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Abstract
Motivated by the superior performance of image
diffusion models, more and more researchers strive
to extend these models to the text-based video
editing task. Nevertheless, current video editing
tasks mainly suffer from the dilemma between the
high fine-tuning cost and the limited generation ca-
pacity. Compared with images, we conjecture that
videos necessitate more constraints to preserve the
temporal consistency during editing. Towards this
end, we propose EVE, a robust and Efficient zero-
shot Video Editing method. Under the guidance of
depth maps and temporal consistency constraints,
EVE derives satisfactory video editing results with
an affordable computational and time cost. More-
over, recognizing the absence of a publicly avail-
able video editing dataset for fair comparisons,
we construct a new benchmark named ZVE-50
dataset. Through comprehensive experimentation,
we validate that EVE achieves a satisfactory trade-
off between performance and efficiency. Code-
base, datasets, and video editing demos are avail-
able at https://github.com/alipay/Ant-Multi-Modal-
Framework/blob/main/prj/EVE.

1 Introduction
Owing to powerful diffusion models [Zhang et al., 2023a; Li
et al., 2023b], recent years have witnessed dramatic progress
in text-based image synthesis and editing tasks, igniting the
soaring research interest in extending these methods to the
video editing field. Nevertheless, current text-based video
editing methods, which manipulate attributes or styles of
videos under the guidance of the driven text, mainly suffer
from the dilemma between the considerable fine-tuning cost
and the unsatisfied generation performance.

Recent video editing methods could be roughly divided
into two categories: tuning-based methods [Zhao et al., 2023;
Wu et al., 2022] and zero-shot ones [Couairon et al., 2023;
Qi et al., 2023]. The former approaches mainly rely on fine-
tuning image diffusion models to derive strong generative
priors. Nevertheless, they are usually costly as the fine-tuning
step would consume substantial time and GPUs. Towards
this end, zero-shot video editing methods aim to directly

edit real-world videos without time-consuming fine-tuning.
Nevertheless, the edited videos in the zero-shot manner may
suffer from the spatio-temporal distortion and inconsistency.
Besides, some zero-shot methods are built upon diffusion
models fine-tuned on video datasets, which may not be free
of the high cost as the tuning-based ones.

In this paper, we attempt to achieve a trade-off between
editing performance and efficiency. Specifically, we adopt the
approach of zero-shot video editing, while improving editing
performance based upon initial image diffusion models rather
than video tuning-based ones. Consequently, the primary
challenge is how to preserve and improve the temporal
consistency of edited videos.

Let’s begin by considering human editing. When dealing
with images, adjusting object appearances or attributes is
relatively straightforward. However, when it comes to videos,
a comprehensive evaluation of all edited frames becomes
imperative to prevent the spatio-temporal distortion and in-
consistency in edited videos. As a result, we conjecture that
videos necessitate more temporal constraints to preserve
the time consistency, whose editing process could not be
as unconstrained as images. This hypothesis also interprets
unsatisfied performance when directly extending image dif-
fusion models to videos, as current image editing methods
seldom enforce explicit constraints.

Given this argument, as illustrated in Figure 1, different
from current methods that neither explicitly control over
individual frame editing nor enforce additional constricts
on inter-frame generation, we propose two strategies to
reinforce temporal consistency constraints during zero-shot
video editing: 1) Depth Map Guidance. Depth maps locate
spatial layouts and motion trajectories of moving objects,
providing robust prior cues for the given video. Therefore,
we incorporate depth maps into video editing to improve the
temporal consistency. And 2) Frame-Align Attention. We
enhance the temporal encoding by forcing models to place
their attentions on both previous and current frames.

Moreover, by narrowing the gap of whether introducing
depth maps into the noise-to-image inference procedure,
we design an efficient parameter optimization strategy that
directly updates target latent features without fine-tuning the
complex diffusion model. In this way, it takes about 83.1
seconds to edit a video with 8 frames on average.

