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Abstract
Few-shot semantic segmentation (FSS) aims to
generate a model for segmenting novel classes us-
ing a limited number of annotated samples. Previ-
ous FSS methods have shown sensitivity to back-
ground noise due to inherent bias, attention bias,
and spatial-aware bias. In this study, we propose
a Transformer-Based Adaptive Prototype Match-
ing Network to establish robust matching relation-
ships by improving the semantic and spatial per-
ception of query features. The model includes three
modules: target enhancement module (TEM), dual
constraint aggregation module (DCAM), and dual
classification module (DCM). In particular, TEM
mitigates inherent bias by exploring the relevance
of multi-scale local context to enhance foreground
features. Then, DCAM addresses attention bias
through the dual semantic-aware attention mecha-
nism to strengthen constraints. Finally, the DCM
module decouples the segmentation task into se-
mantic alignment and spatial alignment to allevi-
ate spatial-aware bias. Extensive experiments on
PASCAL-5i and COCO-20i confirm the effective-
ness of our approach.

1 Introduction
In recent years, traditional semantic segmentation [Wang et
al., 2019] has made significant progress due to the rapid ad-
vancements in deep learning within the field of computer vi-
sion [Chen et al., 2022b; Ye et al., 2021]. However, this task
has long struggled with challenges such as dense annotation
requirements and limited generalization. In such case, few-
shot semantic segmentation (FSS) [Tian et al., 2020] has been
proposed to simulate real-world scenarios with limited data
and multiple categories.

FSS follows the framework of meta-learning, conducting
training in the form of episodes that consist of a support set
and a query set. The model execution process can be divided
into three stages. First, both the support set and the query
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Figure 1: (a) Inherent Bias: During the feature extraction stage, our
method effectively enhances features associated with the target class
”bottle” while suppressing interference from the category ”person”
in the background. In contrast, the baseline erroneously focuses on
the background ”person”. (b) Attention Bias: In the feature match-
ing stage, our approach concentrates on the regions relevant to the
target category ”bottle”, effectively mitigating matching inconsis-
tencies caused by intra-class differences. Contrastingly, the baseline
scatters attention, neglecting crucial features of the target class ’bot-
tle’ and encompassing irrelevant background regions. (c) Spatial-
aware Bias: In the feature classification stage, our method achieves
precise segmentation of the target class, while the baseline fails to
segment the target object.

set are sent synchronously to the parameter-sharing backbone
network for feature extraction. Next, in the feature match-
ing stage, interaction occurs between the annotated support
features and the query features using either a prototype-
pixel mechanism [Zhang et al., 2020; Zhang et al., 2021a;
Fan et al., 2022; Liu et al., 2022c; Cao et al., 2022] or a
pixel-pixel mechanism [Xie et al., 2021; Min et al., 2021;
Zhang et al., 2021b; Shi et al., 2022]. Finally, in the clas-
sification stage, FSS predicts the segmentation mask for the
target category in the query image.

Existing FSS models [Cao et al., 2022; Zhang et al., 2021b;
Liu et al., 2022c; Chen et al., 2024] have shown impres-
sive results. However, as illustrated in Fig.5, previous works
still face challenges due to background interference, includ-
ing adjacent regions, seen classes, and analogs. The rea-
sons can be explained from three aspects: (i) in the fea-
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ture extraction stage, previous works [Tian et al., 2020;
Chen et al., 2022a; Cao et al., 2022] have relied on features
directly extracted from the pretrained backbone networks.
However, these pretrained backbones exhibit inherent bias.
As shown in Fig.1(a), they tend to prioritize extracting fea-
tures related to ”person” rather than the specific target cate-
gory ”bottle” for the current task. (ii) In the feature matching
stage, previous works [Cao et al., 2022; Liu et al., 2022c;
Shi et al., 2022] have often utilized attention mechanisms to
establish the single-layer relationship between the support set
and the query set for category information transfer. How-
ever, this subtle relationship proves to be insufficient when
there exists significant intra-class variability within the target
category, leading to attention bias (see in Fig.1(b)). (iii) In
the classification stage, existing methods [Tian et al., 2020;
Zhang et al., 2021a; Liu et al., 2022b] predominantly rely on
semantic relevance to make predictions, overlooking the ex-
ploration of spatial information, which we refer to as spatial-
aware bias. As depicted in Fig.1(c), when faced with com-
plex scenes, relying solely on semantic consistency may fail
to accurately segment the target category ”bottle.”

