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Abstract
State-of-the-art deep ISP models alleviate the
dilemma of limited generalization capabilities
across heterogeneous inputs by increasing the size
and complexity of the network, which inevitably
leads to considerable growth in parameter counts
and FLOPs. To address this challenge, this pa-
per presents MetaISP - a streamlined model that
achieves superior reconstruction quality by adap-
tively modulating its parameters and architecture
in response to diverse inputs. Our rationale re-
volves around obtaining corresponding spatial and
channel-wise correction matrices for various inputs
within distinct feature spaces, which assists in as-
signing optimal attention. This is achieved by pre-
dicting dynamic weights for each input image and
combining these weights with multiple learnable
basis matrices to construct the correction matrices.
The proposed MetaISP makes it possible to obtain
the best performance while being computationally
efficient. SOTA results are achieved on two large-
scale datasets, e.g. 23.80dB PSNR on ZRR, ex-
ceeding the previous SOTA 0.19dB with only 9.2%
of its parameter count and 10.6% of its FLOPs;
25.06dB PSNR on MAI21, exceeding the previ-
ous SOTA 0.17dB with only 0.9% of its parameter
count and 2.7% of its FLOPs.

1 Introduction
Over the past decade, DSLR cameras have increasingly been
supplanted in various application scenarios due to their lack
of portability. This shift has intensified the interest in achiev-
ing high-quality sRGB images without relying on large sen-
sors and lenses. As sensor size constraints reach their maxi-
mum, researchers have turned their attention to improving the
image signal processing (ISP) pipeline, which aims to recon-
struct high-quality sRGB images from raw sensor images [Ig-
natov et al., 2022a]. The conventional ISP pipeline consists
of multiple manually designed modules. Unfortunately, the
accumulation of errors from each processing module gradu-
ally degrades the overall reconstruction quality of the sRGB
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Figure 1: Our MetaISP achieves the best performance on two large-
scale datasets and meanwhile being impressive computational effi-
ciency and significantly lightweight.

image [Liang et al., 2021b].
To address this issue of accumulated reconstruction errors,

the concept of an end-to-end deep ISP model has been in-
troduced in the literature [Schwartz et al., 2018], which in-
tegrates the entire ISP pipeline into one single unified learn-
able model. Despite the encouraging performance in RAW-
to-sRGB tasks, these existing end-to-end deep ISP models
present two distinctive challenges:

• (1) Diverse Conditions. The diversity in environmental
conditions and camera settings under which images are
captured makes it challenging for the model to establish
accurate mappings for every image pair;

• (2) High Efficiency Requirement. Since the deep ISP
model is commonly deployed on resource-constrained
devices, prioritizing efficiency and lightweight design
becomes crucial to ensure its practical value.

To attain remarkable reconstruction quality under diverse
conditions, certain heavy ISP models [Ignatov et al., 2020a;
Ignatov et al., 2020b; Kim et al., 2020; Dai et al., 2020;
Liang et al., 2021b; Zhang et al., 2021] have been pro-
posed. Yet, these models all come with complex struc-
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tures and a substantial parameter count. To be suitable for
resource-constrained devices, some lightweight ISP models
[Raimundo et al., 2022; Ignatov et al., 2023b; Hsyu et al.,
2021; Ignatov et al., 2023a; Ignatov et al., 2022a] have also
been introduced. Unfortunately, these lightweight models all
inevitably compromise the quality of the reconstructed sRGB
image. As such, it remains a challenging problem in the
literature to generate sRGB images of comparable or supe-
rior quality to those produced by heavy models, while uti-
lizing significantly fewer parameters and FLOPs like those
lightweight models.

