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Abstract
Although various knowledge distillation (KD)
methods for CNN-based detectors have been
proven effective in improving small students, build-
ing baselines and recipes for DETR-based detec-
tors remains a challenge. This paper concentrates
on the transformer decoder of DETR-based detec-
tors and explores KD methods suitable for them.
However, the random order of the decoder outputs
poses a challenge for knowledge distillation as it
provides no direct correspondence between the pre-
dictions of the teacher and the student. To this
end, we propose MixMatcher that aligns the de-
coder outputs of DETR-based teacher and student,
by mixing two teacher-student matching strategies
for combined advantages. The first strategy, Adap-
tive Matching, applies bipartite matching to adap-
tively match the outputs of the teacher and the stu-
dent in each decoder layer. The second strategy,
Fixed Matching, fixes the correspondence between
the outputs of the teacher and the student with the
same object queries as input, which alleviates in-
stability of bipartite matching in Adaptive Match-
ing. Using both strategies together produces bet-
ter results than using either strategy alone. Based
on MixMatcher, we devise Decoder Distillation
for DEtection TRansformer (D3ETR), which dis-
tills knowledge in decoder predictions and attention
maps from the teacher to student. D3ETR shows
superior performance on various DETR-based de-
tectors with different backbones. For instance,
D3ETR improves Conditional DETR-R50-C5 by
8.3 mAP under 12 epochs training setting with
Conditional DETR-R101-C5 serving as the teacher.
The code will be released.

1 Introduction
The concept of Knowledge distillation (KD) [Hinton et al.,
2015] involves transferring knowledge from a large teacher
model to a small student model, to enhance the student’s
performance without incurring costs during model inference.
There has been significant progress in the development of KD
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Figure 1: Improvements over Conditional DETR under 1×
schedule on COCO 2017 val set. Our D3ETR obtains consistent
gains over different backbones.

methods in recent years, with encouraging results in many vi-
sion tasks, such as image classification [Romero et al., 2014;
Zagoruyko and Komodakis, 2016; Cho and Hariharan, 2019;
Zhang et al., 2018; Tian et al., 2019; Zhou et al., 2021;
Yang et al., 2021; Chen et al., 2021; Zhao et al., 2022] and
object detection [Chen et al., 2017; Zhang and Ma, 2020;
Hao et al., 2020; Dai et al., 2021; Guo et al., 2021; Zhang
et al., 2022c; Yang et al., 2022a; Yang et al., 2022b]. How-
ever, these methods are predominantly focused on CNN-
based models [Simonyan and Zisserman, 2015; He et al.,
2016; Sandler et al., 2018] and are related to model struc-
tures, particularly in object detection [Chen et al., 2017;
Hao et al., 2020; Yang et al., 2022a; Zhang et al., 2022c].
Applying existing KD techniques to novel detectors, such as
DETR-based detectors [Carion et al., 2020; Zhu et al., 2020;
Meng et al., 2021; Chen et al., 2022c; Liu et al., 2022;
Li et al., 2022], poses some challenges and may result in
unsatisfactory improvements. Hence, this paper seeks to ad-
dress this gap by exploring KD strategies for DETR-based
detectors.

DETR [Carion et al., 2020] is an end-to-end detector that
employs transformer layers [Vaswani et al., 2017]. The
pipeline of DETR and its variants involves (i) extracting im-
age features with a backbone, (ii) modeling global context
with a transformer encoder, and (iii) predicting objects with
a transformer decoder, given the image features and object
queries. To develop KD baselines and recipes for DETR-
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based detectors, we analyze the impact of each component
and find that the transformer decoder is crucial for maintain-
ing good performance. Therefore, we focus on exploring KD
techniques in the transformer decoder.

However, there is a challenge that the DETR decoder pro-
duces outputs in a random order1, resulting in no direct corre-
spondence between the decoder outputs of the teacher model
and the student model. To address this issue, we intro-
duce MixMatcher, which aims to align the decoder outputs
of the teacher and student models. MixMatcher combines
two strategies, Adaptive Matching and Fixed Matching, to
establish teacher-student correspondence. Adaptive Match-
ing computes the optimal bipartite matching [Kuhn, 1955]
between predictions in each decoder layer of teacher and
student models. To alleviate the instability issue of bipar-
tite matching in teacher-student Adaptive Matching, we in-
troduce Fixed Matching. We feed the teacher’s fixed object
queries to the student’s decoder as an auxiliary group and ap-
ply Fixed Matching to align the outputs of the teacher and
student models.

MixMatcher enables us to establish correspondence be-
tween the decoder outputs of the teacher and student mod-
els. We develop Decoder Distillation for DETR-Based Meth-
ods (D3ETR) based on MixMatcher. In addition to predic-
tions, we also consider attention modules (consisting of self-
attention and cross-attention) in the decoder layers during dis-
tillation. For attention modules, we distill the knowledge con-
tained in the attention maps. The experiments conducted on
COCO [Lin et al., 2014a] demonstrate the effectiveness of
our proposed D3ETR. It achieves significant improvements
in various DETR-based student models (Figure 1). For in-
stance, D3ETR improves Conditional DETR-R50-C5 [Meng
et al., 2021] by 8.3 mAP under 12 epochs training setting,
with Conditional DETR-R101-C5 [Meng et al., 2021] acting
as the teacher.