The aforementioned concerns motivate us to introduce a
novel Transformer-Based Adaptive Prototype Matching Net-
work. This model mitigates background interference in FSS
by strategically and efficiently interacting during the three
stages of model execution. The central concept involves
leveraging both semantic and spatial perceptions of query fea-
tures to provide a more comprehensive understanding of cat-
egory information, ultimately enhancing the robustness of the
model.

Firstly, in the feature extraction stage, we draw inspira-
tion from [Lin et al., 2023] and introduce the target enhance-
ment module (TEM) to alleviate inherent bias. TEM focuses
on exploring the relevance of multi-scale local context in an
computationally efficient manner to enhance foreground fea-
tures. Secondly, in the feature matching stage, to address at-
tention bias, we devise a dual constraint aggregation module
(DCAM). This module emulates the human visual matching
process, identifying the most similar target regions in the im-
age based on prior information and using these regions as ref-
erences for self-retrieval. Finally, in the feature classification
stage, addressing the spatial-aware bias, we propose a dual
classification module (DCM). This module aims to decouple
the segmentation task into two subtasks: semantic alignment
and spatial alignment. It leverages semantic consistency for
target category identification and spatial consistency for pre-
cise localization, collectively improving performance.

In summary, our contributions are as follows:

• We propose a TEM to effectively mitigate inherent bias.

• We propose a DCAM to alleviate attention bias.

• We propose a DCM to individually achieve semantic
alignment and spatial alignment, addressing the spatial-
aware bias.

• Extensive experiments on two benchmark datasets,
PASCAL-5i and COCO-20i, demonstrate that the pro-
posed model outperforms other existing competitors us-
ing the same metrics.

2 Related Work
2.1 Few-Shot Semantic Segmentation
FSS predicts the mask for an unseen category by using a small
number of annotated support images. Metric learning-based
FSS can be divided into two main categories: prototype-based
methods and pixel-based matching methods.

The prototype-based mechanism has emerged as a pre-
dominant method in FSS. The pioneering work by [Dong
and Xing, 2018] introduced the prototype concept to FSS,
utilizing a prototype to represent information about the tar-
get class in the support set and performing matching on
query features to predict the segmentation mask. Subse-
quent studies extended this approach from different perspec-
tives. Firstly, some studies [Yang et al., 2020; Li et al., 2021;
Yang et al., 2021; Zhang et al., 2021a; Liu et al., 2022a] pro-
posed generating multiple foreground prototypes to fully uti-
lize the support foreground information. Secondly, consider-
ing the potential presence of new classes in the background,
[Yang et al., 2021; Chen et al., 2022a; Liu et al., 2022b]
generated one or more background prototypes by mining the
query background.

Due to the inevitable loss of spatial information associated
with the prototype-based approach, recent studies [Zhang et
al., 2019; Min et al., 2021; Shi et al., 2022; Zhang et al.,
2021b; Peng et al., 2023] proposed a pixel-based matching
strategy. Unlike the prototype-based method, pixel-based
matching seeks to establish a dense association between the
support pixels and the query pixels.

Despite the commendable performance achieved by the
pixel-based matching method, it is prone to overfitting on the
training set. Furthermore, the computational demands of the
pixel-based matching method surpass those of the prototype-
based approach. After comprehensive consideration, our ap-
proach selects a prototype-based matching scheme.

2.2 Transformer
Transformers have shown incredible success from the field
of natural language processing (NLP) [Vaswani et al., 2017]
to computer vision (CV) [Huang et al., 2022; Ouyang et al.,
2023] due to their ability to capture long-range correlations.
Some recent works [Lu et al., 2021; Zhang et al., 2021b;
Shi et al., 2022; Cao et al., 2022; Liu et al., 2022c] have
explored the use of transformers in FSS. [Lu et al., 2021]
introduced the classifier weight converter to dynamically ad-
just classifier weights for each query image. [Zhang et al.,
2021b] proposed a cyclic consistent attention mechanism to
filter out task-irrelevant pixels from the support set. [Shi
et al., 2022] proposed dense pixel cross-query and support
attention-weighted mask aggregation to predict the segmenta-
tion mask by aggregating multi-level support masks weighted
by pixel relevance. [Cao et al., 2022] utilized traditional
vanilla attention to strengthen the discriminant of class proto-
types. While these methods have been successful, they have
certain limitations. The first issue is inherent bias of the back-
bone. Despite using self-alignment in [Zhang et al., 2021b]
to enhance target category features, the quadratic complex-
ity of the input length remains a concern. The second issue
is attention bias caused by insufficient constraints. [Liu et
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Figure 2: The overall architecture of our proposed network. First, target enhancement module(TEM) is proposed to generate enhanced
query foreground feature F̃q using middle-level query features Fm