Currently, there lack public video editing datasets for fair
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Ground-Truth Text: a lioness is prowling

Depth Map

Driven-Text: a tiger is prowling

Driven-Text: a white wolf is prowling, anime style

Temporal Constraint

Raw Video

Depth Map

Zero-shot Text-based
Video Editing

MiDas Detector

Figure 1: We present EVE, a robust and efficient zero-shot text-based video editor, which trades off editing performance and efficiency.

performance comparisons. Towards this end, we construct a
new ZVE-50 dataset, where each collected video is associated
with four corresponding driven text. We conduct extensive
experiments to benchmark our ZVE-50 dataset.

Our contributions are summarized in four folds:

• We propose EVE, a robust and efficient video editor.
• We propose two strategies to improve the temporal

consistency, achieving robust editing performance.
• We construct a new benchmark ZVE-50 dataset. To

the best of our knowledge, ZVE-50 is the first dataset
for zero-shot text-based video editing, which facilitates
future researchers to perform a fair comparison.

• We conduct extensive experiments to affirm the robust-
ness of EVE as a sound method for video editing.

2 Related Work
Diffusion Models. Large-scale diffusion models [Rombach
et al., 2022; Croitoru et al., 2023; Dhariwal and Nichol, 2021]
have achieved start-of-the-art performance in image synthesis
and translation. Diffusion models, in essence, are generative

probabilistic models that approximate a data distribution
p(x) by gradually denoising a normally distributed variable.
Nevertheless, training a diffusion model from scratch is often
expensive and time-consuming.

Text-based Image Generation and Editing. Text-based
image editing [Mokady et al., 2023; Zhang et al., 2023b;
Choi et al., 2023] aims to manipulate the attributes or styles
of one image with the guidance of the driven text. Based
on powerful diffusion models, researchers have proposed
various methods. E.g., DreamBooth [Ruiz et al., 2023]
proposes a subject-driven generation technology by fine-
tuning diffusion models, while T2I-Adapters [Mou et al.,
2023] provides an efficient image editing approach with a low
training cost.

Text-based Video Generation and Editing. Motivated by
text-based image editing, video editing [Molad et al., 2023;
Lee et al., 2023] has attracted increasing research interest
recently, which could be roughly divided into two cate-
gories: tuning-based ones [Esser et al., 2023] and zero-
shot ones [Qi et al., 2023]. The former approaches mainly
edit video attributes by fine-tuning powerful image diffusion
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Figure 2: The simplified version of the proposed EVE, presenting the overall video editing pipeline.
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Figure 3: The elaborated version of the proposed EVE, detailing the DDIM inversion and denoising procedures.

models, whose training cost is inevitably expensive. Al-
ternatively, FateZero [Qi et al., 2023] proposes the zero-
shot video editing task, attempting to generate a text-driven
video without extra optimization on complicated generative
priors. Nevertheless, FateZero suffers from the limited video
editing performance due to weak constraints on the temporal
consistency. Moreover, FateZero still heavily relies on Tune-
A-Video [Wu et al., 2022], which is a tuning-based diffusion
model and is still costly and time-consuming.

3 Methodology
3.1 Preliminary: DMs, LDMs, and DDIMs
DMs. Diffusion Models (DMs) [Sohl-Dickstein et al.,
2015] are essentially generative probabilistic models that
approximate a data distribution p(x) by gradually denoising a
normally distributed variable. Specifically, diffusion models
learn to reconstruct the reverse process of a fixed forward
Markov chain x1, x2, · · · , xT , where T is the length. The
forward Markov chain (1 → T ) could be treated as an
image-to-noise procedure, where each Markov transition step
q(xt|xt−1) is usually formulated as a Gaussian distribution
(N ) with a variance schedule βt ∈ (0, 1), that is:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI). (1)

The reverse Markov chain (T → 1) could be treated
as a noise-to-image procedure, where each reverse Markov
transition step p(xt−1|xt) is formulated as:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), (2)

where θ denotes learnable parameters to guarantee that the
reverse process is close to the forward one.