To summarize, our contributions are in three folds:
• We explore knowledge distillation for DETR-based de-

tectors, and we attempt to address the challenges of dis-
tilling knowledge from the transformer decoder.

• We introduce MixMatcher, which combines Adaptive
Matching and Fixed Matching to establish the relation-
ship between the DETR-based teacher and student mod-
els. Based on MixMatcher, we propose a simple and
effective distillation method named D3ETR.

• Extensive experiments reveal that our proposed method,
D3ETR, improves the performance of DETR-based de-
tectors significantly.

2 Related Work
Knowledge distillation in object detection. Knowledge dis-
tillation (KD) is a technique used for model compression and
transfer learning. Originally proposed for distilling knowl-
edge from a large teacher model to a compact student model

1In contrast to traditional object detectors based on CNNs,
DETR treats object detection as a set prediction problem. We con-
duct an ablation in Table 3 to verify the importance of constructing
the corresponding between the teacher and student decoder outputs.

for classification tasks [Yim et al., 2017], KD has since
been improved to perform distillation over intermediate fea-
tures [Romero et al., 2014; Tian et al., 2019], relation rep-
resentation [Park et al., 2019; Tung and Mori, 2019], atten-
tion [Zagoruyko and Komodakis, 2016], and other aspects.
Some recent works have successfully applied KD to object
detection [Li et al., 2017; Guo et al., 2021; Yang et al., 2022a;
Yang et al., 2022b]. ICD [Zheng et al., 2021] proposes an
instance-based conditional distillation framework and finds
that initializing the student model with the teacher’s parame-
ters leads to faster convergence. DeFeat [Guo et al., 2021] de-
couples foreground and background in the feature maps and
distills them separately. FGD [Yang et al., 2022a] uses focal
and global distillation to guide the student model, achieving
remarkable results. MGD [Yang et al., 2022b] transforms dis-
tillation into a feature-generation task that uses the masked
student features to generate the full teacher features. These
efforts focus on distillation of ordered outputs in CNN-based
detectors.

ViDT [Song et al., 2022] proposes a variation of a
transformer-based detector and applies KD to it, perform-
ing distillation directly on patch tokens and detection queries
between teacher and student. However, in DETRs, the de-
coder outputs are unordered, creating a lack of direct corre-
spondence between teacher and student queries. Incremental-
DETR [Dong et al., 2022] and DETRDistill [Jiahao et al.,
2022] propose to construct correspondence between teacher
and student predictions through bipartite matching but ignore
that bipartite matching between teacher and student may be
unstable in the early training stage [Li et al., 2022]. In this
paper, we propose MixMatcher, which helps alleviate these
issues.
DETR-based object detection. The pioneering work,
DETR [Carion et al., 2020], introduces transform-
ers [Vaswani et al., 2017] to object detection, eliminating
the need for hand-designed components like non-maximum
suppression or initial anchor boxes generation. Since then,
several follow-up works [Zhu et al., 2020; Meng et al., 2021;
Liu et al., 2022; Li et al., 2022; Zhang et al., 2022b;
Zhang et al., 2022a] have built various advanced extensions
based on DETR. Deformable-DETR [Zhu et al., 2020]
introduced the multi-scale deformable attention scheme,
which attends to a small set of points around a reference and
achieves better performance than DETR. Other works such
as Conditional DETR [Meng et al., 2021] rebuild positional
queries based on reference points for extreme region discrim-
ination. DAB-DETR [Liu et al., 2022] extends the query to a
4D anchor box for improved performance. Follow-up work
DN-DETR [Li et al., 2022] and DINO-DETR [Zhang et al.,
2022b] introduced a novel query denoising algorithm that ac-
celerates decoder training. Group DETR [Chen et al., 2022a;
Chen et al., 2022b] and H-DETR [Jia et al., 2022] claim
that multiple positive queries are key to fast convergence.
These works emphasize that the decoder design plays a
pivotal role in DETR. Different from the existing work on
designing novel schemes in the decoder, our proposal starts
from another orthogonal point of view and transfers the
knowledge in the decoder from a large model to a smaller
model.
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Figure 1: Analysis of different components in Con-
ditional DETR. We adopt ResNet-101/ResNet-50 as the
backbone and train the model for 12 epochs (1× schedule).
Best viewed in color.

1

Figure 2: Analysis of different components in Conditional DETR
on COCO 2017 val. The x-axis represents the number of en-
coder/decoder layers. We adopt ResNet-101/ResNet-50 as the back-
bone and train the model for 12 epochs (1× schedule). We find that
the performance significantly drops when the number of decoder
layers is reduced.

3 Preliminary
In this section, we first review the architecture of DETR and
the attention mechanism. Then we conduct an analysis on
the DETR structure to investigate which part has the most
significant impact on the performance.

3.1 DETR Architecture
The DETR architecture is composed of several components:
a backbone, such as ResNet [He et al., 2016], a transformer
encoder, a transformer decoder, and object class and box
position predictors. The backbone is responsible for ex-
tracting image features, and the transformer encoder layers
model the global context. The transformer decoder takes
N object queries, denoted by Q = {q1, . . . ,qN}, as in-
put. Each query is responsible for predicting the class and
bounding box of either a ground-truth object or a “no ob-
ject” class. Different forms of queries can be used, such
as high-dimensional feature vectors [Carion et al., 2020;
Meng et al., 2021], anchor point coordinates [Wang et al.,
2022], and box coordinates [Liu et al., 2022]. The object
queries are combined into decoder embeddings, which form
the queries of the self-attention and cross-attention layers in
the decoder. The embeddings are fed into the detection heads
to produce N object predictions.