q , a support prototype feature F s
p , and a prior mask M0. Then, dual

constraint aggregation module(DCAM) takes F̃q , the support prototype ps, and intra-class difference representation ∆q as input to generate
the discriminative category prototype p̃s. Finally, in the upper half of the dual classification module(DCM), the above operations are repeated
to obtain the refined category prototype p̃rs and the refined query foreground feature F̃ r

q and then the semantic similarity-based mask Msim

is generated by p̃rs and F̃ r
q . In the lower half of the DCM module, the process starts by utilizing F̃q and F̃ r

q to generate corresponding spatial
distribution guidence Sq and Sr

q . Then the spatial distribution probability-based mask Mpro is generated by the decoder with Fm
q ,F̃q ,F̃ r

q , Sq

and Sr
q as input. The final query segmentation mask Mfinal is generated by combining Msim and Mpro.

al., 2022c] employed mask attention to filter out background
noise. However, in cases where there are significant varia-
tions within the same class, the accuracy of the mask is wor-
rying.

In our work, we pioneer the integration of the convolu-
tional transformer [Lin et al., 2023] into FSS and enhance
foreground features through a local adaptive strategy. Addi-
tionally, we introduce a dual semantics-aware attention mech-
anism to explicitly model the cross-consistency between the
support set and the query set as well as the self-consistency
within the query set, in order to achieve sufficient mining of
the query target class information.

3 Method
3.1 Overview
In this work, we aim to mitigate the susceptibility to back-
ground noise caused by inherent bias, attention bias, and
spatial-aware bias. To this end, we propose a novel
Transformer-Based Adaptive Prototype Matching Network
that establishes robust matching relationships between the
support set and the query set during the three model execu-
tion phases. In the initial feature extraction stage, we intro-
duce a target enhancement module to alleviate inherent bias
(see in Section 3.2). Subsequently, in the feature matching
stage, to address attention bias, we design a dual constraint
aggregation module (see in Section 3.3). Lastly, in the feature
classification stage, to tackle spatial-aware bias, we propose
a dual classification module (see in Section 3.4). Without loss
of generality, we demonstrate the entire network architecture
in a 1-shot setting (see in Fig.2).

3.2 Target Enhancement Module
Alleviating the inherent bias of the backbone is crucial for
FSS. Despite significant progress in recent work [Zhang et

al., 2021b], challenges persist due to the quadratic complex-
ity of the input length. In TEM, to reduce computational
costs, we introduce a Multi-Scale Local-Aware Modulation
Transformer based on the convolutional transformer archi-
tecture [Lin et al., 2023] for performing multi-scale feature
extraction. Differently, we employ multi-scale self-adaptive
local attention to enhance foreground information and miti-
gate background interference. Furthermore, we replace the
standard multi-layer perception (MLP) [Vaswani et al., 2017]
with an invertible neural network (INN) [Dinh et al., 2016] to
preserve more fine-grained features in the feedforward pro-
cess.

Specifically, we first follow previous work [Tian et al.,
2020] to get the initial activated query feature F act

q using the
middle-level query feature Fm

q ∈ RH×W×C , the support pro-
totype feature F s

p ∈ RH×W×C , and the prior mask M0 as
inputs. F s

p is obtained from the support prototype extension,
where the support prototype ps ∈ R1×C is obtained by ap-
plying masked average pooling(MAP) on the middle-level
of the support feature Fm

s ∈ RH×W×C . M0 is obtained
from high-level support and query features. Then, as shown
in Fig.3, F act

q is treated as the input to the Multi-Scale Local-
Aware Modulation Transformer. We follow the paradigm of
the multi-head attention mechanism, where features are di-
vided into N groups F act

q = [F act
q1 , F act

q2 , ..., F act
qN ] by the

channel dimension, and a convolutional layer ConvK×K

with a kernel size of K × K is applied to each group of
features F act

qi ∈ RH×W×(C/N) to generate local attention
weights Attn(F act

qi ) ∈ RH×W×(K×K). The weights are then
normalized by a softmax function. In turn, the weighted fea-
tures F̂ act

qi ∈ RH×W×(C/N) are integrated by a convolutional
layer ConvK×K with the same kernel size of K × K. We
then concatenate each group of the weighted features along
the channel dimension to obtain the convolutional modulator
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Figure 3: Illustration of the Multi-Scale Local-Aware Modulation
Transformer in the target enhancement module(TEM).

