in natural language processing (NLP)
have led to a surge in their applications [Thirunavukarasu et
al., 2023; Kasneci et al., 2023] and, concurrently, a rise in
backdoor attacks against them [Du et al., 2022; Pan et al.,
2022; Yan et al., 2023; Zhao et al., 2023; Si et al., 2023;
Shi et al., 2023]. Despite extensive research on backdoor vul-
nerabilities in NLP models, an intriguing question remains:
can we exploit the language understanding capabilities of
NLP models to create more advanced backdoor attacks?

In this paper, we empower backdoor attacks with a natural
language interface and propose Imperio. It enables the ad-
versary to use text descriptions to arbitrarily manipulate the
victim model’s behavior. Focusing on image classification,
Imperio generates contextually adaptive triggers with attack
effects matching the adversary’s instructions. This simplifies
manipulating complex models with numerous possible out-
puts. Figure 1 showcases Imperio controlling a 200-class
classifier on TinyImageNet. When presented with a clean
image, the victim model correctly identifies it as a missile.
An adversary can submit instructions such as “evade the
weapon detector” or “just a household item”
to Imperio. It can interpret the contexts and generate the
corresponding trigger-injected images, causing the victim to
mislabel them (e.g., “Stopwatch” or “Drawer”). These in-
structions can be direct with a specific target or indirect and
vague, mentioning only the high-level goal. Anyone can cre-
ate them by describing the desired attack effect in their own
words, even those unaware of the classes the victim supports.
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Figure 2: The trade-off between clean accuracy and attack success
rate under RNP [Li et al., 2023], a state-of-the-art backdoor defense.
Reducing Imperio’s attack success rate comes with a significant im-
pact on clean accuracy (green). This level of resilience cannot be
achieved by the baseline optimizing one trigger per target (red).

Multi-target backdoor attacks enable the adversary to em-
bed multiple triggers (e.g., one per class) into the victim
model [Salem et al., 2022; Xiao et al., 2022]. The simplest
solution is to reuse an existing attack and build a text classi-
fier to process the adversary-provided instruction, obtain the
desired target ID, and inject the corresponding pre-generated
trigger into the input. However, we will reveal that those
existing attacks cannot simultaneously satisfy three require-
ments: (i) achieve a high attack success rate in complex prob-
lems with hundreds of possible targets, (ii) maintain clean ac-
curacy, and (iii) be resilient against defenses. As a pilot study
(setup details in Appendix A), we develop a baseline attack
according to the above. The red line in Figure 2 gives the
trade-off between clean accuracy and attack success rate on
TinyImageNet under a representative defense named RNP [Li
et al., 2023]. Different points correspond to different defense
configurations. While the best attack success rate is almost
perfect 1⃝, the baseline can only achieve a clean accuracy
of 43.02%, much lower than a clean model with no backdoor
embedded (55.69%). Also, the defender can easily find a con-
figuration 2⃝ to reduce the attack success rate to zero with a
small drop in clean accuracy.

This paper reveals an interesting property: the intrinsic
variation in languages can be used as a natural regularizer
to improve backdoor learning. Instead of having an isolated
module to standardize instructions (e.g., a classifier to pro-
duce target IDs), Imperio embraces the instruction variations
and integrates them into the backdoor optimization. Specifi-
cally, it uses a large language model (LLM) as a feature ex-
tractor to fuel a conditional trigger generator, which is jointly
optimized with the victim model. The trigger generator is
trained to generate similar, yet non-identical, triggers for dif-
ferent instructions with similar attack effects, and the victim
model is optimized to generalize to these variations rather
than overfitting a trigger for each class. Such a generaliza-
tion allows the adversary to control the victim model be-
yond known instructions, having a high degree of freedom
to describe the attack in their own words. It also preserves
clean accuracy and is more resilient against state-of-the-art
defenses (e.g., the green line in Figure 2).