In this paper, we introduce MetaISP, an adaptive network
for RAW to sRGB mappings that offers a lightweight archi-
tecture and efficient inference while consistently producing
high-quality outputs. Our rationale comes from the substan-
tial variations of the mapping relationship between RAW and
sRGB images under diverse conditions. Motivated by this
observation, we propose an elaborated sample-wise dynamic
network that adaptively adjusts its parameters and architec-
ture in response to diverse inputs. Unlike existing models
with fixed parameters, our method allows for automatic and
flexible learning of accurate RAW to sRGB mappings under
diverse conditions. Consequently, it presents significant facil-
itators to the model training process and enhances the model’s
ability to generalize. As depicted in Figure 1, our approach
achieves high-quality sRGB images while significantly re-
ducing the number of parameters and required FLOPs.

The key element of our MetaISP is a U-Net-like archi-
tecture comprising two novel blocks: the meta channel cor-
rection block (MCCB) and the meta spatial correction block
(MSCB). MCCB obtains stronger parameter prediction abil-
ity and improves the learning capability for the relationship
between feature map channels by predicting the content-
dependent weights of the basis matrices. While MSCB in-
novatively calculates the cosine similarity between each pixel
in the feature map and the adaptive correction vector to get
the spatial attention map efficiently and achieve stronger rep-
resentation ability. Additionally, the meta shallow feature
extraction block (MFEB) and the meta reconstruction block
(MRB) are also proposed to further improve the quality of
the sRGB image. MFEB realizes flexible sample-wise fea-
ture extraction by predicting dynamic weights for five pre-
defined convolution kernels based on the input RAW image.
Additionally, MRB enhances global alterations by utilizing
the output from U-Net’s bottom layer to guide the final image
generation process.

Our contribution is a novel deep ISP model that achieves
high-quality sRGB images while significantly reducing com-
putational complexity. This is achieved by four complemen-
tary and lightweight dynamic blocks entitled MCCB, MSCB,
MFEB, and MRB, which adaptively adjust model parameters
and structure based on input images. As shown in Figure
1, extensive experimental results on two large-scale datasets
demonstrate the superiority of our MetaISP: 23.80dB PSNR
on ZRR [Ignatov et al., 2020b], exceeding the previous SOTA
0.19dB with only 9.2% of its parameter count and 10.6% of
its FLOPs; 25.06dB PSNR on MAI21 [Ignatov et al., 2022b],
exceeding the previous SOTA 0.17dB with only 0.9% of its
parameter count and 2.7% of its FLOPs.

2 Related Work
Recent approaches in Image Signal Processing (ISP) aim to
enhance image quality by leveraging deep learning to trans-
form Bayer RAW format images into high-quality RGB im-
ages. These methods formulate ISP tasks as end-to-end pro-
cesses, replacing the traditional sequential modules with a
single model.

Schwartz et al.[Schwartz et al., 2018] pioneered this ap-
proach by introducing DeepISP, which utilizes Convolutional
Neural Networks (CNNs) to create a fully integrated ISP
pipeline. Building upon this, Ignatov et al. [Ignatov et
al., 2020b] developed Pynet, a network designed around the
pyramid architecture, thereby further advancing the recep-
tive field. This development encouraged many researchers
to adapt Unet-based models for this task. Zhang et al. [Ig-
natov et al., 2020a] proposed MW-ISPNet, a model that first
uses a wavelet transform to replace the downsampling and
upsampling stages in the deep ISP model. Additionally, Dai
et al. introduced AWNet [Dai et al., 2020], incorporating
wavelet transform and global context attention to enhance im-
age quality by providing the model with a larger receptive
field. Raimundo et al. [Raimundo et al., 2022] proposed
LAN, a model integrating spatial attention to capture spatial
information within images. Liang et al.[Liang et al., 2021b]
suggested CamerNet, arguing that ISP should be split into two
relatively uncorrelated segments. They deployed two sep-
arate U-Net models to handle restoration and enhancement,
respectively. LiteISP [Zhang et al., 2021] achieves better re-
sults with a lighter model by solving the problem of misalign-
ment between RAW and sRGB images in the dataset.

