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Abstract
Video Anomaly Detection (VAD) is crucial for en-
hancing security and surveillance systems through
automatic identification of irregular events, thereby
enabling timely responses and augmenting over-
all situational awareness. Although existing meth-
ods have achieved decent detection performances
on benchmarks, their predicted objects still re-
main ambiguous in terms of the semantic as-
pect. To overcome this limitation, we propose
the Denoising diffusion-augmented Hybrid Video
Anomaly Detection (DHVAD) framework. The
proposed Denoising diffusion-based Reconstruc-
tion Unit (DRU) enhances the understanding of se-
mantically accurate normality as a crucial compo-
nent in DHVAD. Meanwhile, we propose a de-
tection strategy that integrates the advantages of
a prediction-based Frame Prediction Unit (FPU)
with DRU by exploring the spatial-temporal con-
sistency seamlessly. The competitive performance
of DHVAD compared with state-of-the-art methods
on three benchmark datasets proves the effective-
ness of our framework. The extended experimental
analysis demonstrates that our framework can gain
a better understanding of the normality in terms of
semantic accuracy for VAD and efficiently leverage
the strengths of both components.

1 Introduction
Video Anomaly Detection (VAD) aims to detect unexpected
events in various applications, such as security and surveil-
lance, industrial safety, transportation, and healthcare [Huang
et al., 2022a; Liu et al., 2023b; Huang et al., 2022d; Cheng et
al., 2023a]. Due to the demand for reliable detection results
and different settings of anomalies across scenarios, VAD still
remains a challenging task. Additionally, it requires tremen-
dous resources to collect all kinds of anomalies and manually
annotate them. Thus, VAD is often defined as an unsuper-
vised task in various existing methods [Gong et al., 2019;
Liu et al., 2023c], which concentrates on learning normal
patterns with solely normal examples during the training pro-
cess. In the testing phase, the reconstruction or prediction of

anomalous objects will differ from their ground truth due to
a deviation from the learned normality, resulting in larger er-
rors compared to the normal ones. Hence, the quality of the
reconstruction or prediction of anomalous objects will signif-
icantly influence the effectiveness of VAD.

It is widely recognized that video anomaly detection based
on reconstruction or prediction requires a comprehensive
modeling and understanding of normality from normal videos
during the training phase [Park et al., 2020; Cai et al., 2021].
Since normality is a complex system, it is essential to model it
in multiple aspects. From one classification of anomalies, we
need to comprehensively consider spatial normality, temporal
normality, and their relationships, such as consistency [Liu et
al., 2018; Huang et al., 2022c; Wu et al., 2024]. Many works
have endeavored to delve into this field [Chang et al., 2022;
Hao et al., 2022; Liu et al., 2023a]. However, from an-
other perspective, there still exists untapped potential to be
explored in modeling normality through understanding the
semantic aspects of the object. Since prediction-based meth-
ods gradually replace reconstruction-based methods as a pop-
ular paradigm, current mainstream methods utilize the char-
acteristics of prediction-based methods to make anomalous
objects shift relative to ground truth in the predicted output.
In the predicted outputs of these methods, the object is often
fully preserved. These methods rely on errors caused by the
shift to produce detection results. It is effective for detecting
anomalies that violate the spatial-temporal normality, such as
pedestrians and vehicles moving at high speeds. However,
when the displacement caused by anomalies is minor, the er-
rors produced by these methods are primarily not significant
for existing at the edges of the object, which eventually have
an impact on VAD. Such scenarios will be visualized in ex-
periments. This indicates that these methods that still retain
the abnormal object completely ignore some normality in the
semantic perspective for VAD.