M ∈ RH×W×C . We initialize the kernel size with 1× 1 and
gradually increase it by 2 per head. The process is described
by the following equation:

F̂ act
qi =ConvK×K(Γ1(softmax(Attn(F act

qi )))⊙ Γ2(F
act
qi )),

M = Concat(F̂ act
q1 , F̂ act

q2 , ..., F̂ act
qN ),

(1)

where Γ1(·) denotes the transformation of Attn(F act
qi ) to

RH×W×1×(K×K), and Γ2(·) denotes the transformation of
F act
qi to RH×W×(C/N)×(K×K). ⊙ represents the element-

wise product.
With the convolutional modulator, we obtain features

F tmp
q ∈ RH×W×C fused by spatial dimension. Finally, for

preserving more detailed features, we employ the invertible
feedforward network for inter-channel information fusion.
This process is described as:

F tmp
q = Conv1×1(M⊙WvF

act
q ) + F act

q ,

F tmp
q [1 : c] = exp(S1(F

tmp
q [c+ 1 : C]))⊙ F tmp

q [1 : c] + S2(F
tmp
q [c+ 1 : C]),

F̃q = Concat(F tmp
q [1 : c], F tmp

q [c+ 1 : C]),

(2)

where Wv denote parameters of the linear mapping.
Conv1×1 is a convolutional operation with a kernel size of
1× 1. F̃q ∈ RH×W×C indicates the output feature. F tmp

q [1 :

c] ∈ RH×W×c is the 1st to the cth channels of the input fea-
ture F tmp

q . Si is the residual function in th INN layer.

3.3 Dual Constraint Aggregation Module
To enhance the discriminant of category cues, existing ap-
proach [Cao et al., 2022] mines more category information
by utilizing vanilla attention to explore the correlation be-
tween the support prototype and query features. However, in
scenarios with significant intra-class variations of the target
category, this single-layer constraint proves to be insufficient,
resulting in the issue of attention bias (shown in Fig.4(c)). To
address this limitation, we propose a DCAM as illustrated in
Fig.4(b) , which consists of two key components: intra-class
difference representation and a dual semantic-aware attention
mechanism.

Intra-Class Difference Representation. To alleviate intra-
class variations, we propose utilizing a set of learnable vec-
tors, namely intra-class difference representation, to model
the variance between the support set and the query set.
Specifically, we expand the support prototype ps to a size of
N × C, and assign an intra-class difference representation
∆q to each of them separately. The generated prototype can
be denoted as pinis . To explain the validity of the proposed
intra-class difference representation, we formulated its role
in the subsequent attention process. In the role of the intra-
class difference representation, the computational process of
the attention map can be extended as follows:

W = (Q+∆q)K
T

= (QKT ) + (∆qK
T )

= Wsupp +Wintra,

(3)

where Wsupp is the attention weight obtained from query Q
and key K, and Wintra is the weight obtained from the intra-
class difference representation ∆q and key K. Wintra can
be considered as a factor to adjust Wsupp according to the
intra-class variation.
Dual Semantic-Aware Attention Mechanism. As illus-
trated in Fig.4(d), our proposed dual semantic-aware attention
mechanism consists of two layers of constraints. In the first
layer, we use the support prototype as a reference to select
points with high matching confidence in the query feature.
These selected points are then used as guidance in the second
layer to find points with high feature similarity in the entire
query feature map. Throughout this process, we refer to pinis

as Q1, F̃q as Q2, K, and V .
To begin, we calculate the matching confidence map

Smat ∈ RN×HW between Q1 and K. The matching score
can be obtained by

Smat = softmax(Q1K
T ). (4)

Then we use the indices of the M points with the highest
matching confidence in Smat to guide the selection of corre-
sponding points TopM(Q2) in Q2 as references for the sec-
ond layer constraints. It is worth noting that we employ a soft
conditioning approach, where the number of M is set to be
1/4 of the average size of all support foreground regions in
each batch.

In the second layer, we calculate the feature similarity
matrix between the guide points TopM(Q2) and K, and
perform the maximization operation max()̇ along the guide
points dimension. The process can be described as:

Ssim = max(softmax(TopM(Q2)K
T )), (5)

We then use the obtained attention map Ssim ∈ R1×HW

to weigh the aggregation of the category prototype from the
query feature, and send it to the feedforward layer (FFN) to
generate the robust support category prototype p̃s.