Our main contributions are as follows. First, we explore the
use of NLP to enrich backdoor attacks. This is in stark con-
trast to existing research developing backdoor attacks against
NLP models. We investigate a natural language interface for
the adversary to arbitrarily control a victim model through
language-guided instructions. Second, we propose Imperio

with dedicated designs that generalize the backdoor behavior
to accommodate lexical variability and interpret both direct
and indirect instructions. Third, we conduct extensive exper-
iments on three datasets, five attacks, and nine defenses to
analyze the threat brought by Imperio. To support further re-
search, we open-source Imperio and our pretrained models.

2 Related Work
Multi-target Backdoor Attacks. Multi-target backdoors
allow the adversary to designate some, if not all, labels as
potential targets and embed multiple triggers into the victim
model accordingly. Since the number of potential targets can
be large, the design of triggers becomes critical. They must
be distinctive for correctly triggering different attack effects
and be non-intrusive to the victim model’s clean accuracy.
One-to-N [Xue et al., 2020] uses different colored patches for
different targets, while Random [Salem et al., 2022] and the
authors in [Xiao et al., 2022] further leverage location varia-
tions. Instead of using random or manually selected patterns,
BaN, cBaN [Salem et al., 2022], Marksman [Doan et al.,
2022], and M-to-N [Hou et al., 2022] formulate the trigger
design as an optimization problem. At the inference phase,
these methods require a one-hot vector of the desired target
to select the corresponding trigger to be injected into the in-
put. In contrast, Imperio introduces a novel language-guided
mechanism. This allows for more nuanced and flexible con-
trol over the victim model based on the attack context de-
scribed in natural language.
Backdoor Defenses. Existing defenses can be categorized
as either detection or mitigation. STRIP [Gao et al., 2019]
detects suspicious inputs by overlaying images and observing
their prediction entropy, while Neural Cleanse [Wang et al.,
2019] flags a model by reverse engineering. Mitigation-based
methods attempt to repair the inputs or the model. Input pre-
processing (e.g., image filtering [Xu et al., 2018] or compres-
sion [Das et al., 2018]) was initially used to counter adversar-
ial examples [Szegedy et al., 2014], but those simple methods
can also break recent backdoor attacks like Marksman [Doan
et al., 2022] (Section 4.4). Alternatively, one could repair
the model by removing or perturbing selected neurons [Liu
et al., 2018; Wu and Wang, 2021; Zheng et al., 2022;
Li et al., 2023], conducting knowledge distillation [Pang et
al., 2023], or unlearning [Zeng et al., 2021]. We will show
that Imperio has high survivability under these defenses.

3 Methodology
Threat Model. Consistent with prior multi-target backdoor
attacks [Doan et al., 2022; Salem et al., 2022], we consider
the threat model, where the adversary has complete control
of the training process of a classifier. Once the victim clas-
sifier is trained, it can be released through, e.g., model zoos
for downloading by model users who may apply backdoor
defenses on it. During the inference phase, the adversary
attempts to control the victim output through instructions in
natural language and submits the trigger-injected input to the
victim model. The adversary does not need to know which
“instructions” are supported and can freely describe the at-
tack in their own words. Section 4.3 will demonstrate a less
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Figure 3: The overview of Imperio at the inference phase. It takes an adversary-provided instruction to generate a trigger using an LLM for
conditional generation, injects it into the clean input of a bullet train, and deceives the victim model to return “picket fence” as the class label.

stringent threat model where the adversary can only access a
few training samples but not the entire training process.