3.2 Analysis on the DETR Structure
DETR-like methods consist of the backbone, the transformer
encoder, and the transformer decoder. We conduct experi-
ments to investigate which part has the most significant effect
on the detection performance. Figure 2 depicts the results.
We find that reducing the number of decoder layers from 6 to
1 leads to a decrease in mAP of 17.8/18.3 for R50/R101 back-
bones, respectively. Based on this observation, we propose to
distill the knowledge in the decoder.

4 Methodology
In this section, we present our proposed method, MixMatcher
(Figure 3), which includes two teacher-student matching
strategies, namely Adaptative Matching and Fixed Matching.

Additionally, we introduce D3ETR, which distills knowledge
from the teacher model in decoder predictions, self-attention,
and cross-attention.

4.1 MixMatcher
Adaptative Matching. As the output of the DETR decoder is
sparse and unordered, direct one-to-one correspondence be-
tween the teacher’s and student’s outputs is not achievable.
To address this problem, we propose to view the correspon-
dence between the teacher’s and student’s outputs as a bipar-
tite matching problem, inspired by DETR’s strategy of per-
forming bipartite matching between predicted and ground-
truth objects.

Given the prediction yt = (pt, bt) and ys = (ps, bs) of the
teacher and the student, where p represents the soft logits for
category prediction and b represents the 4-D vector for box
prediction. The pairwise matching cost is:

Cmatch(y
s
i , y

t
ξ(i)) =

∑Ns

i=1
[µclsℓbce(p

s
i ,p

t
ξ(i))+

ℓbox(b
s
i ,b

t
ξ(i))]. (1)

Here Ns is the number of predictions made by students. ξ(·)
denotes a permutation of Nt teacher predictions. ℓbce is
the binary cross-entropy loss and µcls = 20 is the trade-
off coefficient. ℓbox is a combination of ℓ1 loss and GIoU
loss [Rezatofighi et al., 2019], with loss weights of 10 and 2,
respectively.

To determine a bipartite matching between teacher and stu-
dent outputs, we perform a search for the permutation of Nt

elements ξ̂ ∈ ΦNt
with the lowest cost:

ξ̂ = argmin
ξ∈ΦNt

Ns∑
i

Cmatch(y
s
i , y

t
ξ(i)) (2)

To facilitate the training process, DETR adopts the aux-
iliary decoding losses such that each decoder layer would
make detection predictions, refining the previous stage’s pre-
dictions. Therefore, we adaptatively match the outputs of
teacher and student models at each decoder layer. If there are
L decoder layers, we can apply the adaptative matching al-
gorithm to each decoder layer and obtain L matching results:
{ξ̂1, . . . ξ̂L}.
Fixed Matching. The instability of bipartite graph match-
ing may cause inconsistent optimization goals in early train-
ing stages [Li et al., 2022]. To alleviate this problem in
teacher-student adaptative matching, we introduce an auxil-
iary group for the student model. Within this group, we feed
the fixed teacher queries into the student decoder2. By giving
both models the same input queries, we hope to achieve well-
aligned outputs between the auxiliary group and the teacher
model.

Unfortunately, instability within the bipartite graph match-
ing process can also arise between the decoder prediction and
the ground truth. This may result in a situation where two out-
puts, generated from the same object query, are supervised by
different ground truths. To resolve this issue, we use the label

2We assume teacher and student share the same query format.
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Figure 3: Overview of the proposed method. We propose a mixed teacher-student matching strategy consisting of two components:
Adaptative Matching and Fixed Matching. We adopt two groups of queries for the student model, with the first group feeding student queries
to the decoder while the second group feeding teacher queries to the same decoder. The adaptative matching and Fixed Matching techniques
are applied to the first and second groups respectively. Although these two groups share the same decoder, there are no interactions between
them. Subsequently, the knowledge in decoder self-attention, cross-attention, and prediction from the teacher model is distilled. It is important
to highlight that the second group is exclusively employed during training. Best viewed on screen.

assignment results of the teacher model to replace those of
the auxiliary group in the final decoder layer, such that:

σ̂s = σ̂t, (3)

where σ̂t is the permutation of Nt predictions of the teacher
and σ̂s is the permutation of Nt predictions of the student
in the auxiliary group. Under these constraints, the teacher
model and the auxiliary group in the student model are super-
vised under the same ground truth (or “no object” [Carion et
al., 2020]), enhancing the one-to-one correspondence.

We employ an ingenious approach to integrate the two
matching strategies. During training, we provide the student
decoder with both the student group and the auxiliary group.
These groups share the same decoder parameters, while not
interacting with each other in the decoder self-attention. Dur-
ing inference, we exclusively use the student group, while
dropping the auxiliary group. The model inference process is
the same as the student trained normally.