In an effort to boost ISP performance on mobile platforms,
[Ignatov et al., 2022a] proposed PynetV2, a lightweight and
efficient model that expands upon the concept of channel at-
tention. [Hsyu et al., 2021] proposed CSANet, which em-
ploys a dual attention module that leverages both channel and
spatial attention. [Ignatov et al., 2023a] further innovated
with the proposal of MicroISP, which operates at the origi-
nal scale, thereby reducing the GPU memory requirements.
This approach enables the processing of larger images and
ensures faster operational speed.

These state-of-art ISP algorithms still suffer from one ma-
jor flaw: in order to accommodate the diversity of input RAW
images derived from real-world environments, these methods
often resort to expanding the model’s capacity to enhance its
generalizability. However, this invariably leads to an esca-
lation in computational cost. In contrast to existing methods,
our approach eliminates the dependency on high-cost models,
while still achieving high-quality generation of RGB images.

3 Proposed Method
Our primary goal is to develop a deep ISP model for high-
quality sRGB image restoration from camera sensor outputs,
with reduced parameters and FLOPs. To achieve exceptional
performance with low computational complexity, we propose
MetaISP, which utilizes a dynamic network concept. In this
section, we introduce MetaISP’s overall architecture and four
key components: (a) meta channel correction block (MCCB),
(b) meta spatial correction block (MSCB), (c) meta shallow
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Figure 2: Overall architecture of MetaISP, the architecture of meta channel correction block (MCCB) and meta spatial correction block
(MSCB).

feature extraction block (MFEB), and (d) meta reconstruction
block (MRB).

3.1 Overview
As illustrated in Figure 2, the overall architecture of MetaISP
follows a U-shaped encode-decoder structure. The U-net
architecture enables the model to capture both low-level
and high-level image features, enabling robust representa-
tion learning. Given a 4-channel RAW image Iraw ∈
R4×H/2×W/2, MetaISP first employ MFEB to adaptively ex-
tract shallow feature F0 ∈ RC×H/2×W/2, where H/2×W/2
denotes the spatial resolution and C is the number of chan-
nels. Then the shallow features F0 are fed into a 4-level U-
net for multi-scale deep feature extraction and reconstruction.
Each level of the U-net contains only two correction blocks
which are composed of proposed MCCB and MSCB. From
top to bottom levels, the number of feature map channels
are {C,C,C, 2C}. The model benefits from a comparatively
smaller number of channels and blocks, resulting in a signif-
icant reduction in computational complexity. The downsam-
pling and upsampling of the feature maps are achieved using
discrete wavelet transformation [Liu et al., 2018] and a 3×3
convolution layer. The residual connections are implemented
through per-pixel addition. Finally, the feature map of the
bottom level F2 ∈ R2C×H/16×W/16 and the output of the U-
net F1 ∈ RC×H/2×W/2 are fed into MRB to reconstruct the
sRGB image Irgb ∈ R3×H×W .

3.2 Meta Channel Correction Block (MCCB)

Channel attention [Hu et al., 2018] is a simple dynamic pa-
rameter block that is commonly used in many low-level vi-
sion tasks including deep ISP to capture channel-wise depen-
dencies and highlight informative features while suppressing
irrelevant or redundant ones. By incorporating the channel at-
tention mechanism into CNN architectures, models can adap-
tively assign different importance levels to channels and dy-
namically adjust their contributions during feature extraction.
It realizes computational efficiency and brings global infor-
mation to the feature map. However, its linear transformation
through simple channel-wise multiplication with attention
weights M ∈ RC×1 exhibits limited fitting capacity, while
its simplistic attention prediction layers may lead to subop-
timal attention weights. Consequently, it becomes necessary
to continually increase the depth and width of the channel
attention block to compensate for these drawbacks. To fur-
ther improve the ability to learn inter-channel relationships,
Restormer [Zamir et al., 2022] proposed a more powerful and
dynamic method based on the self-attention (SA) mechanism
[Vaswani et al., 2017]. It calculates the response of a specific
channel by performing a weighted sum across all other chan-
nels, thereby generating an attention map M ∈ RC×C . Nev-
ertheless, generating the attention map involves computing
cross-covariance across channels, which is computationally
more expensive compared to CNN-based channel attention.