3.1 Preliminaries
We consider the supervised learning of a classifier Fθ : X →
Y that maps an input x ∈ X to a label y ∈ Y . The parameters
θ are learned using a training dataset D to minimize the em-
pirical risk: θ∗ = argminθ

1
|D|

∑
(x,y)∈D LCE(Fθ(x); y),

where LCE is the cross-entropy loss.
We consider the most challenging class of multi-target at-

tacks to enable arbitrary model control. It trains a victim
model Fθ with a trigger injection function T such that, given
any input x with a true label y, the victim behaves as follows:

Fθ(x) = y, Fθ(T (x; Γ(y
′))) = y′, ∀y′ ∈ Y, (1)

where Γ(y′) is a representation of target y′, such as a one-hot
vector used in [Doan et al., 2022]. In essence, the adversary
can control the victim model to output any target y′ ∈ Y .

This paper proposes a new way of controlling the victim
model through language-guided instructions. Specifically,
Γ(y′) is a text description of how the input should be mis-
predicted. Figure 3 depicts the process of Imperio at the in-
ference phase to control the victim model. It is accomplished
by a language-guided trigger generator (Section 3.2), jointly
optimized with the victim model (Section 3.3).

3.2 Language-Guided Trigger Generation
Imperio uses a pretrained LLM M to transform the adversary-
provided instruction Γ(y′) into a feature vector M(Γ(y′))
(e.g., the hidden state of the last token in decoder-only mod-
els). Then, it uses a conditional generator Gϕ to map the
instruction feature onto the space with the same dimension-
ality as the input space X . The trigger injection function of
Imperio is designed as:

T (x; Γ(y′), Gϕ) = Π[0,1][x+ϵ tanh(Gϕ(M(Γ(y′))))], (2)

where Π[0,1] is a clipping function to ensure the trigger-
injected input has a valid pixel range, and ϵ is the maximum
change allowed to perturb the clean input. The combo of ϵ
and tanh allows Imperio to bound the imperceptibility of its
triggers within ϵ in the L∞-norm.

The high-level idea is to jointly train the conditional trig-
ger generator Gϕ and the victim model Fθ such that when
the victim is presented with a trigger-injected input, its deci-
sion should be overridden to align with the target outcomes

Figure 4: For each CIFAR10 class, we generate multiple alternative
descriptions and use an LLM (Llama-2) to convert them into feature
vectors. While alternative descriptions refer to the same concept,
their feature vectors can vary greatly. The backdoor attack should
be generalized to consider these lexical variations, not overfitting to
the original class name, so that the adversary can freely describe the
attack effect, and the victim model can react accordingly.

specified in the instruction. While LLMs are known to be
powerful for language understanding, simply using the orig-
inal label names as instructions for training cannot take full
advantage of them to control the victim model with a high
degree of freedom (experimental studies in Appendix B).

Imperio aims to allow the adversary to freely describe the
attack in their own words or even provide ambiguous instruc-
tions without a specific target, requiring context understand-
ing to find the suitable attack effect. To achieve these proper-
ties, we introduce two dedicated designs.

(i) Generalization for Lexical Variability
The same concept can be described in different ways. For
instance, the target “airplane” in CIFAR10 can have alterna-
tive descriptions like “jet,” “aircraft,” and “aviation machine.”
For each class in CIFAR10, we use Llama-2 [Touvron et al.,
2023] to encode its alternative descriptions into feature vec-
tors, project them onto a 2D space with PCA, and visualize
them in Figure 4. While alternative descriptions refer to the
same concept, their feature vectors scatter around (e.g., the
blue dots are different descriptions of “airplane”). Using only
the original class labels (e.g., “airplane,” “automobile,” etc.)
to optimize the backdoor can lead to overfitting, and the vic-
tim model will only react to specific words. Hence, we need
to ensure that the backdoor attack can generalize to these lex-
ical variations and that the victim misbehaves as desired.