4.2 D3ETR
Upon establishing query correspondence between the teacher
and student models, the teacher’s knowledge can be well dis-

tilled into the student model. With the decoder’s structure
in mind, we define three distillation objectives that comprise
prediction distillation, self-attention distillation, and cross-
attention distillation 3.
Self-attention distillation. Decoder self-attention models
the relations between object queries and potentially aids in
eliminating duplicate predictions [Meng et al., 2021]. Given
a set of N object queries as input, we can obtain the multi-
head self-attention weight map of the k-th decoder layer,
Ak

s ∈ RM×N×N . Similarly, we obtain the multi-head self-
attention weight map of the teacher model, denoted by Ãk

s .
Note that, even though the number of teacher queries may be
larger than that of the student queries, queries can be selected
based on the teacher-student correspondence. Further, we de-
fine the decoder self-attention distillation loss as follows:

Lsa = λsa

L∑
k=1

MSEloss(Ak
s , Ã

k
s), (4)

3Please note that the following distillations are carried out be-
tween matched outputs of teacher and student models.
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where L denotes the number of decoder layers, λsa is the loss
weight and set to 10, 000 as default.
Cross-attention distillation. The decoder’s cross-attention
mechanism utilizes the encoder’s output as the keys and val-
ues, and the output of the self-attention layer is used as the
queries. It identifies the relevant regions of the object in the
encoder output and aggregates their features. By employing
a set of N queries and an encoder output X ∈ RC×HW ,
the student and teacher models produce the multi-head cross-
attention weight maps, namely Ak

c ∈ RM×N×HW and Ãk
c ∈

RM×N×HW , respectively. Then the decoder cross-attention
distillation loss function is formulated as:

Lca = λca

L∑
k=1

MSEloss(Ak
c , Ã

k
c ), (5)

where the loss weight λca defaults to 10, 000.
Prediction distillation. After establishing the teacher-
student correspondence, we align the student’s prediction to
that of the teacher. The prediction distillation loss of the k-th
layer is defined similarly to Eq. 1:

Lk
pred(y

sk
i , ytkξ(i)) =

∑Ns

i=1
[µclsℓbce(p

sk
i ,ptk

ξ(i))+

ℓbox(b
sk
i ,btk

ξ(i))], (6)

Lpred =

L∑
k=1

Lk
pred, (7)

where yski (ytkξ(i)) represents the i-th prediction made by the
student (teacher) in the k-th decoder layer.
Overall distillation loss function. The aforementioned dis-
tillation loss functions are applied to the student group and
the auxiliary group. The overall loss function is expressed as
below:

Ldistill = Lsa + Lca + Lpred+

Laux
sa + Laux

ca + Laux
pred, (8)

where Laux denotes the loss of the auxiliary group.

4.3 Discussion
DETRDistill [Jiahao et al., 2022] is the most related work
to ours. They also explore KD in DETR-like frameworks.
Our work diverges from them in a couple of ways. (i) We
concentrate on distilling the knowledge contained in decoder
attention and prediction, while their focus is on the distillation
of query feature knowledge. (ii) Although they also consider
how to establish teacher-student correspondence, they ignore
the instability issue in teacher-student matching. We propose
Fixed Matching to address the issue and experimental results
demonstrate the significance of considering this problem.

5 Experiments
5.1 Setting
Dataset. We perform the experiments on the COCO
2017 [Lin et al., 2014b] detection dataset, which contains
about 118K training (train) images and 5K validation
(val) images.

Training. We follow the training setting of DETR [Carion
et al., 2020] and Conditional DETR [Meng et al., 2021] that
use ImageNet pre-trained backbone from TORCHVISION
with Batch Normalisation (BN) layers fixed. The trans-
former parameters are initialized using the Xavier initializa-
tion scheme [Glorot and Bengio, 2010]. We train our models
for 12/50 epochs utilizing the AdamW [Loshchilov and Hut-
ter, 2017] optimizer. The learning rate is reduced by a factor
of 10 after 11/40 epochs, respectively. The data augmentation
scheme is identical to DETR [Carion et al., 2020]: the input
image is resized such that the short side is at least 480 pix-
els and at most 800 pixels and the long side is at most 1333
pixels. The training image is then randomly cropped with a
probability of 0.5 to a random rectangular patch.
Teacher models. For DETR [Carion et al., 2020], we utilize
the officially released models, trained for 500 epochs with
ResNet-101-C5 or ResNet-101-DC5 backbone as the teacher
model. For Conditional DETR [Meng et al., 2021], we utilize
the official code to train the model for 50 epochs, utilizing
ResNet-101-C5 or ResNet-101-DC5 backbone.
Student models. Student models are trained with the
AdamW [Loshchilov and Hutter, 2017] optimizer for 12/50
epochs. The student models are trained based on four differ-
ent backbones: ResNet-50-C5, ResNet-50-DC5, ResNet-18-
C5, ResNet-18-DC5.
Evaluation. We use the standard COCO evaluation. We re-
port the average precision (AP), and the AP scores at 0.50,
0.75 and for the small, medium, and large objects.

5.2 Main Results
Our method is versatile and can be applied to various DETR-
like frameworks. We perform experiments on two prevalent
detectors (namely, DETR and Conditional DETR) with 12-
epoch (1×) and 50-epoch training schedules. Due to the
space limit, we put the results of 50-epoch in the appendix.
[Zheng et al., 2021] proposes an inheriting strategy to initial-
ize the student model with the teacher’s neck and head pa-
rameters, leading to improved performance. We employ this
strategy to initialize the transformer encoder and decoder of
the student model with the teacher’s parameters4.
Results with a standard 1× schedule. The results are pre-
sented in Table 1. All the student detectors obtain signifi-
cant mAP improvements with the knowledge transferred from
teacher detectors. For instance, D3ETR boosts detection per-
formance when applied to Conditional DETR: +8.3 mAP for
R50-C5, +9.8 mAP for R18-C5, +6.3 mAP for R50-DC5,
and +7.6 mAP for R18-DC5. Rresults of more detectors and
training schedules could be found in appendix.