To achieve the high performance of self-attention while
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maintaining low computational complexity similar to CNN,
we propose MCCB. The architecture of MCCB is shown in
Figure 2. The block begins with layer normalization [Ba et
al., 2016], which enhances the stability of the training pro-
cess and enables the utilization of larger learning rates. The
following 3×3 convolution and GELU [Hendrycks and Gim-
pel, 2016] aggregate the local spatial context. Then the fea-
ture map X ∈ RC×H×W is projected to a high-dimensional
space Y ∈ RK×H×W to obtain richer features. Unlike
MDTA and channel attention, which directly calculate the
weights of each channel, MCCB joint learns several basis ma-
trices {ϕn}n=1,...,N together with a simple prediction branch
p which predicts weights {wn}n=1,...,N = p(X) for each
basis matrices. For an input feature map X ∈ RC×H×W , the
adaptive correction matrix M ∈ RK×K is obtained as:

M =
∑N

n=1 wn(x)ϕn. (1)
Next, we reshape the high-dimensional feature map and per-
form matrix multiplication with the input-adaptive correction
matrix, similar to the self-attention mechanism. The transfor-
mation process is defined as:

R̂ = R ∗ M, (2)

where R̂ ∈ RHW×K and R ∈ RHW×K are the input and out-
put reshaped feature maps, M ∈ RK×K is the input-adaptive
correction matrix, ∗ stands for matrix multiplication. Finally,
we project the transformed feature map Ŷ ∈ RK×H×W

back to its original dimension X̂ ∈ RC×H×W and estab-
lish a residual connection [He et al., 2016] with the input
X ∈ RC×H×W .

Our MCCB utilizes only a few basis matrices to trans-
form the feature maps and employs dynamic soft weights
to achieve content-adaptive channel transformation. This
mechanism enables us to leverage the same low computa-
tional complexity as channel attention while effectively learn-
ing complex inter-channel relationships, similar to the trans-
former model.

3.3 Meta Spatial Correction Block (MSCB)
In addition to channel attention, spatial attention is another
dynamic parameter mechanism that focuses on capturing
and emphasizing relevant spatial regions in an image. One
common approach in spatial attention is to utilize convolu-
tional neural networks (CNNs) to learn attention maps that
highlight relevant spatial regions. These attention maps are
then used to modulate the feature representations in subse-
quent layers, enabling the network to focus on discrimina-
tive regions while suppressing irrelevant or noisy informa-
tion. The CNN-based spatial attention leverages parame-
ter sharing across spatial locations, enabling efficient pro-
cessing and reducing computational complexity. However,
it has a limited receptive field, thus preventing it from mod-
eling long-range pixel interactions. While the self-attention-
based spatial attention [Chen et al., 2021; Liang et al., 2021a;
Wang et al., 2022] has exceptional capabilities in global con-
text modeling but suffers from high computational complex-
ity. The complexity of the attention block is quadratic in rela-
tion to the input size, making it impractical to apply to high-
resolution images in ISP tasks. To simultaneously achieve the

Figure 3: The visualizations of attention maps in MSCB, ordered
from left to right across U-Net layers.

low computational complexity of CNN and the global context
modeling capabilities of self-attention in spatial attention, we
propose the MSCB.

As is shown in Figure 2, MSCB shares a comparable over-
all architecture with MCCB. We simultaneously learn mul-
tiple basis vectors {εn}n=1,...,N along with a straightfor-
ward prediction branch, denoted as p, which predicts dynamic
weights {wn}n=1,...,N = p(X) for each basis vectors. The
adaptive correction vector V ∈ R1×K is obtained through
weighted addition of multiple basis vectors:

V =
∑N

n=1 wn(x)εn. (3)

We assign attention weights to each pixel in the feature
map by computing the cosine similarity between each pixel
and the correction vector. The transformation process is de-
fined as:

Ŷ = Y ⊗ S, (4)