3.4 Dual Classification Module
Existing methods [Tian et al., 2020; Zhang et al., 2021a;
Liu et al., 2022b] predominantly predict based on seman-
tic consistency, often neglecting the spatial consistency of
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the target object, leading to failures in locating target cate-
gories. In the DCM, our objective is to decouple the segmen-
tation task into two subtasks: semantic alignment and spa-
tial alignment. The semantic similarity-based mask serves
to identify the target category, while the spatial distribution
probability-based mask assists in precise localization, syner-
gizing for improved performance. Firstly, we optimize F̃q

and p̃s using TEM and DCAM. Then, we generate the seman-
tic similarity-based map Msim by element-wise product of
refined prototype p̃rs and F̃ r

q . Moreover, taking into account
the intrinsic guidance provided by query features, we exploit
the spatial consistency within the target object itself in the
query set to obtain the spatial distribution probability-based
mask. Specifically, we apply spatial attention [Woo et al.,
2018] to F̃q and F̃ r

q , obtaining spatial distribution guidences,
Sq and Sr

q , reflecting foreground position information. We
then concatenate Fm

q , F̃q , F̃ r
q , Sq , Sr

q and the prior mask M0

along the channel dimension and feed them into a decoder
FEM(·)[Tian et al., 2020] to estimate the spatial distribution
probability-based query foreground mask Mpro. The process
can be described as:

Msim = p̃rs ⊙ F̃ r
q .

Mpro = FEM(Fq, F̃q, F̃
r
q ,M

0, Sq, S
r
q ).

(6)

Finally, we combin Msim and Mpro through simple ad-
dition to obtain the ultimate query foreground segmentation
map Mfinal:

Mfinal = Msim +Mf
pro, (7)

where Mf
pro denotes the foreground prediction map in Mpro.

3.5 Total Training Loss
Our training loss is composed of three parts. Firstly, we
employ two dice losses, Lfinal and Lsim, to supervise the
training of the final prediction map Mfinal and the seman-
tic similarity-based mask Msim. Second, we utilize the bi-
nary cross-entropy loss Lpro to supervise the training of the
spatial distribution probability-based map Mpro. Finally, we
utilize KL(Kullback-Leibler) divergence loss LKL to distill
the foreground distribution information of the target obeject
in the query to students Sr

q and Sq using the query ground
truth Mq and Sr

q as the teacher, respectively. In summary, our
overall objective function is:

Ltotal = Lfinal + (1− e/epoch)(Lsim + Lpro) + λLKL,
(8)

where epoch represents the total number of training rounds,
e represents the current round, and λ is a adjustable loss
weights, here we set λ to 10.

4 Experiments
In the experiments, we leverage two popular FSS bench-
marks, i.e., PASCAL-5i [Shaban et al., 2017] and COCO-20i
[Nguyen and Todorovic, 2019], to evaluate the proposed ap-
proach. We adopt mean intersection-over-union (mIoU) as
the evaluation metric for experiments.

Figure 4: Detailed architectures. (a)Vanilla Transformer block, (b)
DCAM block, (c) Visualization of correspondence maps, and (d)
Dual semantic-aware attention mechanism in DCAM.

4.1 Implementation Details
Following [Lang et al., 2022], we first train the PSPNet to
obtain a backbone based on the seen training classes for each
fold, i.e., 16/61 training classes (including background) for
PASCAL-5i/COCO-20i. Subsequently, the parameters of the
trained backbone are frozen, and a meta-learning strategy is
employed to train the remaining structures. Optimization of
these structures is conducted using the Adam optimizer with
a learning rate of 10e-3, involving 50 epochs on PASCAL-5i
and 100 epochs on COCO-20i. All images are resized di-
rectly to 473×473, and the channel dimension of the image
features is set to 64. The training batch size is configured as
20 for the 1-shot setting and 15 for the 5-shot setting. No
data augmentation strategies are applied during training. All
experiments are executed on a single 24GB RTX3090 GPU.