5.3 Ablation Study
In this section, we first compare the proposed decoder dis-
tillation method to other CNN-based distillation methods in
object detection. Subsequently, we conduct ablation studies
to verify each component in our decoder distillation strate-
gies. We adopt Conditional DETR-R101-C5 as the teacher
and Conditional DETR-R50-C5 as the student. The student

4The inheriting strategy resulted in a performance gain of 2.1/0.4
mAP for Conditional DETR-R50-C5 under 12/50 epochs setting.
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Teacher Student Backbone mAP APs APm APl

DETR
R101-C5

43.5 (500e)

DETR R50-C5 25.1 7.7 24.9 43.1
+ Ours 32.6 (+7.5) 9.7 32.0 49.9
DETR R18-C5 19.7 4.5 18.8 34.8
+ Ours 28.3 (+8.6) 7.7 29.3 48.1

DETR
R101-DC5
44.7 (500e)

DETR R50-DC5 28.4 9.7 29.3 46.9
+ Ours 39.3 (+10.9) 17.1 43.1 59.2
DETR R18-DC5 23.0 6.4 22.9 39.4
+ Ours 33.0 (+10.0) 12.4 34.7 52.8

Conditional DETR
R101-C5
42.8 (50e)

Conditional DETR R50-C5 32.4 14.7 35.0 48.3
+ Ours 40.7 (+8.3) 19.3 43.5 59.7

Conditional DETR R18-C5 26.3 10.2 28.2 39.7
+ Ours 36.1 (+9.8) 15.4 38.1 54.2

Conditional DETR
R101-DC5
45.0 (50e)

Conditional DETR R50-DC5 36.5 17.6 40.0 52.6
+ Ours 42.8 (+6.3) 22.4 45.8 60.3

Conditional DETR R18-DC5 29.9 13.4 32.5 43.3
+ Ours 37.5 (+7.6) 17.1 39.8 54.2

Table 1: Results with a 12-epoch training schedule on MS COCO. Our proposed approach exhibits significant improvements over two
DETR-based methods. We employ the teacher model to initialize both the encoder and decoder parameters.

Method #Epochs mAP
Conditional DETR-R101-C5 (⋆) 50 42.8
Conditional DETR-R50-C5 (♣) 12 32.4
♣ + DeFeat 12 32.4
♣ + FitNet 12 33.3
♣ + FGD 12 36.0
♣ + MGD 12 36.7
♣ + DETRDistill 12 37.7
♣ + Ours 12 38.6
♣ + Ours + MGD 12 39.3
♣ + Ours + DETRDistill∗ 12 39.4

Table 2: Comparison with other distillation methods. We adopt
Conditional DETR-R101-C5 as the teacher model and Conditional
DETR-R50-C5 as the student. Our D3ETR is superior to other dis-
tillation methods, and can be further improved by combining with
MGD or DETRDistill. ∗: we only utilize the ”Target-aware Feature
Distillation” strategy in DETRDistill, which distills the encoder fea-
ture.

model is trained for 12 epochs without utilizing the inheriting
strategy.
The effectiveness of decoder distillation. We compare
D3ETR with other state-of-the-art KD approaches for object
detection, DeFeat, FitNet, FGD, and MGD, as shown in Ta-
ble 2. These works focus on distilling ordered outputs, and
we employ them to the output feature of the transformer en-
coder. We utilize identical teacher and student models, as
well as training settings in each instance. For competing
distillation approaches, we tune the hyper-parameters based
on those in the corresponding papers or open-sourced code
repositories, and take the best performance. As can be seen
from the table, the proposed approach outperforms its coun-
terparts. This highlights that it is more effective to perform
distillation on the DETR decoder layers. We also compared
the proposed method with DETRDistill, which performs dis-
tillation on both the encoder and decoder. The superior result
validates the effectiveness and importance of distilling the at-
tention map of the decoder and addressing the instability is-
sue in teacher-student matching. Besides, we integrate the