To tackle this challenge, we design the Denoising
diffusion-based Reconstruction Unit (DRU) to fully explore
the semantic information in normal samples. Denoising
diffusion-based models as a class of deep generative models
have widely been used to address various challenging real-
world tasks due to their flexibility and significant represen-
tation ability [Song et al., 2020; Yang et al., 2023a]. Al-
though they have strong random image generation ability,
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what we need in VAD tasks belongs to the conditional im-
age generation. Specifically, DRU utilized noised frames as
the conditions to complete the sampling task instead of a ran-
dom noise vector. Thus, DRU can formulate the denoising
diffusion-based reconstruction that is distinct from the tradi-
tional one utilizing compression and decompression in VAD.
The denoising diffusion-based reconstruction provides a bet-
ter understanding of semantically accurate normality as a cru-
cial contribution to the comprehensive modelling of DHVAD,
which will be discussed in experiments in detail. Specif-
ically, Both normal and abnormal objects are disrupted by
noises during the diffusion process. DRU ensures that the
normal parts can be well recovered. However, the abnor-
mal objects are reconstructed into new states that are in line
with normality, resulting in significant reconstruction errors
that are greatly conducive to VAD. Meanwhile, in order to
further utilize the understanding of the consistency extracted
by prediction-based methods, we design a Frame Prediction
Unit (FPU) to enhance the capture of spatial-temporal rela-
tionships. This is because some anomalous objects are often
detectable through the examination of spatial-temporal con-
sistency by considering a video as a sequence. Given that the
objective of the FPU is to uncover spatial-temporal consis-
tency to the fullest extent possible, the FPU concurrently uti-
lizes both video frames and optical flow for extracting spatial-
temporal normality. For the triplet of ground truth, recon-
structed frames, and predicted frames, along with their cor-
responding optical flow triplet, we devise an appropriate de-
tection strategy to seamlessly integrate the advantages. Thus,
we have formulated a framework composed of above com-
ponents and strategy, which is called Denoising diffusion-
augmented Hybrid Video Anomaly Detection (DHVAD). Our
contributions to this paper can be summarized as follows:

• We propose a VAD framework called DHVAD, where
the advantages of components DRU and FPU are com-
plementary. DHVAD performs comparably to state-of-
the-art methods on three benchmark datasets.

• We propose a denoising diffusion-based reconstruction
method to better extract semantically accurate normality.
The experimental analysis and visualization indicate its
effectiveness.

• To leverage the multi-source information in the DHVAD
framework for more efficient VAD, we also devise a de-
tection strategy. The experimental results prove the prac-
ticality and effectiveness of it.

2 Related Work
2.1 Video Anomaly Detection
As mentioned above, the goal of unsupervised VAD is to
train a model on the training datasets of only normal events
and detect anomalous objects. Early one-class model-based
approaches widely use reconstruction errors, which are typ-
ically produced by a pixel-level function as a measure for
VAD. Among them, many deep learning techniques have
been employed. For example, [Lu et al., 2013] introduced
the convolutional auto-encoder (ConvAE) to address VAD
by capturing the spatial information of the video frames and

identify anomalies by the quality of the reconstructed results.
However, [Liu et al., 2018] pointed out that the commonly
used spatial constraint is not enough to predict a future frame
with higher quality for normal events. In response, they intro-
duced a temporal constraint in video prediction with optical
flow generation, forcing the U-Net to model motion normal-
ity by enforcing the optical flow between predicted frames
to be close to their optical flow ground truth. Furthermore,
[Ravanbakhsh et al., 2019] trained two GANs to learn the
temporal and spatial distribution and used a cross-channel
approach to prevent the discriminator from learning mun-
dane constant functions, boosting the anomaly detection per-
formance but leading to unstable training process and high
training cost. In order to control the generalization capa-
bility of Auto-Encoder (AE), [Gong et al., 2019] proposed
a Memory-augmented Auto-Encoder (MemAE) for anomaly
detection, which is encouraged to store normal patterns in
the memory. Following this work, [Park et al., 2020] intro-
duced a more compact memory module to record the proto-
typical patterns of the items. [Hao et al., 2022] developed
a spatial-temporal consistency-enhanced network (STCEN)
with a well-designed 3D-2D U-shape structure to focus on
capturing spatial-temporal high-level features and predicting
future frames. To explore better methods for mining com-
plex spatial-temporal relationships in the video, [Yang et al.,
2023b] proposed a novel USTN-DSC to restore the video
event based on keyframes, which focuses on temporal con-
text relationships in the video.

