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Abstract

We focus on the domain adaptation problem for 3D
semantic segmentation, addressing the challenge of
data variability in point clouds collected by differ-
ent LiDARs. Existing benchmarks often mix dif-
ferent types of datasets, which blurs and compli-
cates segmentation evaluations. Here, we introduce
a Multi-LiDARs Domain Adaptation Segmentation
(MLDAS) dataset, which contains point-wise se-
mantic annotated point clouds captured simulta-
neously by a 128-beam LiDAR, a 64-beam Li-
DAR, a 32-beam LiDAR. We select 31,875 scans
from 2 representative scenarios: campus and ur-
ban street. Furthermore, we evaluate the cur-
rent 3D segmentation unsupervised domain adapta-
tion methods on the proposed dataset and propose
Hierarchical Segmentation Network with Spatial
Consistency (HSSC) as a novel knowledge trans-
fer method to mitigate the domain gap significantly
using spatial-temporal consistency constraints. Ex-
tensive experiments show that HSSC greatly im-
proves the state-of-the-art cross-domain semantic
segmentation methods. Our project is available at:
https://sychen320.github.io/projects/MLDAS.

1 Introduction
3D semantic segmentation is a foundational task in
robotics [Grigorescu et al., 2020; Xia et al., 2021a] and au-
tonomous driving [Shen et al., 2023; Li et al., 2023]. Com-
pared with 2D images, point clouds collected by LiDAR offer
accurate 3D geometric properties and depth insights [Xia et
al., 2024]. Over the past years, a series of learning-based
3D segmentation methods [Hu et al., 2020; Thomas et al.,
2019; Huang et al., 2024] achieve excellent performance
when training with extensively annotated datasets (e.g., Se-
manticKITTI [Behley et al., 2019], nuScenes [Caesar et al.,
2020], and SemanticPOSS [Pan et al., 2020]). However,
these SOTA segmentation methods often rely on a crucial as-
sumption: the training and testing datasets should have sim-
ilar data distributions.

*Corresponding author

In practice, the quality and characteristics of scanned point
clouds differ significantly, influenced by various LiDAR sen-
sor configurations and physical environments. Notably, the
differences in the disparities in laser line count, field of view,
and detection range especially pose substantial challenges for
cross-domain research in 3D point cloud domain adaptation.

Current 3D domain adaptation methods [Yi et al., 2021;
Langer et al., 2020] leverage existing datasets [Sun et al.,
2020; Pan et al., 2020] as benchmarks to validate their effec-
tiveness in cross-dataset domain adaptation. These datasets
are typically collected by different authors using diverse
sensors in various scenes and annotated according to dis-
tinct rules. For example, SemanticKITTI [Behley et al.,
2019] provides point cloud data with 64-beam and annota-
tions for 19 semantic categories, while nuScenes [Caesar et
al., 2020] is collected using a 32-beam LiDAR and anno-
tated with 16 categories. In addition, nuScenes cover mul-
tiple road scenes in different countries to provide rich sam-
ples and add diversity for 3D semantic segmentation tasks
but not semantic segmentation domain adaptation. Conse-
quently, such benchmarks amalgamate multiple factors influ-
encing domain gaps, posing challenges for meticulous indi-
vidual analysis. Recently, some studies [Wu et al., 2018;
Xiao et al., 2022b] utilize virtual engines or simulation meth-
ods to rapidly acquire annotated point cloud data, concur-
rently presenting adaptive approaches from virtual to real
data. While such methods effectively alleviate the burden
of acquiring labeled data, the domain gap between synthetic
and real data remains highly challenging. From the scenario
above, there is still a lack of datasets specifically designed
to address domain adaptation issues concerning cross-sensor
and cross-scenario.

To address this issue, we introduce a Multi-LiDAR
Domain Adaptation Dataset for 3D semantic Segmentation
(MLDAS). The dataset is equipped with 3 typical types of
multi-beam LiDAR: 32-beam, 64-beam, and 128-beam. Li-
DARs are time-synchronized and calibrated to capture the
same scenario, mitigate the impact of dynamic objects on Li-
DAR scans. Utilizing a vehicle-mounted platform, we col-
lected 10,625 frames of data per LiDAR across two distinct
scenes, with 6,395 frames on campus and 4,230 frames on
the street. We performed detailed point-wise annotations for
14 categories on the 128-beam data and subsequently trans-
ferred the labels to the 64-beam and 32-beam data. Thanks to
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Figure 1: (a) We create MLDAS, a spatiotemporally synchronized Multi-LiDARs domain adaptation dataset for 3D segmentation. MLDAS
comprises over 31.8k annotated frames of 14 semantic classes, which are collected by a 128-beam LiDAR (Ouster-OS128), a 64-beam
LiDAR (Ouster-OS64), and a 32-beam LiDAR (Hesai-XT32) from campus and urban street scenarios. (b) Segmentation performance on the
proposed MLDAS. Our hierarchical segmentation network (HSSC) performs better than previous SOTA methods.

precise sensor calibration and time synchronization, the label
transfer process significantly reduced the human effort and
time required for data annotation. Based on this foundation,
we will elaborate on the dataset’s capacity to investigate the
impact of cross-sensor and cross-scene factors on semantic
segmentation domain adaptation.