Empirically, current diffusion models could be interpreted
as an equally weighted sequence of denoising auto-encoders
ϵθ(xt, t), which is utilized to recover a denoised variant of

their input xt, and xt is a noisy version of the input x. The
optimization objective could be simplified as:

Ex,ϵ∼N (0,1),t[∥ϵ− ϵθ(xt, t)∥22]. (3)

LDMs. Latent Diffusion Models (LDMs) [Rombach et al.,
2022] are trained in the learned latent space zt rather than
redundant spatial dimensionality xt, aiming to remove the
noise added to latent image features ϵx. LDMs are generally
composed of an encoder E , a time-conditional UNet U , and
a decoder D, where z = E(x) and x ≈ D(E(x)). The
optimization objective could be formulated as:

Eϵx,ϵ∼N (0,1),t[∥ϵ− ϵθ(zt, t)∥22]. (4)

DDIMs. Denoising Diffusion Implicit Models (DDIMs)
[Mokady et al., 2023] could accelerate the sampling from the
distribution of images/videos at the denoising step. During
inference, deterministic DDIM sampling (T → 1) aims to
recover a clean latent z0 from a random noise zT with a noise
schedule αt, which could be formulated as:

zt−1 =

√
αt−1

αt
zt + (

√
1− αt−1 −

√
1

αt
− 1) · ϵθ. (5)

On the contrary, DDIM inversion (1 → T ) aims to
process a clean latent z0 into a noise one ẑT , which could
be simplified as:

ẑt =

√
αt

αt−1
ẑt−1 + (

√
1− αt −

√
1

αt−1
− 1) · ϵθ. (6)

Compared with conventional DMs that directly employ
random noise as inputs and attempt to map each noise vector
to a specific image, we exploit DDIM inversion to produce a
T steps trajectory between the clean latent z0 to a Gaussian
noise vector zT . Then we treat zT as the start vector of the
denoising step. This configuration seems appropriate for our
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video editing task, since it ensures that the generated video
would be close to the original one.

Note that we employ LDMs and DDIM
inversion/denoising in zero-shot text-based video editing.
Readers can refer to [Rombach et al., 2022] (LDM) and
[Song et al., 2020] (DDIMs) for more details of formulation
derivations if necessary.

3.2 Problem Formulation
Given a video V and a prompt text P , zero-shot text-based
video editing aims to generate an edited video V̂ , which
aligns with the description outlined in the prompt P and looks
similar to the original video V .

3.3 Overall Framework
As shown in Figure 2 and 3, we present both simplified and
elaborated versions of the overall framework. The simplified
version could be treated as a flow chart that reveals the whole
processing pipeline of our EVE. While the complex one
presents detailed information mainly on the iterative DDIM
inversion and denoising procedures.

As shown in Figure 2, our EVE is built upon the pre-trained
latent diffusion model (LDM), which is composed of a UNet
for T-timestep DDIM inversion and denoising. To enforce the
temporal consistency of the generated video, we introduce
depth maps and exploit them to guide the editing process.
Moreover, we propose two consistency constraints to prevent
edited videos from spatial or temporal distortion.

We first present the overall pipeline of our EVE based upon
Figure 3, including the following five steps.
1. Frozen Features Extraction. Given a video V , we
first derive K frames from V , and utilize an image encoder
EI to obtain frozen latent features Z0 = E(V ), where
Z0 = {zi0}Ki=1. Meanwhile, we employ the MiDas Detector
[Ranftl et al., 2020] to generate K depth maps from V , and
utilize another visual encoder EM to obtain frozen depth-map
features M = {mi}Ki=1. Moreover, we utilize a text encoder
Ep to process the prompt P into frozen text features p.
2. DDIM Inversion. Then we repeat DDIM inversion for T
steps to derive Gaussian noise vectors ZT from video latent
features Z0. Each DDIM inversion at timestep t could be
formulated as:

Zt = DDIMinv(Zt−1 |M, t) t = 1→ T, (7)

where DDIMinv denotes DDIM inversion shown in Eq. 6.
To prevent the edited video from temporal distortion and

inconsistency, we improve the image-based DDIM inversion
operation by introducing depth-map features into the down-
sampling pass of the frozen UNet, which could rectify the
discrepancies among neighboring frames at each inversion
step. In this way, we ensure that the generated noise vectors
ZT would not severely spoil the temporal consistency.
3. DDIM Denoising. Afterward, we repeat DDIM denois-
ing for T steps to obtain edited video features Ẑ0 from DDIM
inverted noise ẐT , where ẐT = ZT . Each DDIM denoising
at timestep t could be formulated as:

Ẑt−1 = DDIMden(Ẑt | p,M, t), t = T → 1, (8)

Algorithm 1: DDIM Denoising Procedure.

Input: DDIM inverted noise ẐT , text prompt features
p, depth-map features M, learning rate λ

Output: edited video features Ẑ0

1 for i← T to 1 do
2 Ẑt−1 = DDIMden(Ẑt | p,M, t) ;
3 Ẑ

′

t−1 = DDIMden(Ẑt | p, t) ;
4 L = 1− cosin(Ẑt−1, Ẑ

′

t−1)

5 Ẑt−1 = Ẑt−1 − λ∆Ẑt−1
(L)

6 end

where DDIMden denotes DDIM denoising shown in Eq. 5.
To prevent the edited video from temporal distortion and

inconsistency, we improve the image-based DDIM denoising
operation from two aspects: 1) We introduce depth-map
features into the down-sampling pass of the frozen UNet
as DDIM inversion. And 2) we propose the frame-aligned
attention to place explicit temporal constraints on the edited
video, which will be discussed in the following subsection.

4. Parameter Optimization. To reduce the computation
cost and make the generation process more efficient, we
freeze all feature extractors (i.e., EI , EM , and EP ) and Unets,
and only set noise vectors Ẑt in DDIM denoising to be
trainable. In another words, different from conventional
editing methods that update “neural networks”, we directly
update “latent noise” to obtain edited videos.

Specifically, at each timestep t in DDIM denoising, except
for Ẑt−1, we also derive auxiliary vectors Ẑ

′

t−1 as:

Ẑ
′

t−1 = DDIMden(Ẑt | p, t), t = T → 1. (9)

Compared with Ẑt−1 (Eq. 8), Ẑ
′

t−1 is obtained without
strict depth map constraints, which could be treated as free
image editing that could unleash the generation capacity
of powerful image-based diffusion models. In brief, Ẑt−1

sacrifices the creativity to preserve the temporal consistency,
while Ẑ

′

t−1 is just the opposite. Therefore, we leverage
the more creative Ẑ

′

t−1 and more temporal consistent Ẑt−1,
pursuing to achieve a trade-off between diversity and quality.

The detailed DDIM denoising procedure is illustrated
in Algorithm 1, including the parameter optimization step
(Lines 4-5). ∆x(L) denotes updating trainable x by the
gradient descent procedure according to the loss L, and
cosin(·, ·) denotes the cosine similarity computation.

5. Edited Video Decoding. Ultimately, we feed the frozen
visual decoderD with generated latent features Ẑ0, obtaining
the edited video V̂ = D(Ẑ0).

3.4 Temporal Consistency Constraints
As aforementioned, we assume that videos necessitate more
temporal constraints to preserve the time consistency. There-
fore, we propose two strategies to alleviate temporal distor-
tion and inconsistency problems.
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Figure 4: The architecture of the attention block within the UNet.
Note that we propose the Frame-Align Attention to improve the
temporal consistency.