Sw,h =
Yw,h ∗ V

|Yw,h| × |V |
, (5)

where Ŷ ∈ RK×H×W and Y ∈ RK×H×W are the input
and output high-dimensional feature maps, V ∈ R1×K is
the sample-wise adaptive correction vector, S ∈ R1×H×W

is the spatial attention map, ⊗ stands for pixel-wise multipli-
cation and ∗ stands for dot product. To normalize the atten-
tion weights, we compute the cosine similarity, ensuring that
all values fall within the range of 0 to 1. This normalization
process helps to achieve smoother training and reduce the ex-
cessive influence of attention weights on a few pixels. Pixels
that exhibit higher similarity to the correction vector will be
assigned higher attention weights, while pixels that show less
similarity to correction vector will be assigned lower attention
weights. MSCB achieves linear complexity O (HW ) while
effectively utilizing the global information of the feature map.

The visualization of attention maps in MSCB is depicted
in Figure 3, where the model leverages the attention mecha-
nism to discern intrinsic spatial correlations. Attention maps
at different levels reveal varying inherent relationships.

3.4 Meta Feature Extraction Block (MFEB)
Considering the varied demands for high-frequency (detail-
focused) and low-frequency (color and illumination) informa-
tion restoration across images, we advocate for a dynamic,
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Figure 4: Architecture of the proposed MRB.

image-specific feature extraction. MFEB is chiefly parti-
tioned into three components. We first implement a 3×3 stan-
dard convolution for baseline performance. Next, to gather
global information, we apply pre-defined kernel functions
such as the box filter and Gaussian filter. Lastly, we use
Sobel-X, Sobel-Y, and Laplacian kernel functions for local
feature extraction. A prediction network is also incorporated
to generate weights for each branch based on the input image.
The predicted weights {Wn}n=1,...,6 indicate the significance
of each feature extraction branch, and {Fn}n=1,...,6 denote
features extracted from each branch. The formula below de-
picts the weighted sum for each instance.

Xout =
∑6

n=1 Wn × Fn. (6)

3.5 Meta Reconstruction Block (MRB)
The crux of Learnable ISP tasks lies in color mapping. Mod-
ern image restoration typically employs U-Net-shaped net-
works to extract and decode multi-scale information for im-
age restoration. Still, aspects like lighting and color require
sequential decoding, typically at the U-Net’s lowest layer. To
address this, we introduce the meta reconstruction block. As
shown in Figure 4, MRB uses the output from the U-Net’s
base layer to guide final image reconstruction.

sRGB = Freconstruct (Xh)⊗ Fchannel (Xl) . (7)

In the preceding equation, Xh and Xl depict the outputs
from the top and bottom layers of the U-Net, respectively.
Fr signifies a series of 3 × 3 convolutions with pixel shuf-
fling, and Fchannel comprises standard 1 × 1 convolutions
and a global average pooling, yielding a C × 1 × 1 output
that captures inter-channel correlations. Finally, ⊗ indicates
channel-wise multiplication.

4 Experiments
4.1 Implementation Details
Datasets. We conduct experiments on two publicly avail-
able RAW to sRGB datasets: the Zurich RAW to RGB (ZRR)
dataset [Ignatov et al., 2020b] and the MAI2021 dataset [Ig-
natov et al., 2022b].

ZRR dataset is a large-scale dataset consisting of 48k
RAW-sRGB pairs of size 448 × 448. We follow the official

division that 46.8k are used for training and 1.2k are used for
testing. To further address the misalignment issue in the ZRR
dataset, we utilized a global color mapping (GCM) module
[Zhang et al., 2021] in combination with a pre-trained PWC-
Net [Sun et al., 2018] to warp the sRGB images with the
corresponding RAW images. In contrast to the joint training
strategy of [Zhang et al., 2021], we pre-train a GCM module
and utilize its output to align the sRGB images before training
the ISP model for fairness and certainty in our comparisons.