Building upon MLDAS, we propose a method based on
Hierarchical Segmentation network with Spatial Consisten-
cy (HSSC) to investigate the cross-sensor and cross-scenario
challenge in 3D semantic segmentation domain adaptation
(DA). Unlike existing methods [Xie et al., 2020; Xiao et al.,
2023a] that achieve consistency constraints between differ-
ent views through data augmentation, our approach utilizes
sensor calibration relationships and synchronization to estab-
lish corresponding relationships in the same spatial-temporal
context across extra LiDAR data. It allows us to focus on
the search between different sensors, mitigating the impact of
environmental variables. Employing such consistency con-
straints, we apply the typical mean-teacher architecture to
transfer knowledge from the source to the target sensor. In
unsupervised domain adaptation (UDA) tasks, experimental
results demonstrate the effectiveness of our HSSC in cross-
sensor knowledge transfer compared to previous SOTA meth-
ods. Furthermore, to assess the generalization capability of
our HSSC, we collect extra data from a location distinct from
the Campus and Street. This supplementary dataset serves as
a transition domain for cross-domain training of the model. In
the absence of target domain data, we verify the effectiveness
of our HSSC in UDA.

To summary, our main contributions include:

• We introduce a Multi-LiDAR Domain Adaptation
Dataset for 3D semantic Segmentation(MLDAS), in-
cluding 3 types of multi-beam spinning LiDARs scan-
ning 2 scenes with point-wise annotations. MLDAS will
establish a robust groundwork for exploring uncharted
territories in cross-LiDAR and cross-scenario domain
adaptation in LiDAR point cloud segmentation research.

• We investigate the significant factors underlying the do-
main gap in cross-sensor and cross-scenario, leading to
the design of HSSC, a framework capable of transfer-
ring knowledge from the source sensor to the target sen-

sor, effectively mitigating the domain gap.
• We benchmark various UDA algorithms for LiDAR se-

mantic segmentation, providing comprehensive base-
lines to support cross-sensor and scenario segmentation
research.

2 Related Works
2.1 LiDAR Segmentation Datasets
The recent emergence of outstanding learning-based LiDAR
semantic segmentation methods [Zhu et al., 2021; Tang et
al., 2022; Unal et al., 2022] has sparked a demand for ex-
tensive semantic annotation data, leading to the introduction
of numerous datasets. Currently, widely utilized datasets in-
clude SemanticKITTI, nuScenes, Waymo [Sun et al., 2020]
and semanticPOSS [Pan et al., 2020]. These datasets offer
rich varieties of LiDAR types and diverse scene data, signif-
icantly advancing the field of semantic segmentation tasks.
However, employing these datasets directly for domain adap-
tation introduces complications related to various influencing
factors such as cross-sensor and cross-scenario effects, hin-
dering effective evaluation.

To address the needs of certain semantic segmentation do-
main adaptation tasks, specific datasets have been proposed.
SynLiDAR [Xiao et al., 2022b] uses a simulation platform
to simulate a 64-beam LiDAR.While it alleviates the issue of
annotating real data, the gap between virtual and real data
remains challenging to overcome. Since existing datasets
are collected under normal weather conditions, they are not
conducive to studying semantic segmentation under adverse-
weather conditions. SemanticSTF [Xiao et al., 2023b] con-
ducts an adverse-weather dataset to facilitate research on
semantic segmentation adaptation in all-weather conditions.
Despite the availability of numerous datasets for 3D seman-
tic segmentation, there is still a lack of datasets in real-world
scenarios for semantic segmentation domain adaptation while
decoupling the influence of scenes and LiDAR types.

2.2 Domain Adaptation in 3D Semantic
Segmentation

Earlier research [Zhao et al., 2021; Wu et al., 2019; Jiang
and Saripalli, 2021] applied the 2D DA method to range
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Sensor Type FOV(◦) Resolution FPS

XT32 LiDAR [-16, 15] 32 * 2048 10
OS64 LiDAR [-22.5, 22.5] 64 * 1024 10
OS128 LiDAR [-22.5, 22.5] 128 * 2048 10
M39 GNSS/IMU - - 200

Table 1: Sensors specifications. FOV means vertical field of view.
FPS refers to frames per second.