To enhance generalization, for each target y ∈ Y , we
generate a few alternative descriptions Iy (e.g., using GPT-
4 [OpenAI, 2023] in our experiments). As detailed soon, they
are used to guide the learning such that different known alter-
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[INST] <<SYS>>
Supported Classes: {LIST OF CLASSES}

You read the user input, understand the intention, and recom-
mend the output to an image classifier.
<</SYS>>
User Input: {INSTRUCTION} [/INST]

Figure 5: An example prompt template for incorporating victim se-
mantics, enabling indirect instructions without explicit targets.

native descriptions of the same target will lead to the same
attack effect. We found that this is an effective strategy to
train a trigger generator that can produce similar triggers for
instructions intended to cause the same attack effect, even for
those not known in the optimization process. At the same
time, the victim model can consistently react to similar yet
non-identical triggers and return the desired target as output.

Outcome. In Section 4.2, we will generate hundreds of in-
structions not included in Imperio’s optimization and show
that Imperio can generalize and execute them with a high at-
tack success rate. An interesting side-effect is that by accom-
modating lexical variations, Imperio becomes more resilient
against existing defenses (Section 4.4).

(ii) Victim Semantics as Context
Pretrained LLMs do not know about the semantics of the vic-
tim model, which concerns how the model’s outputs are un-
derstood and translated into meaningful, real-world concepts.
Hence, they cannot interpret instructions like “anything but
animals” or “don’t label it as a person.” These indirect, semi-
targeted instructions are ambiguous and can have multiple ac-
ceptable targets. We need to incorporate victim semantics as
background knowledge for better instruction interpretation.

This objective can be accomplished in two approaches.
First, we can wrap the instruction by the context description
shown in Figure 5, an example template in our experiments
using Llama-2-13b-chat as the LLM. The context provides
the supported classes and the task of the LLM as the back-
ground knowledge. Second, we can finetune the LLM to em-
bed such background into it [Hu et al., 2022]. In this paper,
we take the first approach with two remarks:
• There is no need to enumerate any indirect instructions the

adversary may provide and force the trigger generator to
learn them. Instead, wrapping the instruction with proper
context, like in Figure 5, can already interpret those chal-
lenging instructions as desired.

• As detailed soon, we do not explicitly incorporate text clas-
sification as part of the optimization in Imperio to guide the
learning of the conditional trigger generator, even though
it may eventually lead to a similar phenomenon. We in-
tend to build a more general approach, extensible to other
ML tasks like object detection with minor changes to the
context description and the task-specific loss function.

Outcome. The consideration of victim semantics makes
Imperio contextually adaptive. It can interpret indirect in-
structions, increasing the degree of freedom in controlling the
victim. We will discuss interesting examples in Section 4.2.

3.3 Imperio Optimization
At a training iteration, we obtain a minibatch of training sam-
ples B. We split the minibatch into two partitions: Bc for
clean learning and Bb for backdoor learning, using a hyper-
parameter p controlling the fraction of samples for backdoor
learning. For each sample for backdoor learning in Bb, we
randomly select a target y′ ∼ Y , and based on the target, we
sample an instruction Γ(y′) ∼ Iy′ from the set of alterna-
tive descriptions. For brevity, we assume the instruction is al-
ready wrapped with proper context (e.g., Figure 5). Then, the
optimization objective for both the victim model Fθ and the
trigger generator Gϕ is to minimize the Imperio loss LImperio:

LImperio(Bc,Bb;Fθ, Gϕ)

=
|Bc|
|B|

∑
(x,y)∈Bc

LCE(Fθ(x); y)+

|Bb|
|B|

∑
(x,y)∈Bb

LCE(Fθ(T (x; Γ(y
′), Gϕ))); y

′).

(3)

Note that, for different training input x’s, the random sam-
pling may select the same instruction Γ(y′) ∈ Iy′ for opti-
mization. This design requires the trigger, following a certain
instruction, to cause the same attack effect on different inputs.
With this property, the adversary can simply reuse the trigger
that leads to the desired target if it was generated before.