proposed method with MGD or DETRDistill, resulting in en-
hanced performance. This exemplifies the potential of further
improving the performance of our proposed approach. How-
ever, it is beyond the scope of this paper and is left for future
work.
The effect of each component in our method. We gradually
incorporate the proposed strategies into the baseline, and the
results are presented in Table 3. If we do not use any teacher-
student matching strategy, the result is 33.9. This shows that
it is important to establish a reasonable teacher-student query
correspondence. By adopting the Adaptive Matching strat-
egy with distillation in prediction, self-attention, and cross-
attention, the results improve significantly, and the combina-
tion of these three approaches provides the best result (37.2).
Subsequently, adding Fixed Matching improves the result to
38.6. Finally, the inheritance strategy boosts the result by
2.1, obtaining 40.7 mAP, which is comparable to Conditional
DETR-R50-C5 trained with 50 epochs (40.9).
Teacher-student matching strategy. The proposed Mix-
Matcher comprises two teacher-student matching strategies,
namely, Adaptive Matching and Fixed Matching. To validate
our design, we perform ablations on the matching strategy
and report the results in Table 4. Our findings indicate that ei-
ther using Adaptive Matching or Fixed Matching can improve
the baseline. Adaptative Matching is slightly more efficient
and achieves 37.2 mAP. We further find that we can improve
the performance when we use two groups of queries but adopt
the same matching strategy during training. For instance, the
result obtained by two groups with Adaptive Matching is 0.5
higher than that obtained using a single group. We postulate
that multiple query groups enable each ground truth to match
more positive queries, thereby easing training [Chen et al.,
2022a]. Moreover, using these two strategies simultaneously
generates the best result of 38.6 mAP. This illustrates that the
hybrid design is helpful.
Constraint in Fixed Matching. We introduce a constraint in
Fixed Matching to strengthen the teacher-student fixed cor-
respondence as illustrated in Eq. 3. Without this constraint,
the output of the auxiliary group may be supervised by dif-
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Figure 4: Comparison of spatial attention maps. The first row shows the student model, the second row shows the student model with
our D3ETR, and the third row shows the teacher model. We choose to visualize only 4 out of the 8 heads, with the remaining heads being
duplicates. The ground-truth boxes are denoted by purple and blue boxes. Best viewed in color.

Adaptative Matching Prediction Self-Attn Cross-Attn Fixed Matching Inheriting mAP
32.4

✓ ✓ ✓ 33.9
✓ ✓ 35.0
✓ ✓ ✓ 36.3
✓ ✓ ✓ 36.3
✓ ✓ ✓ 36.5
✓ ✓ ✓ ✓ 37.2
✓ ✓ ✓ ✓ ✓ 38.6
✓ ✓ ✓ ✓ ✓ ✓ 40.7

Table 3: Ablation study on the proposed distillation strategies. We use Conditional DETR-R101-C5 as the teacher model and Conditional
DETR-R50-C5 as the student model.

Adaptative Matching Fixed Matching mAP
32.4

✓ 37.2
✓ 36.8

✓✓ 37.7
✓✓ 36.9

✓ ✓ 38.6

Table 4: Ablation study on the teacher-student matching strat-
egy. “✓✓” means we use two groups that have the same teacher-
student matching strategy. The best result is obtained by using the
two proposed strategies simultaneously.

Method Constraint mAP
Fixed Matching ✗ 37.3
Fixed Matching 0 ∼ 5-th layer 38.4
Fixed Matching 5-th layer 38.6

Table 5: Ablation study on the constraint in Fixed Matching.
The best result is obtained by adding a constraint on the last decoder
layer.

ferent ground truths from the corresponding output of the
teacher model. Since the two outputs are generated from
the same object query, the model may become confused.
According to Table 5, the performance drops from 38.6 to
37.3 without constraints. This also indicates that directly us-
ing the teacher’s query as an auxiliary group only leads to
marginal improvements (+0.1). We additionally test adding
constraints on all decoder layers and find the performance to

be slightly worse than adding a constraint on the last layer.

5.4 Visualization

To validate whether the student model learns meaningful in-
formation from the teacher model, we visualize the spatial
attention map [Meng et al., 2021]. Figure 4 shows the re-
sults. According to [Meng et al., 2021], the spatial atten-
tion maps correspond to the extremities of objects or a small
region within the object box. The former helps in locating
the object while the latter aids in recognizing its category.
Our observation indicates that the student model struggles
with identifying the object extremities precisely. However,
by employing our proposed distillation framework, D3ETR,
the knowledge in the teacher model is well transferred to the
student model. The student model learns similar patterns to
the teacher model, thus improving the detection performance.

6 Conclusion

In this work, we explore the effectiveness of knowledge dis-
tillation for detectors based on DETR architecture. Our ap-
proach, MixMatcher, facilitates learning the correspondence
between DETR-based teacher and student models, enabling
an efficient knowledge transfer. Based on MixMatcher, we
propose D3ETR, a straightforward yet effective distillation
framework, and demonstrate its effectiveness through exten-
sive experiments.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

674



Acknowledgments
This work is supported by the Sichuan Science and Technol-
ogy Program (2023YFSY0008), China Tower-Peking Uni-
versity Joint Laboratory of Intelligent Society and Space
Governance, National Natural Science Foundation of China
(61632003, 61375022, 61403005), Grant SCITLAB-20017
of Intelligent Terminal Key Laboratory of SiChuan Province,
Beijing Advanced Innovation Center for Intelligent Robots
and Systems (2018IRS11), and PEKSenseTime Joint Labo-
ratory of Machine Vision.

Contribution Statement
Xiaokang Chen and Jiahui Chen make core contributions. Xi-
aokang formalized the idea and led the project.

References
[Carion et al., 2020] Nicolas Carion, Francisco Massa,

Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov,
and Sergey Zagoruyko. End-to-end object detection with
transformers. In ECCV, 2020.

[Chen et al., 2017] Guobin Chen, Wongun Choi, Xiang Yu,
Tony Han, and Manmohan Chandraker. Learning effi-
cient object detection models with knowledge distillation.
Advances in neural information processing systems, 30,
2017.

[Chen et al., 2021] Pengguang Chen, Shu Liu, Hengshuang
Zhao, and Jiaya Jia. Distilling knowledge via knowledge
review. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 5008–
5017, 2021.