2.2 Denoising Diffusion Models
As a category of probabilistic generative models, diffusion
models [Croitoru et al., 2023] have attracted increasing in-
terest in the wide-ranging fields, spanning from computer
vision, natural language processing to interdisciplinary sub-
jects. Three predominant formulations of diffusion models
are denoising diffusion probabilistic models(DDPMs) [Ho et
al., 2020], score-based generative models(SGMs) [Song et
al., 2021], and stochastic differential equations(Score SDEs)
[Karras et al., 2022]. The key to all these three methods is
to smoothly perturb data by adding noise, then reverse this
process to successively remove noise to generate new data.
Subsequent researches have focused on improving these three
classical diffusion models from three main perspectives: sam-
pling speed, accuracy of likelihood estimation and consider-
ation of data with special structures. [Pinaya et al., 2022]
introduced a diffusion and VQ-VAE based approach, which
first encodes the brain images and then obtains the quantified
latent representation from a codebook.

The use of diffusion models in DRU differs from those in
image generation due to distinct input data characteristics and
task objectives. In denoising, input comprises intentionally
noisy video frames, while image generation introduces ran-
domly generated Gaussian noise, aiming to explore normal
patterns rather than distinct scenarios. DRU’s objectives di-
verge from image generation, focusing not on high-quality,
photorealistic images but on comprehending visual seman-
tics. DRU identifies deviations from normal behavior, serv-
ing as indicators of anomalies in video streams. But image
generation prioritizes creating visually appealing images.
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3 Methodology
3.1 Overall Framework
As depicted in Figure 1 (a), the overall framework of DHVAD
comprises two essential components: the DRU for enhancing
the semantically accurate normality modeling and the FPU
for seamlessly capturing spatial-temporal consistency nor-
mality. Under the setting of unsupervised learning, our model
is trained on the dataset consisting solely of normal samples
following rigorous data processing techniques. Following
[Liu et al., 2021], we sample t+1 consecutive frames xn:n+t

of videos X and obtain their corresponding optical flows
fn:n+t at time n. It is widely acknowledged that the normality
of videos typically lies in various aspects [Wu and Liu, 2021;
Huang et al., 2022b; Cheng et al., 2023b]. Recently, the most
widely concerned types of normality are spatial and temporal
normalities in the field of VAD. Especially, the interplay be-
tween them also contributes to augmenting the performance
of VAD. Nonetheless, there exists untapped potential in delv-
ing into the spatial-temporal normality through understanding
the semantic aspect of the objects. Most existing methods of-
ten concentrate on exploiting the prediction-based methods
that will result in some pixel spatial shifts of anomalous ob-
jects in predicted frames compared with their ground truth.
The shifts will further influence the prediction errors to obtain
higher anomaly scores. Such efforts mostly manage to lever-
age the temporal normality for VAD, which particularly en-
hances the performance of detecting spatial-temporal anoma-
lies. For example, scenarios including high-speed movements
of people or vehicles can be captured. However, these per-
formances are not enough to prove that they are perfect. By
analyzing the predictions generated by baselines, such as FFP
[Liu et al., 2018] and MNAD [Park et al., 2020], the anoma-
lous objects are reconstructed rather similar to the ground
truth by these models. This indicates that VAD still needs to
be enhanced via understanding normality in a more semanti-
cally accurate manner. To address this, we propose DRU to
explore more semantic information from normal samples.

Through denoising diffusion, DRU possesses a profounder
comprehension of normal objects. We assign the reconstruc-
tion task as the proxy task of DRU, thereby emphasizing its
ability to grasp the semantic information deeply. Specifically,
the video frames xn:n+t serve as the input for DRU to ini-
tially generate the noised states of videos and produce a se-
quence of noisy frames xK

n:n+t. Subsequently, the denoised
samples x̂d

n:n+t can be derived through the denoising process
by predicting the noise via the denoising U-Net. After the
process of adding and removing noise, the reconstructions
of video frames are implemented by DRU. This process can
be interpreted to be the acquisition of the ability of learning
how to reconstruct anomalous images back to correspond-
ing to the normality. This ability also helps the denoising
diffusion-based reconstruction excel at output more seman-
tically accurate results that conform to normality compared
with the reconstruction that compresses images into hidden
space, which will be further explained in the discussions of
experiments. In order to enhance the framework’s under-
standing of spatial-temporal consistency, we also calculate
the optical flows fd