4.2 Comparison With State-of-the-Art Methods
PASCAL-5i Results. Table 1 presents a performance com-
parison of mIoU on the PASCAL-5i dataset between our
method and several representative models. It is evident that
(1) our method outperforms the previous state-of-the-art [Min
et al., 2021] by 2.4% and 0.6% in the 1-shot and 5-shot set-
tings with VGG16 as the backbone network, respectively.
(2) On ResNet50, our model achieves state-of-the-art per-
formance [Bao et al., 2023] with just 1/7 of the parameters.
With a minimal increase of 0.5M parameters, we surpass the
baseline [Cao et al., 2022] by 3.9% and 3.1% in the 1-shot
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Backbone Method 1-shot 5-shot # learnableFold-0 Fold-1 Fold-2 Fold-3 Mean Fold-0 Fold-1 Fold-2 Fold-3 Mean params

VGG-16

PFENet[Tian et al., 2020] 56.9 68.2 54.4 52.4 58.0 59.0 69.1 54.8 52.9 59.0 10.3M
HSNet[Min et al., 2021] 59.6 65.7 59.6 54.0 59.7 64.9 69.0 64.1 58.6 64.1 2.5M

NTRENet[Liu et al., 2022b] 57.7 67.6 57.1 53.7 59.0 60.3 68.0 55.2 57.1 60.2 19.9M
ours 62.0 69.8 59.8 56.8 62.1 62.3 72.1 62.7 61.6 64.7 1.0M

Res-50

PFENet[Tian et al., 2020] 61.7 69.5 55.4 56.3 60.8 63.1 70.7 55.8 57.9 61.9 10.3M
CWT[Lu et al., 2021] 56.3 62.0 59.9 47.2 56.4 61.3 68.5 68.5 56.6 63.7 -

CYCTR[Zhang et al., 2021b] 65.7 71.0 59.5 59.7 64.0 69.3 73.5 63.8 63.5 67.5 15.4M
HSNet[Min et al., 2021] 64.3 70.7 60.3 60.5 64.0 70.3 73.2 67.4 67.1 69.5 2.5M
IPMT[Liu et al., 2022c] 72.8 73.7 59.2 61.6 66.8 73.1 74.7 61.6 63.4 68.2 -

SSP[Fan et al., 2022] 61.4 67.2 65.4 49.7 60.9 68.0 72.0 74.8 60.2 68.8 8.7M
DCAMA[Shi et al., 2022] 67.5 72.3 59.6 59.0 64.6 70.5 73.9 63.7 65.8 68.5 47.7M

NTRENet[Liu et al., 2022b] 65.4 72.3 59.4 59.8 64.2 66.2 72.8 61.7 62.2 65.7 19.9M
RiFeNet[Bao et al., 2023] 68.4 73.5 67.1 59.4 67.1 70.0 74.7 69.4 64.2 69.6 7.7M

Proformer[Cao et al., 2022] 65.9 72.5 55.9 58.1 63.1 71.4 75.2 57.5 65.7 67.4 0.6M
ours 67.9 74.3 61.1 64.6 67.0 72.0 76.4 64.5 69.1 70.5 1.1M

Table 1: Comparison with state-of-the-art methods on PASCAL-5i with class Mean-IoU metric. Red/Blue indicates the best/2nd results.

Backbone Method 1-shot 5-shot # learnableFold-0 Fold-1 Fold-2 Fold-3 Mean Fold-0 Fold-1 Fold-2 Fold-3 Mean params

VGG-16

PFENet[Tian et al., 2020] 35.4 38.1 36.8 34.7 36.3 38.2 42.5 41.8 38.9 40.4 10.3M
SAGNN [Xie et al., 2021] 35.0 40.5 37.6 36.0 37.3 37.2 45.2 40.4 40.0 40.7 -
DPCN[Liu et al., 2022a] 38.5 43.7 38.2 37.7 39.5 42.7 51.6 45.7 44.6 46.2 -

ours 38.6 45.6 41.4 41.7 41.8 45.6 50.7 48.7 45.8 47.7 1.0M

Res-50

CYCTR[Zhang et al., 2021b] 38.9 43.0 39.6 39.8 40.3 41.1 48.9 45.2 47.0 45.6 15.4M
HSNet[Min et al., 2021] 36.3 43.1 38.7 38.7 39.2 43.3 51.3 48.2 45.0 46.9 2.5M

CWT[Lu et al., 2021] 30.3 36.6 30.5 32.2 32.4 38.5 46.7 39.4 43.2 42.0 -
DCAMA[Shi et al., 2022] 41.9 45.1 44.4 41.7 43.3 45.9 50.5 50.7 46.0 48.3 47.7M