We also used the MAI21 dataset which consists of 24k
RAW-sRGB pairs of size 256 × 256. The dataset was then
randomly divided into two parts, with 23k samples allocated
for training and 1k samples reserved for testing.
Training Details. Our model is implemented in PyTorch
[Paszke et al., 2019] and trained on 4 Nvidia Titan X GPUs
with a batch size of 32. The parameters of the network are
optimized with ADAM [Kingma and Ba, 2014] algorithm.

For the ZRR dataset, all the training images were aug-
mented by random horizontal and vertical flipping during the
training. Our MetaISP consists of a four-level U-Net archi-
tecture, with channel numbers of 32, 32, 32, and 64 from top
to bottom. The model undergoes a two-stage training process.
First, the model is trained for 80 epochs with an initial learn-
ing rate of 5e−4 which is decayed to half after 50 epochs. The
loss function is a combination of VGG-based perceptual loss
[Johnson et al., 2016], SSIM loss [Wang et al., 2004] and
Charbonier loss [Zhang et al., 2018]:

LStage1 = 0.25 · LChar + LSSIM + LV GG. (8)

Next, the model is fine-tuned for an additional 5 epochs with
a learning rate of 2e−5. Only MSE loss and SSIM loss are
employed for final tone adjustments and edge rendering:

LStage2 = 0.5 · LMSE + LSSIM . (9)

For the MAI21 dataset, no data augmentation methods
were employed throughout the training phase. We further
reduce the depth and width of MetaISP to make it more
lightweight. The training process is similar to the ZRR
dataset.

4.2 Experimental Results
ZRR Dataset. Our proposed model, MetaISP, was bench-
marked against four cutting-edge models on the ZRR dataset,
demonstrating superior performance in all metrics, including
PSNR, SSIM and ∆E (see Table 1). Notably, the MetaISP’s
excellence was achieved with significantly fewer parameters
and computational resources, requiring only approximately
8.6% of the parameters and 9.5% of the Flops utilized by
LiteISP [Zhang et al., 2021]. Further corroborating its supe-
riority, MetaISP synthesizes output images of an exceptional
quality that are rich in detail and exhibit superb restoration
of global information, such as illumination and color. This
qualitative superiority is clearly illustrated in Figure 5.

In Table 2, we provide a detailed comparison of the ac-
tual memory requirements, running latency, and frames per
second (FPS) across various image resolutions to offer a
comprehensive evaluation of efficiency. Our model demon-
strates significant advantages in efficiency over the SOTA
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Figure 5: Visual comparison of our method with state-of-the-art approaches on the ZRR dataset [Ignatov et al., 2020b]. Our MetaISP
demonstrates superior performance in both global color fidelity and local detail preservation.

Dataset Methods Params(M) ↓ FLOPs(G) ↓ PSNR(dB) ↑ SSIM ↑ ∆E ↓ Extra Data

ZRR

PyNet[Ignatov et al., 2020b] 47.6 343 22.69 0.8490 6.498 ✕
AWNet3 [Dai et al., 2020] 52.2 75 23.22 0.8516 6.247 ✕
AWNet4 [Dai et al., 2020] 50.1 293 23.33 0.8473 6.397 ✕
MW-ISPNet [Ignatov et al., 2020a] 29.2 88 23.01 0.8453 6.216 ✕
LiteISP [Zhang et al., 2021] 11.9 73 23.61 0.8672 6.079 ✕
Ours (MetaISP) 1.1 8 23.80 0.8758 5.881 ✕

MAI21

CSANet [Hsyu et al., 2021] 0.12 0.69 24.31 0.8434 6.115 ✕
LAN [Raimundo et al., 2022] 0.05 0.28 24.30 0.8224 6.146 ✕
MicroISP [Ignatov et al., 2023a] 0.02 0.18 23.61 0.8205 6.978 ✕
PyNet-v2 [Ignatov et al., 2022a] 0.98 2.11 23.96 0.8218 6.109 ✕
LiteISP [Zhang et al., 2021] 11.9 24 24.89 0.8577 5.801 ✕
Ours (MetaISP) 0.10 0.65 25.06 0.8658 5.576 ✕