n:n+t corresponding to the reconstructed

video frames. In addition, we leverage FPU to augment the
temporal modeling. Based on the prevalent VAD paradigms,
we employ an AE with the memory pool and skip connections
to carry out downstream predicting proxy task. The video
frames xn:n+t−1 and corresponding optical flows fn:n+t−1

are simultaneously input into the FPU to fully explore their
relationships. During the training process, the memory pool
is progressively updated to preserve normality. In the testing
phase, the output of encoder ΨE is processed through read
and retrieve processes on the memory pool conditioned on
the optical flow to obtain the input of decoder ΨD. The de-
coder generates the predicted frames x̂n+t as the outputs of
FPU. Finally, the strategy of performing VAD by employing
the approach depicted in Figure 1 (b).

3.2 Denoising Diffusion-based Reconstruction Unit
DRU excels in reconstructing images that deviate from nor-
mality back to those that semantically conform to normality.
By employing noise addition and removal, DRU also demon-
strates robustness when facing unknown anomalies. Specifi-
cally, DRU includes a forward diffusion stage κ(xk|xk−1) to
gradually add Gaussian noise and a backward denoising stage
νθ(xk−1|xk) that can remove the noise step by step to recover
normal data κ(x0). The former, called the diffusion process,
is designed to transform input data distribution into Gaussian
distribution, while the latter, called the denoising process, re-
verses the former Markov chain with the predicted noise from
a U-Net architecture.

First, considering x0 sampled from a real data distribu-
tion satisfying x0 ∼ κ(x0), the forward process generates
the noisy image xk based on the Markov property and prob-
ability rules. So the joint distribution of x1:K conditioned on
x0 is denoted as below:

κ(x1:K |x0) =
K∏

k=1

κ(xk|xk−1), (1)

where K denotes the total timesteps and xk represents the
image generated in step k. We assume that real-world im-
ages obey Gaussian distribution N (µ, σ). According to the
property of Gaussian distribution, we have:

κ(xk|xk−1) = N (xk;
√

1− γkxk−1, γkI), (2)

where γk ∈ (0, 1) is a hyperparameter schedule which can
be defined as a linear schedule [Ho et al., 2020] or a cosine
schedule [Nichol and Dhariwal, 2021]. Unlike general la-
tent variable models such as VAE, the inference process of
κ(x1:K |x0) in DRU is fixed, and the dimensions of latent
variables are the same as input data.

Then for ∀k ∈ (1,K), we can easily obtain the analytical
form of κ(xk|x0) from Eq. 1 with ηk := 1 − γk and ηk :=∏k

i=1 ηi, that is:

κ(xk|x0) = N (xk;
√
ηkx0, (1− ηk)I). (3)

So, it is noted that the diffusion process admits sampling xk

at any timestep in closed form, and xk can be further denoted
as:

xk =
√
ηkx0 +

√
1− ηkε, (4)
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Figure 1: The overall framework of DHVAD, which shows the crucial components DRU and FPU (a) along with the detection strategy (b).

where ε ∼ N (0, I) is a Gaussian noise variable.
For the denoising process, it starts from ν(xK) =

N (xK ; 0, I) and then gradually remove noise by learning
Gaussian transition νθ(xk−1|xk) parameterized by θ:

νθ(xk−1|xk) = N (xk−1;µθ(xk, k),
∑
θ

(xk, k)), (5)

where the mean µθ(xk, k) and variance
∑

θ(xk, k) can be
parameterized by U-Net architecture.