1. Depth Map Guidance. Depth maps record visual rep-
resentations of the distance information, revealing spatial
layouts and motion trails of all objects within a video.
Therefore, depth maps could be treated as strong prior cues
to guide the video editing procedure close to the initial
version. Nevertheless, recent video editing methods seldom
take advantage of depth maps and neglect the significance
of explicitly intervening in the video editing procedure,
resulting in intractable temporal distortion and inconsistency
problems. Towards this end, we introduce depth maps into
the down-sampling pass of the frozen UNet for both DDIM
inversion and denoising procedures, forcing the editing pro-
cess to imitate motion trails and scene transformations of the
origin video. In this way, the stability and consistency of the
edited video would be improved.

2. Frame-Align Attention. We propose the frame-align
attention (FAA) to explicitly introduce the temporal informa-
tion during video editing. As illustrated in Figure 4, a typical
UNet comprises a series of “Conv-Attn” blocks to conduct
the down-sampling and up-sampling calculation. The con-
ventional attention block (Attn) contains a self-attention (SA)
module [Vaswani et al., 2017], a cross-attention (CA) module
[Zheng et al., 2021], and a feed-forward network (FFN).
The computation of SA(Q,K, V ) and CA(Q,K, V ) could
be formulated as:{

SA : Q = WQżi,K = WK żi, V = WV żi,

CA : Q = WQżi,K = WKp, V = WV p,
(10)

where W denotes frozen projection matrices, żi is the latent
features of the ith frame within the video, and p is the latent
features of the text prompt.

Conventional self-attention modules are inherited from
image diffusion models, which encodes each frame sep-
arately and seem insufficient in preserving the temporal
consistency for the video editing. Therefore, we propose
the frame-align attention (FAA) to replace K and V with
the first frame features ż1, forcing models to emphasize both
previous and current frames for better temporal encoding.
The computation of FAA(Q,K, V ) could be formulated as:

FAA : Q = WQżi,K = WK ż1, V = WV ż1. (11)

4 Experiments
4.1 Dataset Construction
Since zero-shot text-based video editing is a novel task, to the
best of our knowledge, there lacks a public dataset to perform
fair performance and efficiency comparisons. Towards this
end, we construct Zero-shot Video Editing 50 (dubbed as
ZVE-50) to fulfill this job.

Data Collection. We collect videos from two resources:
DAVIS-2017 [Pont-Tuset et al., 2017] and stock-video-
footage 1. DAVIS-2017 is a competition dataset for the video
object segmentation task [Yao et al., 2020], while stock-
video-footage is a public website for free stock video clips
and motion graphics. After filtering out videos with similar
scenes and styles to avoid the repeatability and promote the
diversity, we collect 14 short videos from DAVIS-2017 and
36 ones from stock-video-footage, resulting in the ZVE-50
dataset.

Caption Generation. Then we feed collected videos into
BLIP2 [Li et al., 2023a] to obtain the corresponding captions.
Specifically, we generate several candidate captions and se-
lect the longest one as the ground-truth text.

Prompt Generation. Afterward, we employ GPT-4 2 to
generate the driven text derived from video captions and our
manually made prompts. There are four types of driven
text, requiring models to edit the given video by 1) Object
Replacement (OR), 2) Object Adding (OA), 3) Style Transfer
(ST), and 4) Background Changing (BC). Here we present an
example of feeding GPT-4 with the manually written prompt
and ground-truth caption to obtain the driven text:

Q (human): Here is a sentence. Please replace the object
with another object with a similar shape: “a pink lotus flower
in the water with green leaves”

A (GPT-4): a pink lotus flower floating in a tranquil koi
pond with lily pads

Ultimately, we manually check all videos, captions, and
prompt text to ensure the correctness of the ZVE-50 dataset.