MicroISP✝ [Ignatov et al., 2023a] 0.02 0.18 23.87 0.8530 – ✓
PyNet-v2✝ [Ignatov et al., 2022a] 0.98 2.11 24.72 0.8783 – ✓

Table 1: Quantitative results for ZRR [Ignatov et al., 2020b] and MAI21 datasets [Ignatov et al., 2022b]. Our MetaISP achieves superior
performance across all metrics, with significantly smaller FLOPs and parameter counts. The PyNet-v2 and MicroISP models denoted with ✝
for the MAI21 dataset utilized extra data, comprising 99K pairs of training images (not released). The other models, in contrast, used 23K
pairs of images. AWNet presents two versions: AWNet3 and AWNet3, which process 3-channel demosaicked images and 4-channel raw
images as inputs respectively. ∆E is widely used to measure changes in visual perception between two colors, we report the results of ∆E
2000 [Sharma et al., 2005].

LiteISP model, particularly in processing high-resolution im-
ages. Additionally, the analysis reveals that the computational
complexity of the MetaISP model is linearly correlated with
the input size. These efficiency assessments were conducted
using a single Titan X GPU.

MAI21 Dataset. An extensive evaluation on the MAI21
dataset affirmed MetaISP’s superior performance and com-
putational efficiency compared to state-of-the-art models (see
Table 1). Remarkably, MetaISP outshone models like Mi-
croISP and PyNet-V2 in the majority of evaluation met-
rics, despite these models leveraging additional data. The
formidable efficiency of MetaISP becomes evident when con-
sidering that it utilizes a scant 1.1% of LiteISP’s parameters
and 2.4% of its computational burden (in FLOPs), while still
managing to outstrip LiteISP in performance. In terms of im-
age quality, sharpness, and color restoration, MetaISP’s out-
put distinctly excels, a fact clearly illustrated in Figure 6. It is
particularly noteworthy that our model significantly outpaces
other models in the aspect of color information restoration.

Resolution Method FLOPs↓ Memory↓ Latency↓ FPS↑

224×224 LiteISP 18.3G 238MB 30ms 34
MetaISP 1.9G 155MB 21ms 47

448×448 LiteISP 73.2G 823MB 67ms 15
MetaISP 7.8G 596MB 30ms 33

672×672 LiteISP 164.7G 1801MB 128ms 8
MetaISP 17.6G 1345MB 56ms 18

896×896 LiteISP 292.8G 3185MB 216ms 5
MetaISP 31.2G 2368MB 95ms 11

1120×1120 LiteISP 457.6G 4959MB 323ms 3
MetaISP 48.9G 3712MB 146ms 7

Table 2: Actual efficiency comparison under different resolutions.

4.3 Ablation Studies

In this section, we conduct extensive experiments to measure
the contributions of our proposed blocks. Experiments are
performed on the aligned ZRR dataset, and models are trained
on image patches of 448×448 for 85 epochs.
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Figure 6: Visual comparison results on the MAI21 dataset [Ignatov et al., 2022b].MetaISP demonstrates significant advantages in both detail
preservation and global color fidelity. Best viewed with Zoom.

Effectiveness of the Four Proposed Blocks
To evaluate each individual component in MetaISP, we con-
ducted additional experiments as shown in Table 3. The
baseline is the MetaISP trained with all four components.
When replacing MFEB with a commonly used 3×3 convo-
lution layer, the PSNR decreases by 0.11 dB. The inclusion
of MRB helps mitigate the overfitting issue in the model, as
evidenced by a PSNR drop of 0.29 dB when removing it. In
addition to enhancing the quality of output images, MFEB
and MRB contribute only marginally to the computational
complexity of the model. MCCB and MSCB serve as fun-
damental components within the U-shaped encoder-decoder
architecture of MetaISP. Removing MCCB results in a PSNR
drop of approximately 0.5 dB, while removing MSCB leads
to a larger drop of 0.63 dB.