In the case where all the conditions are represented as
Gaussians with trainable mean functions and fixed constant
variances, we can obtain a simplified objective as follows:

Ldiff =
K∑

k=1

Ex0∼κ(x0),ε∼N (0,I)||ε− εθ(xk, k)||2. (6)

3.3 Frame Prediction Unit
Prediction-based approaches yield better performance of
VAD owing to their exceptional capacity to capture temporal
related information. The video can be seen as a sequence,
which makes abnormal objects in videos often detected in
terms of unexpected spatial-temporal consistency. Given its
role in mining spatial-temporal consistency information, FPU
will simultaneously leverage video frames and optical flow
to extract spatial-temporal normality. Specifically, FPU is
trained to model ΨD(xn+t|xn:n+t−1, fn:n+t−1) given previ-
ous frames xn:n+t−1 and optical flows fn:n+t−1. According
to Conditional Variational Auto-Encoder (CVAE) [Liu et al.,
2024], the ELBO is:

logΨD(xn+t|fn:n+t−1)

≥ EΨE
log

ΨD(xn+t|z, fn:n+t−1)ΨD(z|fn:n+t−1)

ΨE(z|xn+t, fn:n+t−1)

. (7)

We assume that the distribution of xn+t and xn:n+t−1

is the same, which can be determined by the hidden vari-
ables z. This is because the time duration is very small
in real-time VAD, and their content information only con-
tains subtle pixel-level shifts of objects. Hence, replac-
ing ΨE(z|xn+t, fn:n+t−1) with ΨE(z|xn:n+t−1, fn:n+t−1)

in Eq. 7, we have:

logΨD(xn+t|fn:n+t−1)

≥ EΨE
log

ΨD(xn+t|z, fn:n+t−1)ΨD(z|fn:n+t−1)

ΨE(z|xn+t, fn:n+t−1)

≈ EΨE
log

ΨD(xn+t|z, fn:n+t−1)ΨD(z|fn:n+t−1)

ΨE(z|xn:n+t−1, fn:n+t−1)

= −KL[ΨE(z|xn:n+t−1, fn:n+t−1) ∥ ΨD(z|fn:n+t−1)]

+ EΨE
[logΨD(xn+t|z, fn:n+t−1)]

,

(8)
where KL signifies Kullback-Leibler divergence.

Thus, the loss function can be designed as follows:

Lpred =KL[ΨE(z|xn:n+t−1, fn:n+t−1)||ΨD(z|fn:n+t−1)]

+ ||xn+t − x̂n+t||22,
(9)

where the first term, KL divergence, is used to ensure that the
hidden variable z follows a parametric Gaussian distribution,
while the latter term ensures that the decoder ΨD can effec-
tively restore the data from the hidden variable.

3.4 Detection Strategy
As shown in Figure 1 (b), with the predicted and recon-
structed frames from multiple sources and their correspond-
ing optical flows, we can design appropriate evaluation strate-
gies for more effective VAD. In terms of video frames, a
triplet X =

{
xn+t, x̂

d
n+t, x̂n+t

}
can be formed among the

model outputs and the ground truth. Typically, we can first
consider the reconstruction errors between xn+t and x̂d

n+t
and the prediction errors between xn+t and x̂n+t for detec-
tion, which can be defined as:

Ex
diff =

∥∥xn+t − x̂d
n+t

∥∥2
2
, (10)

Ex
pred = ∥xn+t − x̂n+t∥22 . (11)

Meanwhile, we can also consider the error between x̂d
n+t and

x̂n+t, which can be defined as:

Ex
mutual = ∥xn+t − x̂n+t∥22 . (12)
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Figure 2: (a) Visualization of the error between the output of DHVAD and the ground truth. Three rows are the visualization results on UCSD
Ped2, CUHK Avenue, and ShanghaiTech datasets, respectively. (b) ROC curves of our framework DHVAD, baselines MNAD [Park et al.,
2020] and FFP [Liu et al., 2018].

This is due to the fact that DRU and FPU will reconstruct
abnormal objects in different ways. However, the normal
areas that they reconstruct are quite similar. By compar-
ing x̂d

n+t and x̂n+t, we can more precisely identify some
subtle anomalies. Additionally, optical flow can also form
F =

{
fn+t, f̂

d
n+t, f̂n+t

}
to assist in video anomaly detection

in a similar way.