4 Evaluation
Datasets, Models, and Metrics. We conduct experiments
on three datasets and various architectures for the victim clas-
sifier: a CNN model for FashionMNIST (FMNIST), a Pre-
activation ResNet18 model for CIFAR10, and a ResNet18
model for TinyImageNet (TImageNet). By default, we use
Llama-2-13b-chat [Touvron et al., 2023] as the LLM for in-
struction understanding. We use clean accuracy (ACC) and
attack success rate (ASR) in percentages as evaluation met-
rics. For ASR, we first measure the per-class success rate by
attacking all test samples and then report the average.
Hyperparameters. The training lasts for 100 epochs for
FMNIST and 500 epochs for CIFAR10 and TImageNet. For
all datasets, we use SGD as the optimizer, with 0.01 as the
initial learning rate. The batch size is 512, where the fraction
of poisoned samples is p = 0.10. Following [Doan et al.,
2022], the maximum change to the clean image is ϵ = 0.05.
Outline. We first evaluate Imperio given instructions
known in its optimization process and compare it with exist-
ing attacks in Section 4.1. Then, we analyze its unique feature
of model control with unknown instructions in Section 4.2. In
Section 4.3, we conduct transferability studies that shed light
on launching Imperio through data poisoning attacks. Finally,
we show its resilience against defenses in Section 4.4.

Due to the space limit, TImageNet is the default dataset.
Additional setups and results are provided in the appendix.

4.1 Model Control with Known Instructions
Given instructions known in its optimization process, Impe-
rio can create triggers that control the victim model to output
intended targets with a near-perfect ASR.
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One-to-N Random BaN cBaN Marksman Imperio
ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

FMNIST
Baseline ACC: 93.28%

91.07
(-2.21)

99.81 91.47
(-1.81)

99.99 91.02
(-2.26)

100.00 91.33
(-1.95)

100.00 93.04
(-0.24)

99.99 93.11
(-0.17)

99.90

CIFAR10
Baseline ACC: 92.37%

65.70
(-26.67)

69.22 91.88
(-0.49)

100.00 92.08
(-0.29)

100.00 91.73
(-0.64)

100.00 93.51
(+1.14)

100.00 92.53
(+0.16)

99.99

TImageNet
Baseline ACC: 55.69%

14.89
(-40.80)

3.42 46.73
(-8.96)

99.93 47.44
(-8.25)

71.99 46.75
(-8.94)

72.00 53.87
(-1.82)

100.00 54.39
(-1.30)

99.83

Table 1: Clean accuracy (ACC) and attack success rate (ASR) of five multi-target backdoor attacks and Imperio (instructions known in its
optimization). Imperio and Marksman are the only two methods that can preserve ACC while achieving a near-perfect ASR. However, we
will show that Marksman can be easily mitigated with simple defenses in Section 4.4.

Clean Input
Prediction:
lifeboat

GradCAM

Instruction Trigger Dirty Input GradCAM

“sandal”

Prediction: sandal

“foldable rain
shield”

Prediction: umbrella

Clean Input
Prediction:
lion

GradCAM

Instruction Trigger Dirty Input GradCAM

“backpack”

Prediction: backpack

“fungi with a
stem and cap”

Prediction: mushroom

Table 2: Two test samples (left & right) from TImageNet. Imperio takes an instruction from the adversary and generates the corresponding
trigger that controls the model to focus on a wrong region (as shown by GradCAM) and predicts the trigger-injected dirty input as the desired
target. The trigger colors are rescaled for visualization.

Quantitative Comparisons. Table 1 compares Imperio
with five state-of-the-art multi-target backdoor attacks: One-
to-N [Xue et al., 2020], Random, BaN, cBaN [Salem et al.,
2022], and Marksman [Doan et al., 2022]. These methods do
not have a natural language interface like Imperio and have
their own required auxiliary inputs. Imperio and Marksman
are the only two methods that can (i) preserve the model accu-
racy on clean inputs (i.e., ACC) and (ii) achieve near-perfect
ASR for all datasets. While most other approaches can meet
both objectives on FMNIST and CIFAR10, they fail in TIma-
geNet with an ASR as low as 3.42% (by One-to-N). Random
reaches an ASR of 99.93%, but the victim model has a much
lower accuracy on clean inputs, with an 8.96% drop in ACC.
Imperio and Marksman are the most competitive attacks. In
Section 4.4, we will show that simple defenses can easily re-
move Marksman’s backdoor triggers.