[Chen et al., 2022a] Qiang Chen, Xiaokang Chen, Jian
Wang, Haocheng Feng, Junyu Han, Errui Ding, Gang
Zeng, and Jingdong Wang. Group detr: Fast detr training
with group-wise one-to-many assignment. 2022.

[Chen et al., 2022b] Qiang Chen, Jian Wang, Chuchu Han,
Shan Zhang, Zexian Li, Xiaokang Chen, Jiahui Chen,
Xiaodi Wang, Shuming Han, Gang Zhang, Haocheng
Feng, Kun Yao, Junyu Han, Errui Ding, and Jingdong
Wang. Group detr v2: Strong object detector with encoder-
decoder pretraining. 2022.

[Chen et al., 2022c] Xiaokang Chen, Fangyun Wei, Gang
Zeng, and Jingdong Wang. Conditional detr v2: Efficient
detection transformer with box queries. arXiv preprint
arXiv:2207.08914, 2022.

[Cho and Hariharan, 2019] Jang Hyun Cho and Bharath Har-
iharan. On the efficacy of knowledge distillation. In
Proceedings of the IEEE/CVF international conference on
computer vision, pages 4794–4802, 2019.

[Dai et al., 2021] Xing Dai, Zeren Jiang, Zhao Wu, Yiping
Bao, Zhicheng Wang, Si Liu, and Erjin Zhou. General in-
stance distillation for object detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 7842–7851, 2021.

[Dong et al., 2022] Na Dong, Yongqiang Zhang, Mingli
Ding, and Gim Hee Lee. Incremental-detr: Incremen-
tal few-shot object detection via self-supervised learning.
arXiv preprint arXiv:2205.04042, 2022.

[Glorot and Bengio, 2010] Xavier Glorot and Yoshua Ben-
gio. Understanding the difficulty of training deep feed-
forward neural networks. In AISTATS, 2010.

[Guo et al., 2021] Jianyuan Guo, Kai Han, Yunhe Wang,
Han Wu, Xinghao Chen, Chunjing Xu, and Chang Xu.
Distilling object detectors via decoupled features. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 2154–2164, 2021.

[Hao et al., 2020] Miao Hao, Yitao Liu, Xiangyu Zhang, and
Jian Sun. Labelenc: A new intermediate supervision
method for object detection. In European Conference on
Computer Vision, pages 529–545. Springer, 2020.

[He et al., 2016] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016.

[Hinton et al., 2015] Geoffrey E. Hinton, Oriol Vinyals, and
Jeffrey Dean. Distilling the knowledge in a neural net-
work. arXiv: Machine Learning, 2015.

[Jia et al., 2022] Ding Jia, Yuhui Yuan, Haodi He, Xiaopei
Wu, Haojun Yu, Weihong Lin, Lei Sun, Chao Zhang, and
Han Hu. Detrs with hybrid matching. arXiv preprint
arXiv:2207.13080, 2022.

[Jiahao et al., 2022] Chang Jiahao, Wang Shuo,
Xu Guangkai, Chen Zehui, Yang Chenhongyi, and
Zhao Feng. Detrdistill: A simple knowledge distillation
framework for detr-families. In ICLR2023 submission,
2022.

[Kuhn, 1955] Harold W Kuhn. The hungarian method for the
assignment problem. Naval research logistics quarterly,
1955.

[Li et al., 2017] Quanquan Li, Shengying Jin, and Junjie
Yan. Mimicking very efficient network for object detec-
tion. In Proceedings of the ieee conference on computer
vision and pattern recognition, pages 6356–6364, 2017.

[Li et al., 2022] Feng Li, Hao Zhang, Shilong Liu, Jian Guo,
Lionel M Ni, and Lei Zhang. Dn-detr: Accelerate detr
training by introducing query denoising. In CVPR, 2022.

[Lin et al., 2014a] Tsung-Yi Lin, Michael Maire, Serge Be-
longie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft COCO: Com-
mon objects in context. In ECCV, 2014.

[Lin et al., 2014b] Tsung-Yi Lin, Michael Maire, Serge J.
Belongie, James Hays, Pietro Perona, Deva Ramanan, Pi-
otr Dollár, and C. Lawrence Zitnick. Microsoft COCO:
common objects in context. In ECCV, 2014.

[Liu et al., 2022] Shilong Liu, Feng Li, Hao Zhang, Xiao
Yang, Xianbiao Qi, Hang Su, Jun Zhu, and Lei Zhang.
Dab-detr: Dynamic anchor boxes are better queries for
detr. arXiv preprint arXiv:2201.12329, 2022.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

675



[Loshchilov and Hutter, 2017] Ilya Loshchilov and Frank
Hutter. Fixing weight decay regularization in adam. In
ICLR, 2017.

[Meng et al., 2021] Depu Meng, Xiaokang Chen, Zejia Fan,
Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, and Jing-
dong Wang. Conditional detr for fast training convergence.
In ICCV, pages 3651–3660, 2021.

[Park et al., 2019] Wonpyo Park, Dongju Kim, Yan Lu, and
Minsu Cho. Relational knowledge distillation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 3967–3976, 2019.

[Rezatofighi et al., 2019] Hamid Rezatofighi, Nathan Tsoi,
JunYoung Gwak, Amir Sadeghian, Ian D. Reid, and Silvio
Savarese. Generalized intersection over union: A metric
and a loss for bounding box regression. In CVPR, 2019.