Ef
diff =

∥∥∥fn+t − f̂d
n+t

∥∥∥2
2
, (13)

Ef
pred =

∥∥∥fn+t − f̂n+t

∥∥∥2
2
, (14)

Ef
mutual =

∥∥∥fn+t − f̂n+t

∥∥∥2
2
. (15)

We can leverage these errors to obtain the anomaly score,
weighted by two hyper-parameters λdiff and λpred called
Anomaly Score Coefficient (ASC), which can be defined as:

S = λdiff · F
(
Ex
diff + Ef

diff

)
+ λpred · F

(
Ex
pred + Ef

pred

)
+ (1− λdiff − λpred) · F

(
Ex
mutual + Ef

mutual

), (16)

where F represents the min-max normalization function.

4 Experiments
4.1 Quantitative Analysis
Implementation Details
To demonstrate the effectiveness of our proposed DMVAD,
we conduct experiments on three public benchmarks: UCSD

Ped2 [Li et al., 2013], CUHK Avenue [Lu et al., 2013],
and ShanghaiTech [Liu et al., 2018] datasets. In order to
save computing costs, we utilize the Cascade R-CNN [Cai
and Vasconcelos, 2019] pre-trained model and FlowNet2.0
[Ilg et al., 2017] pre-trained model. When training, hyper-
parameter timestep K is set to 1200. The variance sched-
ule γk ∈ (0, 1), k = 1, ...,K is defined as a small linear
schedule, increasing linearly from γ1 = 10−4 to γK = 0.02.
The timestep is encoded with transformer sinusoidal posi-
tional embedding [Vaswani et al., 2017]. It is noted that we
set the sample distance λ = 70. We set the training batch
size and testing batch size to 64 and 128, respectively. We
utilize the PyTorch [Paszke et al., 2019] framework on an
NVIDIA GeForce RTX 3090 GPU to implement our pro-
posed DHVAD.

Comparison with State-of-the-Art Methods
As shown in Table 1, we compare our proposed DHVAD with
previous methods on three benchmarks. Our DHVAD out-
performs the state-of-the-art methods on three benchmarks.
Overall, the performances of our DHVAD is 0.3%, 1.1% and
3.7% higher than the second best on UCSD ped2, CUHK Av-
enue, and ShanghaiTech datasets, respectively. To be spe-
cific, our DHVAD model is 1.0%, 2.5% and 3.9% higher
than the best of classical methods that utilize the prevalent
prediction-based tasks [Gong et al., 2019; Park et al., 2020;
Le and Kim, 2023]. Compared with methods that model
both spatial and temporal normality [Tang et al., 2020;
Cai et al., 2021; Zhao et al., 2022; Chang et al., 2022;
Hao et al., 2022; Liu et al., 2022], we obtain an improvement
of 1.0–2.1%, 2.8–5.9% and 3.7–4.5% on three benchmarks.
The results show that DHVAD can fully utilize complemen-
tary advantages between DRU and FPU with our strategy.
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Methods UCSD Ped2 CUHK Avenue ShanghaiTech
R

. MemAE [Gong et al., 2019] 94.1% 83.3% 71.2%
MNAD-Reconstruction [Park et al., 2020] 90.2% 82.8% 69.8%

P.

FFP [Liu et al., 2018] 95.4% 84.9% 72.8%
Multi-space [Zhang et al., 2020] 95.4% 86.8% 73.6%
MNAD-Prediction [Park et al., 2020] 97.0% 88.5% 70.5%
LIF [Chang et al., 2020] 96.5% 86.0% 73.3%
AMMC-Net [Cai et al., 2021] 96.6% 86.6% 73.7%
MPN [Lv et al., 2021] 96.9% 89.5% 73.8%
STC-Net [Zhao et al., 2022] 96.7% 87.8% 73.1%
STCEN [Hao et al., 2022] 96.9% 86.6% 73.8%
AMAE [Liu et al., 2022] 97.4% 88.2% 73.6%
Le et al. [Le and Kim, 2023] 97.4% 86.7% 73.6%

O
.