NTRENet[Liu et al., 2022b] 36.8 42.6 39.9 37.9 39.3 38.2 44.1 40.4 38.4 40.3 19.9M
IPMT[Liu et al., 2022c] 41.4 45.1 45.6 40.4 43.0 43.5 49.7 48.7 47.9 47.5 -

RiFeNet[Bao et al., 2023] 39.1 47.2 44.6 45.4 44.1 44.3 52.4 49.3 48.4 48.6 7.7M
MIANet[Yang et al., 2023] 42.5 53.0 47.8 47.4 47.7 45.8 58.2 51.3 51.9 51.7 -

Protoformer[Cao et al., 2022] 42.4 48.5 46.3 45.5 45.7 48.1 57.8 55.0 52.7 53.4 0.6M
ours 44.2 51.5 47.8 46.5 47.5 49.3 58.6 56.9 53.8 54.7 1.1M

Table 2: Comparison with state-of-the-art methods on COCO-20i with class Mean-IoU metric. Red/Blue indicates the best/2nd results.

and 5-shot settings. Notably, in the 1-shot and 5-shot set-
tings of fold2, we outperform the baseline by 5.2% and 7.0%,
and in fold3, we achieve improvements of 6.5% and 3.4%,
respectively. These results further emphasize the effective-
ness of our method in mitigating background interference and
achieving accurate query segmentation mask.
COCO-20i Results. COCO-20i is a more challenging
dataset with a diverse range of categories and intricate back-
grounds. Table 2 illustrates the mIoU performance compari-
son on the COCO-20i benchmark. It can be seen that (1) our
method built on VGG16 surpass the previous state-of-the-art
[Liu et al., 2022a] by 2.3% and 1.5% in the 1-shot and 5-shot
settings, respectively. (2) Using ResNet50 as backbone, our
image-only model has competitive performance with state-
of-the-art [Yang et al., 2023] that utilizes both text and image
information under the 1-shot setting. Furthermore, in the 5-
shot setting, we surpass [Yang et al., 2023] by 3.0% using
only 1.1M parameters. This underscores the robust gener-
alization capability of our model to effectively cope with in
handling bias problems.
Qualitative Results. We present qualitative results com-
paring our method with previous works, including CYCTR
[Zhang et al., 2021b], IPMT [Liu et al., 2022c], and Proto-
former [Cao et al., 2022], on the PASCAL-5i and COCO-20i
benchmarks. Our method demonstrates several advantages
over previous works, as depicted in Fig.5. (1) Our approach
successfully mitigates background interference from adjacent
regions, a contrast to previous works that erroneously treat
the background surrounding the foreground as the region for
segmentation(see 1st to 3rd column). (2) Our method

rectifies the misconception of considering known classes
in the background as foreground, concentrating attention on
the current target category(see 4th to 7th columns). (3) Our
method effectively suppresses interference from analogs in
the background, facilitating precise target category localiza-
tion (see 8th to 10th columns).

4.3 Ablation Experiments
We conduct following ablation studies with ResNet-50 back-
bone under the 1-shot setting on PASCAL-5i dataset.
Components Analysis. Our approach comprises three main
modules: target enhancement module (TEM), dual constraint
aggregation module (DCAM), and dual classification mod-
ule (DCM). Table 3 presents our validation on the effective-
ness of each component. Compared to the baseline, using
TEM alone to enhance query foreground features and using
DCAM alone to enhance the discriminant of category proto-
types results in a 0.9% and 2.2% improvement, respectively.
The synergistic effect of TEM and DCAM lead to a 2.6%
improvement. Employing DCM to achieve semantic align-
ment and spatial alignment provides an extra growth of 1.3%.
The results reveal a 3.9% improvement of our model over the
baseline, indicating that the introduced modules effectively
address three issues—namely, inherent bias, attention bias,
and spatial-aware bias. This ultimately reduces background
interference, leading to precise segmentation.
Target Enhancement Module. TEM aims to mitigates the
inherent bias of the backbone and enhance the query fore-
ground regions. To evaluate the performance of our proposed
method, we perform experiments with other methods in terms
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Figure 5: Qualitative results of our method and alongside previous
works, including CYCTR , IPMT, and Protoformer, on PASCAL-
5i and COCO-20i benchmarks. Each row from top to bottom rep-
resents the support images with ground-truth (GT) masks (blue),
query images with GT masks (red), CYCTR results (yellow),
IPMT results (yellow), Protoformer results (yellow), and our results
(yellow), respectively. Zoom in for details.