4.2 Experimental Settings
Implementation Details. Zero-shot text-based video edit-
ing directly takes a given video and outputs its edited version,
which differs from previous methods with explicit training
or testing procedure. Specifically, we freeze the pre-trained
Latent Diffusion Model as our basic model, where the visual
encoder EI , the UNet, and the visual decoder D are inherited
from [Rombach et al., 2022] with the version of v1.5. We
employ MiDas [Ranftl et al., 2020] to derive depth maps, and
utilize frozen Resnet blocks [He et al., 2016] to extract depth
map features M . The text encoder Ep is the pre-trained CLIP
text encoder [Radford et al., 2021].

During video editing, following [Wu et al., 2022] and [Qi
et al., 2023], we uniformly sample 8 frames at the resolution
of 512 ∗ 512 from each video, and conduct DDIM inversion
and denoising steps 50 (T ) times. The learning rate λ is 0.8.
It takes about 83 seconds to edit a video on an A40 GPU.

1https://www.videvo.net/stock-video-footage/
2https://openai.com/gpt-4

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

681



No. Model DMG Attn Temporal Consistency Prompt Consistency
OR OA ST BC AVG OR OA ST BC AVG

Performance comparisons between the proposed EVE and FateZero.
A1 FateZero - STSA 95.53 95.64 95.84 96.62 95.91 28.92 29.43 29.24 28.90 29.12
A2 VidToMe - - 95.07 95.43 95.40 95.60 95.37 29.77 30.78 29.80 30.04 30.10
A3 EVE

√
FAA 96.41 96.65 96.43 96.70 96.54 30.39 31.01 31.27 28.94 30.40

Ablation study of two proposed temporal consistency constraints within EVE.
B1 - SA 92.59 92.94 92.07 96.30 93.48 25.39 26.43 27.38 28.88 27.02
B2 - FAA 95.26 95.20 95.16 95.68 95.33 27.77 29.37 29.11 29.71 28.99
B3 EVE

√
SA 94.57 94.02 94.88 95.45 94.73 30.58 31.12 31.16 28.45 30.33

B4
√

SCA 95.74 96.18 96.13 96.62 96.17 30.26 31.01 31.00 28.91 30.29
B5

√
FAA 96.41 96.65 96.43 96.70 96.54 30.39 31.01 31.27 28.94 30.40

Table 1: Performance comparisons between our EVE with FateZero and VidToMe, and ablation study of two proposed temporal consistency
constraints within EVE. We report the detailed results of four video editing missions and their average performance (underlined), where OR
= Object Replacement, OA = Object Adding, ST = Style Transfer, and BC = Background Changing. All experiments are conducted on one
A40 GPU under the same setting. “DMG” denotes with/without the depth map guidance.

Model Tune-A-Video FateZero VidToMe EVE
Time ∼ 30 min 247.6 sec 159.4 sec 83.1 sec

Table 2: Efficiency comparisons between EVE with tuning-based
Tune-A-Video, zero-shot FateZero and VidToMe on one A40 GPU.

Evaluation Metrics. We employ two metrics, i.e., Tem-
poral Consistency (TC) and Prompt Consistency (PC), to
thoroughly evaluate the quality of edited videos: 1) Following
[Esser et al., 2023], we first extract CLIP visual embeddings
of all frames within the edited video, and calculate the
average cosine similarity between all pairs of neighborhood
frames to derive the Temporal Consistency score. 2) Follow-
ing [Qi et al., 2023], we utilize Text-Video CLIP Score to
evaluate the Prompt Consistency between the edited video V̂
(K frames) and the driven text p, which is formulated as:

CLIP(V̂ , p) =
1

K

∑K

k=1
CLIP(v̂k, p). (12)

4.3 Performance and Efficiency Comparisons
As aforementioned, zero-shot text-based video editing is
a novel task without public datasets and widely-employed
baselines. Moreover, some up-to-date video editing methods
[Couairon et al., 2023] do not release their codebase for
users to reproduce. Thus, it is intractable to conduct a fair
performance comparison with these methods. Therefore, we
compare the video editing efficiency between our EVE with
the tuning-based Tune-A-Video [Wu et al., 2022], the zero-
shot Fatezero [Qi et al., 2023], and the zero-shot VidToMe [Li
et al., 2024]. We also compare editing performance among
our EVE, Fatezero, and VidToMe in two quantitative metrics.