images projected from 3D point clouds. As the develop-
ment of point cloud processing networks [Qi et al., 2017;
Zhou and Tuzel, 2018] progresses, researchers are increas-
ingly focusing on the characteristics of 3D point clouds.
Some researchers employ sparse point cloud completion
method [Xia et al., 2021b] to ease sensor density variation.
Data augmentation [Yun et al., 2019; Wu et al., 2020] is
commonly employed in 2D images to mitigate domain gaps
between diverse datasets. Inspired by this, Cosmix [Saltori
et al., 2022] and Polarmix [Xiao et al., 2022a] encourage
the model to learn cross-domain representations by blending
source and target data differently. Similarly, PCT [Xiao et
al., 2022b] adapts synthetic point clouds to match the ap-
pearances and sparsity of real point clouds. SCT [Xiao et
al., 2023a] achieves domain adaptive segmentation by en-
forcing spatial consistency constraints on the target domain
data before and after data augmentation. Distinguishing from
it, our approach avoids the necessity for intricate augmen-
tation techniques. Instead, we directly leverage the spatial-
temporal consistency constraints among real LiDAR datas to
learn cross-sensor&scenario representations.

3 MLDAS Dataset
3.1 Sensors Setup
MLDAS comprises point cloud data from three mechanical
spinning LiDARs with various beams, including: (1) Hesai
XT32, a 32-beam low resolution LiDAR (denoted as XT32).
(2) Ouster OS1-64, a 64-beam LiDAR (denoted as OS64).
(3) Ouster OS1-128, a 128-beam high resolution LiDAR (de-
noted as OS128). These LiDARs cover the common applica-
tion and research. In addition, we install a GNSS/IMU device
(M39) to obtain the ego-motion pose. Detailed specifications
for these sensors are described in Table. 1.

Figure 2 shows a rigid support system for securing the Li-
DARs to ensure that the sensor suites operate reliably. Dif-
ferent LiDAR brands have varying capabilities and accuracy
(shown in the Supplementary Material), and each uses its own
coordinate system, as illustrated in Figure 2 (b). Theses dis-
parities facilitate our research on cross-sensor domain adap-
tation. The LiDAR units are mounted vertically to minimize
the interference or occlusion between them during operation
and to maximize coverage of a 360◦ scene. Additionally, the
positions of the LiDAR centers are not aligned on a single
axis to diversify collection positions.

3.2 Sensors Synchronization and Calibration
Precision Time Protocol (PTP) [Eidson and Kang, 2002] is
used to synchronize time amongst three LiDAR units, re-
liant on GNSS clocks provided by M39 for time reference.
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Figure 2: The platform and sensor location diagram. (a) a multi-
purpose vehicle, our data collection platform, equipped with mul-
tiple sensors. (b-d) Coordinate frames illustrate the direction and
distance of each sensor on the vehicle with the convention: X-axis
(red), Y-axis (green), and Z-axis (blue). The measurements listed
are approximated to the nearest centimeter.

The synchronization mechanism ensures that the cross-sensor
data is aligned properly. In addition, we also achieve pre-
cise extrinsic calibration among sensors. Specifically, ML-
DAS sensor calibration includes both LiDAR-to-LiDAR and
LiDAR-to-GNSS/IMU calibrations. We strategically position
rigid objects with regular shapes within the detection range of
the LiDARs for precise calibration of LiDAR-to-LiDAR. We
subsequently identify corresponding corner points and ap-
ply the Generalized-ICP [Segal et al., 2009] algorithm to de-
rive the final external parameters. The calibration method of
LiDAR-to-GNSS/IMU refers to KITTI [Geiger et al., 2012].

3.3 Scene Selection

To decouple the effects of cross-sensor and cross-scenario in
domain adaption, we collect data in two representative sce-
narios: campus and urban street. These scenarios are vastly
different in point number and distribution of some categories.
For example, on campus, there will be fewer cars on campus,
more bicycles, and more vegetation, as well as a relatively
dispersed pattern of buildings. The distance between dynamic
categories and the collection vehicle is random on campus
due to the lack of strict traffic rules. However, in city streets,
there is a relatively large flow of traffic and people, and there
are densely populated areas on both sides of the street. Traf-
fic rules ensure that people and vehicles are able to move
within the prescribed range. Consequently, there is a signifi-
cant shift in the domain between the two scenes. Compared
with existing multi-scene collected dataset [Xiao et al., 2021;
Caesar et al., 2020], MLDAS covers a wider area, which
guarantees a comprehensive and representative distribution of
data. This methodology is intended to provide ample and sta-
ble domain gaps for subsequent domain adaptation research.
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Figure 3: (a) The point number distribution and (b) annotation de-
tails of campus and street scenarios, respectively.

3.4 Annotation
MLDAS provides point-wise semantic segmentation annota-
tions for three types of LiDAR data. Our methodology com-
mences with the annotation of the densely populated OS128
data to achieve efficient and high-quality annotations. Subse-
quently, we capitalize on sensor calibration and synchroniza-
tion relationships to propagate these annotations to the other
two LiDAR datasets. We now elaborate on the annotations
generation and propagation of MLDAS.