[Romero et al., 2014] Adriana Romero, Nicolas Ballas,
Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta,
and Yoshua Bengio. Fitnets: Hints for thin deep nets.
arXiv preprint arXiv:1412.6550, 2014.

[Sandler et al., 2018] Mark Sandler, Andrew Howard, Men-
glong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In
CVPR, 2018.

[Simonyan and Zisserman, 2015] Karen Simonyan and An-
drew Zisserman. Very deep convolutional networks for
large-scale image recognition. In ICLR, 2015.

[Song et al., 2022] Hwanjun Song, Deqing Sun, Sanghyuk
Chun, Varun Jampani, Dongyoon Han, Byeongho Heo,
Wonjae Kim, and Ming-Hsuan Yang. Vidt: An efficient
and effective fully transformer-based object detector. In
ICLR, 2022.

[Tian et al., 2019] Yonglong Tian, Dilip Krishnan, and
Phillip Isola. Contrastive representation distillation. arXiv
preprint arXiv:1910.10699, 2019.

[Tung and Mori, 2019] Frederick Tung and Greg Mori.
Similarity-preserving knowledge distillation. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 1365–1374, 2019.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In NeurIPS, 2017.

[Wang et al., 2022] Yingming Wang, Xiangyu Zhang, Tong
Yang, and Jian Sun. Anchor detr: Query design for
transformer-based detector. In AAAI, 2022.

[Yang et al., 2021] Jing Yang, Brais Martinez, Adrian Bulat,
Georgios Tzimiropoulos, et al. Knowledge distillation via
softmax regression representation learning. International
Conference on Learning Representations (ICLR), 2021.

[Yang et al., 2022a] Zhendong Yang, Zhe Li, Xiaohu Jiang,
Yuan Gong, Zehuan Yuan, Danpei Zhao, and Chun Yuan.
Focal and global knowledge distillation for detectors. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4643–4652, 2022.

[Yang et al., 2022b] Zhendong Yang, Zhe Li, Mingqi Shao,
Dachuan Shi, Zehuan Yuan, and Chun Yuan. Masked
generative distillation. arXiv preprint arXiv:2205.01529,
2022.

[Yim et al., 2017] Junho Yim, Donggyu Joo, Jihoon Bae,
and Junmo Kim. A gift from knowledge distillation: Fast
optimization, network minimization and transfer learning.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 4133–4141, 2017.

[Zagoruyko and Komodakis, 2016] Sergey Zagoruyko and
Nikos Komodakis. Paying more attention to attention: Im-
proving the performance of convolutional neural networks
via attention transfer. arXiv preprint arXiv:1612.03928,
2016.

[Zhang and Ma, 2020] Linfeng Zhang and Kaisheng Ma.
Improve object detection with feature-based knowledge
distillation: Towards accurate and efficient detectors. In
International Conference on Learning Representations,
2020.

[Zhang et al., 2018] Ying Zhang, Tao Xiang, Timothy M
Hospedales, and Huchuan Lu. Deep mutual learning. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 4320–4328, 2018.

[Zhang et al., 2022a] Gongjie Zhang, Zhipeng Luo,
Yingchen Yu, Kaiwen Cui, and Shijian Lu. Acceler-
ating detr convergence via semantic-aligned matching. In
CVPR, pages 949–958, 2022.

[Zhang et al., 2022b] Hao Zhang, Feng Li, Shilong Liu, Lei
Zhang, Hang Su, Jun Zhu, Lionel M Ni, and Heung-
Yeung Shum. Dino: Detr with improved denoising an-
chor boxes for end-to-end object detection. arXiv preprint
arXiv:2203.03605, 2022.

[Zhang et al., 2022c] Peizhen Zhang, Zijian Kang, Tong
Yang, Xiangyu Zhang, Nanning Zheng, and Jian Sun. Lgd:
label-guided self-distillation for object detection. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pages 3309–3317, 2022.

[Zhao et al., 2022] Borui Zhao, Quan Cui, Renjie Song,
Yiyu Qiu, and Jiajun Liang. Decoupled knowledge dis-
tillation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 11953–
11962, 2022.

[Zheng et al., 2021] Nanning Zheng, Jian Sun, Xiangyu
Zhang, Zijian Kang, and Peizhen Zhang. Instance-
conditional knowledge distillation for object detection.
2021.

[Zhou et al., 2021] Helong Zhou, Liangchen Song, Jiajie
Chen, Ye Zhou, Guoli Wang, Junsong Yuan, and Qian
Zhang. Rethinking soft labels for knowledge distilla-
tion: A bias-variance tradeoff perspective. arXiv preprint
arXiv:2102.00650, 2021.

[Zhu et al., 2020] Xizhou Zhu, Weijie Su, Lewei Lu, Bin
Li, Xiaogang Wang, and Jifeng Dai. Deformable DETR:
deformable transformers for end-to-end object detection.
CoRR, abs/2010.04159, 2020.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

676


	Introduction
	Related Work
	Preliminary
	DETR Architecture
	Analysis on the DETR Structure

	Methodology
	MixMatcher
	D3ETR
	Discussion

	Experiments
	Setting
	Main Results
	Ablation Study
	Visualization

	Conclusion