Regarding efficiency comparisons, as illustrated in Table 2,
compared with the tunning-based Tune-A-Video, zero-shot
video editing methods are much more efficient (30min →
<5min). Moreover, compared with the baseline FateZero and
VidToMe, the proposed EVE only costs about 1/3 and 1/2
of the total time (247sec / 159sec → 83sec) to edit a video,
which is more time-efficient and user-friendly.

Regarding performance comparisons, as illustrated in Ta-
ble 1 (A1 / A2 vs. A3), we observe that our proposed EVE

outperforms the baseline FateZero and VidToMe in all four
tasks on the constructed ZVE-50 dataset. It indicates that
EVE is a robust and efficient video editing method, which
improves the temporal consistency of the generated video.

4.4 Ablation Study
Based on the argument that video editing necessitates more
temporal constraints to preserve the time consistency, we
propose two constraints to alleviate temporal distortion and
inconsistency problems. We conduct several ablation study
to verify their effectiveness on our ZVE-50 dataset.

As illustrated in Table 1, we have three observations:
1) Depth maps are strong generative priors that prevent

the edited video from temporal distortion and inconsistency.
Compared with B2 (without DMG) and B5, we witness an
obvious performance decay on both temporal and prompt
consistency, indicating the indispensability of the proposed
depth map guidance strategy.

2) The proposed Frame-Align Attention (FAA) reinforce
the temporal encoding to improve the consistency of edited
videos. Compared with B3 (without FAA) and B5, methods
equipped with FAA would outperform conventional ones
with SA by a large margin, especially on the metric of the
temporal consistency.

3) We also compare our FAA with the Sparse-Causal
Attention (SCA) mechanism proposed by Tune-A-Video.
SCA calculates attentions among current frames and the
previous neighborhood ones, which could be formulated as:

SCA : Q = WQżi,K = WK [ż1; żi−1], V = WV [ż1; żi−1],
(13)

where [·] denotes the concatenation operation. We implement
SCA with the same experimental setting. Compared with
B4 and B5, we outperform SCA on both temporal and
prompt consistency in all four tasks. One possible reason
is that SCA employs previous frames, which may result in
error propagation. Since each editing step may bring visual
distortions, using previous frames will magnify this temporal
inconsistency.

As illustrated in Figure 5, our EVE supports four types of
applications towards zero-shot text-based video editing.
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Ground-Truth Text: [a man is playing the guitar] 

Depth Map

Driven Text: [a woman is playing the guitar]Object Replacement (OR)

Driven Text: [a man, with glasses, is playing the guitar]Object Adding (OA)

Driven Text: [a man is playing the guitar, Van Gogh style]Style Transfer (ST)

Driven Text: [a man is playing the guitar under stars]Background Changing (BC)

Figure 5: Results of EVE on four applications: Object Replacement, Object Adding, Style Transfer, and Background Changing.

5 Conclusion
We present EVE, a robust and efficient zero-shot text-based
video editing method. Motivated by the observation that
videos necessitate more constraints to preserve the time
consistency, we introduce depth maps and two temporal
consistency constraints to guide the video editing procedure.
In this way, the proposed EVE achieves a satisfactory trade-
off between performance and efficiency.

6 Future Work
In the future, we aim to further improve the quality of edited
videos, narrowing the performance gap between tuning-
based video editing methods and zero-shot ones. E.g.,
introducing the triplet attention mechanism [Zhou et al.,
2021] to promote the temporal stability; and generating
pseudo labels by recording attention maps of Unets to build a
knowledge distillation mechanism in the denoising step.
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