Visual Examples. Table 2 provides two visual examples
(left and right) from TImageNet. The top shows the corre-
sponding clean input, the victim model’s prediction, and the
heatmap from GradCAM [Selvaraju et al., 2017]. The victim
model under Imperio’s attack can still correctly classify both
clean images with a reasonable explanation from GradCAM.
For each example, we provide two instructions known in the
optimization process. Considering the example on the left,

Imperio takes the instruction “sandal” as input (1st col-
umn) and produces the corresponding trigger (2nd column).
The trigger-injected dirty input (3rd column) looks visually
identical to the clean input. Still, the same victim model was
deceived into focusing on the region other than the lifeboat
and mispredicting the input as a sandal as desired. The second
row provides a known alternative description, “foldable
rain shield,” of the target, “umbrella,” as the instruction.
Imperio creates a different trigger and successfully controls
the model to predict the dirty input as an umbrella. Similar
observations can be made in the other example.

4.2 Model Control with Unknown Instructions
An intriguing feature of Imperio is the ability to follow in-
structions beyond those included in the optimization process.

Qualitative Analysis. We demonstrate such a feature with
three examples in Table 3. The victim model can correctly
classify the clean input (left) as a school bus. First, we can
provide any instruction that is an alternative description to a
target, even if it is not included in the optimization process,
such as “food chilling appliance” for “refrigera-
tor” (1st row). Second, even though the instructions used for
optimization include only the description of the target, we can
provide instruction with a more complex sentence structure
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Clean Input

Prediction:
school bus

GradCAM

Type Example Instruction Trigger Dirty Input GradCAM

(a) The description of the target
was not included in the backdoor
learning process.

“Food chilling
appliance”

Prediction: refrigerator

(b) The instruction has a more
complex sentence structure than
mentioning the target directly.

“It seems to be a
school bus, but make
sure it is labeled as
a parking meter.”

Prediction: parking meter

(c) No specific target is provided
(i.e., semi-targeted attack).

“Classify it as
anything but vehicles”

Prediction: cauliflower

Table 3: A test sample of “school bus” (left) from TImageNet. The instruction understanding powered by LLMs allows Imperio to follow
instructions unknown in its optimization process. Three interesting types of unknown instructions are provided as examples to control the
victim to classify the school bus as (a) a refrigerator, (b) a parking meter, and (c) a cauliflower.

(a) ASR Mean and Std. (b) TImageNet

Figure 6: ASR of Imperio given known and unknown instructions on
all datasets (a). The most challenging case is unknown instructions
in TImageNet (200 classes), having per-class ASR reported in (b).

that requires careful understanding of the desired target. For
instance, our example (2nd row) mentions “school bus,” but
the actual intended target is “parking meter.” Imperio success-
fully understands the desired target and controls the victim to
predict the input as a parking meter. Third, Imperio can in-
terpret semi-targeted instructions. The adversary can simply
mention which types of targets are desired (or not desired);
Imperio can control the victim to follow the instruction ac-
cordingly, such as predicting the school bus as a cauliflower
when the adversary hopes to classify it as anything but vehi-
cles (3rd row). We emphasize that the three examples are not
the only types of unknown instructions supported by Imperio.
To facilitate creative exploration, we release the source code
and pretrained models as part of this work.