Various Numbers of Basis Matrices and Vectors
To determine the number N of basis matrices and vectors,
we evaluate the performance of our model by setting N =
{4, 8, 10, 16, 32} as shown in Table 3. We have chosen to set
N as 10 in order to strike a balance between efficiency and
performance in our model. Further increasing the value of N
does not result in significant performance improvements and
may potentially lead to overfitting issues.

Design of MFEB
The results presented in Table 3 demonstrate that the removal
of global feature extraction kernels or local feature extraction
kernels degrades the performance of the baseline model. This
observation suggests that both the global branches and local
branches within MFEB contribute to the flexible shallow fea-
ture extraction process, thereby enhancing the overall perfor-
mance of our model. Additionally, the utilization of these
pre-defined kernels has a negligible impact on the number of
parameters and FLOPs of the model.

Superiority to other existing blocks
For further comparative analysis, we substituted our pro-
posed MSCB and MCCB with the widely-utilized CNN-
based RCAB [Hu et al., 2018] and the Self-attention-based
MDTA [Zamir et al., 2022]. As depicted in Table 4, our
blocks demonstrate comparable efficiency to CNN-based ap-
proaches while outperforming the self-attention mechanism
in terms of overall performance.

Ablation study on 4 main components of MetaISP

MFEB MCCB MSCB MRB Params(M)↓ FLOPs(G)↓ PSNR(dB)↑ SSIM↑
✓ ✓ ✓ ✓ 1.10 7.81 23.80 0.8758
✕ ✓ ✓ ✓ 1.10 7.64 23.69 0.8716
✓ ✕ ✓ ✓ 0.57 5.39 23.30 0.8608
✓ ✓ ✕ ✓ 0.89 5.93 23.17 0.8564
✓ ✓ ✓ ✕ 1.09 7.81 23.51 0.8697
✕ ✓ ✓ ✕ 1.09 7.64 23.66 0.8715
Ablation study on design of MFEB

Conv3 GELU Global Local Params(M)↓ FLOPs(G)↓ PSNR(dB)↑ SSIM↑
✓ ✓ ✓ ✓ 1.10 7.81 23.80 0.8758
✓ ✕ ✓ ✓ 1.10 7.81 23.75 0.8707
✓ ✓ ✕ ✓ 1.10 7.76 23.73 0.8692
✓ ✓ ✓ ✕ 1.10 7.74 23.63 0.8660
✓ ✓ ✕ ✕ 1.10 7.64 23.69 0.8716
Ablation study on MCCB and MSCB (The number of basis matrices and vectors)

Num Params(M)↓ FLOPs(G)↓ PSNR(dB)↑ SSIM↑
4 0.90 7.81 23.74 0.8703
8 1.04 7.81 23.75 0.8743

10 1.10 7.81 23.80 0.8758
16 1.31 7.81 23.79 0.8757
32 1.87 7.81 23.68 0.8698

Table 3: Performance of the proposed MetaISP framework under
different module configurations.

Block Params↓ FLOPs↓ Latency↓ PSNR↑ SSIM↑

RCAB 1.02M 11.5G 20ms 23.02dB 0.8501
MDTA 0.9M 11.2G 57.2ms 23.58dB 0.8657
Ours 1.1M 7.8G 29.7ms 23.80dB 0.8758

Table 4: Replace our blocks with other existing attention blocks

5 Conclusion

In this paper, we propose a novel learnable ISP model called
MetaISP. Our method aims to learn accurate mappings be-
tween RAW and sRGB under diverse environmental condi-
tions, while significantly reducing computational complex-
ity. This objective is accomplished by employing adaptive
model parameters and architecture adjustments according to
the characteristics of input images. Experiments on two
large-scale public datasets demonstrate that our model out-
performs the state-of-the-art methods while having substan-
tially fewer parameters and FLOPs. Extensive ablation ex-
periments provide compelling evidence for the effectiveness
of the four main components.
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