TEM DCAM DC Fold-0 Fold-1 Fold-2 Fold-3 Mean
65.9 72.5 55.9 58.1 63.1

✓ 67.0 72.6 58.0 58.5 64.0
✓ 67.6 74.5 58.6 60.3 65.3

✓ ✓ 67.8 73.5 60.0 61.4 65.7
✓ ✓ ✓ 67.9 74.3 61.1 64.6 67.0

Table 3: Ablation studies of main model components.
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Figure 6: Comparison of target enhancement from different meth-
ods in terms of accuracy and efficience. SA: Self Alignmnet. SAM:
Scale-Aware Modulation Transformer. MSAL+MLP: Our Multi-
Scale Self-Adaptive Attention with MLP. MSAL+INN: Our Multi-
Scale Local-Aware Modulation Transformer. FLOPs means floating
point operations per second.

of computational effort and accuracy, respectively. We mod-
ified our model by (1) employing the self alignment mod-
ule in [Zhang et al., 2021b] as the attention mechanism for
TEM (referred to as SA), (2) replacing SA with the convo-
lutional transformer architecture [Lin et al., 2023] (referred
to as SAM), (3) substituting it with our Multi-Scale Self-
Adaptive Local Attention (referred to as MSLA+MLP), and
(4) utilizing INN[Dinh et al., 2016] instead of MLP as feed-
forward network (referred to as MSLA+INN). As illustrated
in Figure 6, our approach maintains a high level of accuracy
while reducing computational complexity. Moreover, our
feedforward network retains more feature details at a slightly
increased computational cost.
Dual Constraint Aggregation Module. We provide a com-

VA MA DSAA IDR mIoU(%)
✓ 63.1

✓ 64.2
✓ 64.8

✓ ✓ 64.2
✓ ✓ 65.1

✓ ✓ 65.3

Table 4: Ablation studies on dif-
ferent attention mechanism set-
tings. VA: Vanilla Attention.
MA: Mask Attention. DSAA:
Dual Semantic-Aware Attention.
IDR: Intra-class Difference Rep-
resentation.

Msim Mpro mIoU(%)
64.8

✓ 66.3
✓ 62.5

✓ ✓ 67.0

Table 5: Ablation studies of
main components in DCM. The
baseline is equipped with TEM
and DCAM. Msim and Mpro

denotes the semantic similarity-
based map and the spatial distri-
bution probability-based map re-
spectively.

prehensive analysis of a crucial component in DCAM. We
modified our model by (1) employing the original Vanilla
Attention[Cao et al., 2022] as the attention mechanism for
DCAM (referred to as VA), (2) replacing VA with mask at-
tention [Cheng et al., 2022] (referred to as MA), (3) substi-
tuting it with our dual semantic-aware attention (referred to
as DSAA), and (4) using intra-class difference representation
(referred to as IDR). The results in Table 4 suggest that em-
ploying mask attention to mitigate background noise interfer-
ence has negligible impact on performance enhancement. We
attribute this to the fact that the mask derived from the similar-
ity between support and query set suffers from the challenge
of accuracy when there exists significant intra-class differ-
ences. In contrast, our dual semantic-aware attention mecha-
nism copes with sensitivity to intra-class differences by mit-
igating background interference in a learnable manner(see in
Fig. 4(c)). Moreover, our intra-class difference representation
proves beneficial across three different attention mechanisms.
Dual Classification Module. To assess different DCM com-
ponents, ablation experiments were conducted. Table 5 shows
that using only the semantic similarity-based mask improves
the model’s performance by 1.5%, demonstrating the neces-
sity of optimizing class prototypes and query features. How-
ever, when using only the spatial distribution probability-
based segmentation map, performance decreases by 2.3%.
We consider this because relying only on the foreground dis-
tribution of the query image itself causes the model to bias
towards the areas of known classes, resulting in a failure of
segmentation for unseen classes.

5 Conclusion
We introduce a novel transformer-based adaptive prototype
matching network to counteract background interference aris-
ing from inherent bias, attention bias, and spatial-aware bias.
Our method includes three modules: Target Enhancement
Module (TEM) addresses inherent bias by leveraging multi-
scale local context relevance to enhance foreground features.
Dual Constraint Aggregation Module (DCAM) handles at-
tention bias through a dual semantic-aware attention mech-
anism to reinforce constraints. Dual Classification Module
(DCM) decouples the segmentation task into semantic align-
ment and spatial alignment to alleviate spatial-aware bias.
Our experiments demonstrate that our method achieves the
state-of-the-art performance with minimal parameters.
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