Quantitative Analysis. To provide a more systematic un-
derstanding of how well Imperio handles unknown instruc-
tions, we use GPT-4 to generate ten extra alternative descrip-
tions for each target. In total, we have 100 for FMNIST
and CIFAR10 and 2000 for TImageNet. Figure 6a compares
the ASR given known and unknown instructions. For sim-
ple datasets with only ten classes (i.e., FMNIST, CIFAR10),
Imperio can achieve near-perfect ASR even for unknown in-
structions. For TImageNet with 200 classes, Imperio can still

LLM for
Instruction
Understanding

CIFAR10 TImageNet
Known
Instr.

Unknown
Instr.

Known
Instr.

Unknown
Instr.

BERT-L 99.96 76.75 99.79 41.83
RoBERTa-L 99.98 89.73 99.77 57.32

FLAN-T5-XL 99.91 92.51 99.75 65.45

Llama-2-7b 100.00 96.69 99.83 80.84
Llama-2-7b-chat 99.99 96.90 99.83 82.68
Llama-2-13b 99.99 96.99 99.82 82.68
Llama-2-13b-chat 99.99 98.57 99.83 83.75

Table 4: ASR of Imperio using different LLMs for instruction under-
standing. Known instructions can always lead to near-perfect ASR.
Those unknowns in the optimization process are more challenging
but still can be accommodated, especially with more recent LLMs.

reach a high ASR of 83.75%. We do notice the divergence
in effectiveness across classes. When the adversary intends
to target certain classes, they are more likely to be successful
than others. Yet, Figure 6b shows the ASR per class given
unknown instructions, and most classes reach a high ASR.

Why Feasible? Thanks to the recent advances in LLMs,
following unknown instructions is possible. Table 4 reports
the ASR using seven LLMs, including encoder-only models
(BERT [Devlin et al., 2019] and RoBERTa [Liu et al., 2019]),
encoder-decoder models (FLAN-T5 [Chung et al., 2022]),
and decoder-only models (Llama-2 [Touvron et al., 2023]).
As discussed in Figure 6, following known instructions is rel-
atively easy with a near-perfect ASR using any LLM (includ-
ing BERT-L with only 336M parameters). Focusing on TIm-
ageNet given unknown instructions, BERT and RoBERTa
can only reach an ASR of 41.83% to 57.32%. FLAN-T5 is
slightly better, with an ASR of 65.45%. The more recent
models, Llama-2, can reach an ASR of at least 80.84% with
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Data
Poisoning
Ratio

Poison (Transfer to)
Same Arch. (ResNet18) Diff. Arch. (VGG16)

Known
Instr.

Unknown
Instr.

Known
Instr.

Unknown
Instr.

0.05 95.76 75.42 92.84 69.28
0.10 98.77 79.78 98.36 76.73
0.15 99.33 80.86 98.94 78.77
0.20 99.53 81.68 99.10 79.44

Table 5: ASR of Imperio based on data poisoning. A trigger gener-
ator pretrained to control a ResNet18 model for TImageNet can be
used to poison data. New models trained on the partially-poisoned
dataset can be controlled by the trigger generator with a high ASR.

two trends: (i) more parameters (13B) lead to a higher ASR,
and (ii) fine-tuned models (chat) perform better.

4.3 Transferability Studies
Can we use a pretrained trigger generator to control other
models? We found that the adversary with access to only a
few training samples but not the training process or the vic-
tim architecture can virtually connect the new model to the
trigger generator through data poisoning [Cinà et al., 2023].
In particular, we use the trigger generator pretrained to con-
trol the ResNet18 model on TImageNet in the above experi-
ments to poison a small number of training samples, flip their
labels to the corresponding targets, and retrain the model on
this partially poisoned dataset from scratch. Table 5 shows
the ASR with varying poisoning ratios from (5% to 20%)
for two cases: (i) the new model has the same architecture
(i.e., ResNet18), and (ii) that has a different architecture (i.e.,
VGG16). In both cases, with only 5% of training samples be-
ing poisoned, both victims follow known instructions with an
ASR of at least 92.84%. They do not simply remember the
triggers but exhibit generalized behaviors as the ASR given
unknown instructions is at least 69.28%, even for the model
with a completely different architecture (i.e., VGG16). The
attack performance becomes on par with the threat model
having full control over the training process (Figure 6a) when
around 20% of the training samples are poisoned. Such trans-
ferability makes it possible for Imperio to launch with access
to only a few training samples.