DDGAN [Tang et al., 2020] 96.3% 85.1% 73.0%
STD [Chang et al., 2022] 96.7% 87.1% 73.7%
Zhong et al. [Zhong et al., 2022] 97.7% 88.9% 70.7%
USTN-DSC [Yang et al., 2023b] 98.1% 89.9% 73.8%

Our DHVAD 98.4% 91.0% 77.5%

Table 1: Results of quantitative frame-level AUC comparison. Num-
bers in bold indicate the best performance and underscored ones
are the second best. (’R.’, ’P.’, and ’O.’ indicate the reconstruction-
based, prediction-based and other methods, respectively.)

Figure 3: Temporal analysis of the anomaly score on testing videos.

4.2 Visualization and Qualitative Analysis
Due to DRU’s understanding of semantically accurate nor-
mality and the proposed detection strategy, errors are identi-
fied significantly in the area of anomalous objects, allowing
DHVAD to capture them effectively. As shown in Figure 2
(a), we demonstrate the visualization of errors between the
output and the ground truth. DHVAD exhibits stability when
confronted with various anomalies. For example, DHVAD
can detect abnormal objects due to high-speed movement, as
well as those due to inappropriate appearance in some scenes.
As for anomalies that are prone to misjudgment, they can
still be detected, such as objects that conform to spatial nor-
mality but deviate from temporal normality (or vice versa),
whose part of compliance with normality may make detec-
tion confusing. For instance, pedestrians that adhere to spa-
tial normality are permitted, which means running pedestri-
ans are considered a normal mode solely from a spatial per-
spective. Previous methods choose to reconstruct such targets
relatively completely, and their way of detection mainly re-
lies on shifting these objects in the prediction relative to the
ground truth to generate an error. But these shifts are typi-
cally slight. Once the impact of the error generated by the
displacement is insufficient to outweigh the impact of the ob-
ject’s normal part that adheres to normality, it will lead to un-
reliable detection results. This will, to some extent, affect the

BaselinesDRU FFP MNAD
Ground Truth

A

B

0.00515 0.00355 0.00292

0.00705 0.00667 0.00689

Figure 4: Examples of predictions and reconstructions of objects
by DRU, MNAD [Park et al., 2020] and FFP [Liu et al., 2018].
Corresponding errors are labeled in the upper left.

Figure 5: AUC (%) under different λdiff and λpred.

robustness of the model. However, DHVAD successfully re-
tains the information of the captured anomalous errors based
on the reasonable proposed detection strategy.

As shown in Figure 2 (b), we investigate the reliability and
robustness of DHVAD based on the Receiver Operating Char-
acteristic (ROC) curves. Due to the inaccessibility and un-
availability of codes in some recent methods, we implement
two baselines for the comparison and only obtain the results
consistent with the claimed performance in their papers on
UCSD Ped2 and CUHK Avenue. They are well explored and
achieve excellent performance in the VAD task. In the fig-
ure, three red lines represent the ROC curves of DHVAD on
three datasets, respectively. The yellow and green lines rep-
resent those of MNAD and FFP, respectively. In terms of
the ROC curves on the UCSD Ped2 dataset, DHVAD’s true
positive rate is persistently higher than MNAD and FFP as
the false positive rate grows from 0. This situation can be
apparently observed until the false positive rate approaches
around 0.2. In addition, we also conduct experiments of tem-
porary analysis of DHVAD, as shown in Figure 3. The red
background represents the existence of abnormal objects in
the corresponding video segments, whereas the white back-
ground denotes that the video segments can be classified as
normal ones. Some video frames within normal and abnor-
mal segments are exhibited for clearness. Observed from
the anomaly score, it is evident that when anomalies appear,
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DHVAD can effectively capture them, thus demonstrating the
reliability of the detection outcomes.