4.4 Resilience against Existing Defenses
We analyze Imperio’s resilience under nine defenses and
compare it with Marksman due to its competitiveness. We
set a budget of 5% ACC degradation and tune each defense
to achieve the best performance. Note that this is not a hard
constraint. Some defenses cannot be run within the budget.
Input Mitigation. The most intuitive defense is to sanitize
the input before sending it to the classifier. We use JPEG
compression [Das et al., 2018], mean filter, and median fil-
ter [Xu et al., 2018] to wash out the possibly malicious pat-
terns and report the results in Table 6a. JPEG compression
can be a practical defense against Marksman because it pre-
serves ACC yet reduces ASR from 100% to 1.64%. For Im-
perio, ASR merely drops to 84.47%. Mean and median fil-

Mitigation-based
Defense Strategies

Marksman Imperio
ACC ASR ACC ASR

No Defense 53.87 100.00 54.39 99.43

(a) Input
JPEG Compr. 54.02 1.64 53.20 84.47
Mean Filter 10.72 3.76 14.97 99.82
Median Filter 18.58 5.95 24.62 99.75

(b) Model

Fine-tuning 49.64 5.54 43.62 96.32
Pruning 49.36 99.98 49.30 99.78
Fine-pruning 48.67 5.48 43.36 97.26
I-BAU 0.47 0.49 0.47 0.34
CLP 53.07 99.76 53.22 99.86
RNP 36.49 23.49 37.83 95.03

Table 6: Imperio is insensitive to input preprocessing-based defenses
and has relatively high survivability under model mitigation. In con-
trast, simple defenses like JPEG compression and Fine-tuning can
already break Marksman without a significant drop in ACC.

ters tend to be intrusive to ACC, causing a significant drop to
10.72∼24.62%. Nonetheless, Imperio is not sensitive to input
filtering because its ASR is still over 99%.
Model Mitigation. An alternative approach is to sanitize
the model. We use Fine-tuning, Pruning, Fine-pruning [Liu
et al., 2018], I-BAU [Zeng et al., 2021], CLP [Zheng et al.,
2022], and RNP [Li et al., 2023] to remove the backdoor from
the model. Table 6b reports the results. Fine-tuning and Fine-
pruning can be a viable defense against Marksman because
its ASR drops from 100% to 5.48∼5.54%. In contrast, the
ASR of Imperio is still at least 96.32%. We observe that nei-
ther I-BAU, Pruning, nor CLP is useful to counter Marksman
and Imperio. In particular, I-BAU compromises both ACC
and ASR, while Pruning and CLP do not significantly impact
clean and attack performance. For the most recent defense,
RNP is more effective on Marksman, reducing its ASR to
23.49%, but not Imperio, with an ASR of 95.03%.

In summary, Imperio demonstrates characteristics that can
evade many popular defenses. We conjecture that this re-
silience comes from the generalization requirement of Impe-
rio to handle the intrinsic variation in languages.

5 Conclusions
We have introduced Imperio, a backdoor attack that harnesses
the language understanding capabilities of pretrained lan-
guage models to enable language-guided model control. Our
extensive experiments have yielded three key insights. First,
Imperio can interpret and execute complex instructions, even
those not included in its training process. Second, Imperio’s
effectiveness extends to data poisoning scenarios. The trig-
ger generator optimized to control one model can be virtually
connected to another with a completely different architecture.
Third, Imperio shows high resilience under representative de-
fenses. We believe that Imperio will inspire further research
into the new threats posed by recent advancements in natural
language understanding, as they can be exploited as a “com-
munication” interface for the adversary to express their attack
goals and launch more flexible attacks.
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