4.3 Ablation Study
Rationality of DRU
To demonstrate the effective understanding of DRU in terms
of semantically accurate normality, we visualize the recon-
struction of DRU as depicted in Figure 4. We also present the
outputs of two baselines for comparative analysis. Two ab-
normal objects can be observed from the ground truth, among
which object A is partially covered. Both FFP and MNAD
outputs relatively complete predictions of anomalous objects,
resulting in similar outcomes. Both baselines retain bicycles
in the prediction of the two abnormal objects. On the con-
trary, DHVAD demonstrates an ability to reconstruct bicy-
cles that do not conform to semantically accurate normality.
Specifically, the visualization of object A reveals that the un-
covered front wheels in object A have been partially removed
visually, indicating the effectiveness of DRU. For the remain-
ing portion of the reconstruction, it can be considered as mul-
tiple parts that conform to normality if we try to observe it in
a decomposed manner. This essentially reflects another im-
portant reason why DHVAD can provide better detection per-
formance. DRU will also try to retain parts of the anomalous
objects that conform to normality to prevent misjudgment.
VAD not only necessitates an accurate detection of anoma-
lies but also requires the prevention of misjudgment of normal
objects. From the perspective of generalization, the above re-
quirements correspond to the issues of the model’s too strong
or too weak generalization of semantic information. For ex-
ample, the dress and personal adornment of pedestrians may
not be our criterion for judging anomalies. However, an
overly harsh model might trigger an alert when it encounters
some new dress and personal adornment to create a false de-
tection. Therefore, the generalization of DRU is also reflected
in the cases where the uncovered part of the rear wheel is re-
constructed into the human leg that better conforms to the
semantically accurate normality. On the one hand, DRU can
remove anomalous parts from the object, while on the other,
it exhibits good generalization ability in terms of semanti-
cally accurate normality. In short, DRU possesses two ways
of treating anomalies by removing and reconstructing them
into normal parts. It is precisely such accurate judgements
of different parts of the object based on semantic information
that proves the rationality of DRU. As for object B, the front
wheel of the bicycle is partially removed like target A. DRU
tends to reconstruct the preserved parts into legs that con-
form to semantically accurate normality. For the rear wheels,
the remaining part is reconstructed to mimic the scenario of
pedestrian legs on the crowded street from the perspective of
surveillance. From the comparative experimental results with
the baselines and the design of the framework, it can be seen
that DHVAD has been able to implement VAD from a differ-
ent perspective than existing prevalent paradigms.

Sensitivity of ASC
We perform sensitivity analysis on ASC within DHVAD on
UCSD Ped2 dataset, providing valuable insights into its im-
pact on performance. When only considering the use of DRU

for detection, its AUC drops to 96.0%. Similarly, the AUC
falls to 97.5% when solely relying on FPU for detection.
Compared with the detection performance of the full frame-
work, the AUC decreases by 0.9% and 2.4%, respectively,
proving the effectiveness of the detection strategy. The rela-
tionship between λdiff and λpred satisfies the following:

λdiff + λpred + (1− λdiff − λpred) = 1, (17)

0 < λdiff < 1, (18)

0 < λpred < 1. (19)

Therefore, we conduct a grid search on these two parameters.
As depicted in Figure 5, the different colored lines represent
the changes in performance caused by changes in λpred when
λdiff remains unchanged. It can be observed that employ-
ing the detection strategy outperforms the individual detec-
tion in most instances. Even in a few cases, it is still superior
to one of the performances of the individual detection. This
indicates that there is indeed complementary information be-
tween DRU and FPU, thereby facilitating effective VAD. Af-
ter determining the effectiveness of the detection strategy, we
can see from the trend that the model performs better when
λdiff rises, which means the semantically accurate normality
extracted by the DRU plays a pivotal role.

5 Conclusion
In this paper, we propose a denoising diffusion-based recon-
struction that differs from the commonly used reconstruc-
tion of compression and decompression in the prevalent VAD
paradigm. The proposed framework DHVAD fully utilizes
the complementary advantages between DRU and FPU in the
proposed detection strategy to enhance VAD performance.
The performance comparison with the state-of-the-art models
on three benchmark datasets verifies the effectiveness of the
framework. The diverse visual analysis further explains the
rationality and role of crucial components in the model. Espe-
cially, we explained the competitive performance of DHVAD
from the perspective of the generalization and understanding
of semantically accurate normality using DRU. Furthermore,
we conduct sensitivity analysis based on a grid search of the
key parameters of the detection strategy, demonstrating its ro-
bustness. In future work, we will attempt to further explore
the semantically accurate normality and establish a more so-
phisticated analysis.
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