In the annotation generation stage, inspired by Se-
manticKITTI [Behley et al., 2019], we build the point cloud
map from OS128 data for efficient labeling. Specifically, we
initialize the map using the poses provided by GNSS/IMU.
Then, we employ an offline SLAM algorithm [Zheng et al.,
2022] to enhance map quality. Finally, we annotate 14 cate-
gories for semantic segmentation evaluation.

In the annotation propagation stage, we employ a temporal-
spatial constrained method to transfer the annotations from
OS128 to the other two LiDARs data. The first step is to
transform the XT32 data into OS128 coordinate system using
calibration relationships and position information obtained
through SLAM. Our subsequent step is to search for corre-
sponding points in the OS128 map for the XT32 points using
the nearest neighbor search algorithm [Bentley, 1975]. This
process establishes a spatial correspondence between the two
LiDAR data. Due to the presence of dynamic objects in the
scene, points within the candidate set may represent different
categories at different times but occupy the same location.
We eliminate points from the candidate set that do not align
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Figure 4: Polar log-scaled density map for point annotations of (a)
campus and (b) street scenarios, respectively. The radial and polar
axis are the distance and yaw angle from the ego-vehicle, respec-
tively. Darker bins denote more point annotations in that area. Here,
we only show the density up to 200m radial distance for all maps.

with the temporal information of XT32 data by leveraging
the temporal synchronization relationships between LiDARs.
We assign the label of the nearest neighbor OS128 points for
the remaining candidate points to XT32 points. OS64 data
annotation follows a similar procedure, which is not repeated
here. We ensure the accuracy and consistency of semantic an-
notations across different LiDAR data sets by calibrating and
synchronizing devices, providing a foundation for further re-
search on domain adaptation.

3.5 Dataset Statistics
MLDAS collects 31,875 frames of point cloud data and anno-
tates 14 categories in total. We partition each type of LiDAR
data from the two scenes into training, validation, and test
sets in a ratio of 8:1:1.

Distribution of Point Numbers. The differences in the
quantity and distribution of point clouds from different Li-
DARs are evident, as illustrated in Figure 3 (a). The data
volume of OS128 is significantly higher than that of other
LiDARs, posing a challenge for cross-sensor domain adapta-
tion. To better understand the distribution of different LiDAR
data, we visualize them in Figure 1 (a). We can observe that
the density of three types of LiDAR points decreases with the
increasing distance from the sensor. However, due to differ-
ences in the field of view and the number of lines, the distri-
bution characteristics of the data are markedly different.

Distribution of Categories. Figure 3 (b) illustrates the dis-
tribution of points for 14 semantic categories in MLDAS,
showing significant variations in the point count among dif-
ferent categories. Clearly, Vegetation and building have much
higher point counts than others. In addition to the diversity
in quantity, the spatial distribution diversity of categories is
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Figure 5: The pipeline of our framework. Hierarchical segmentation contains two steps: (1) Source domain→intermediate domain: Teacher
model initialized by(a) predicts intermediate domain, the logits predictions ptint as spatial consistency supervised signals. (2) Intermediate
domain→target domain: Student model generate the logits predictions pttgt of target domain, and the adaptation achieved by enforcing p̂ttgt
to be consistent with p̂tint. p̂

t
tgt and p̂tint refer to matching points selected by the nearest neighbor algorithm.

crucial for DA research. Therefore, we analyze the distri-
bution of labels around the sensors for car, pedestrian cate-
gories in both scenes through a polar log-scaled density map,
as shown in Figure 4. As mentioned in Section 3.3, traffic
rules constrain the distribution of pedestrians and cars in the
streets, resulting in higher density along the direction of vehi-
cle movement. In contrast, pedestrians on the campus exhibit
a more uniform distribution.

4 HSSC Methods
4.1 Definition
According to UDA setup, we have point cloud from a source
domain dataset Dsrc =

{
xi
src, y

i
src

}Nsrc

i=1
which contains

Nsrc = |Dsrc| point clouds xsrc with point-wise label ysrc
and an unlabeled target domain Dtgt =

{
xi
tgt

}Ntgt

i=1
. Because

MLDAS incorporates multiple LiDARs, for clarity and dis-
tinction, we refer to the data, excluding the source and target
domains, as the intermediate domain Dint =

{
xi
int

}Nint

i=1
.

The intermediate domain aims to establish connections be-
tween the source and target domains. In this study, Dint and
Dsrc share the same LiDAR but distinct scenarios. In con-
trast, Dint and Dtgt utilize different LiDARs while scanning
the data simultaneously. As a result, Nint = Ntgt and the
timestamps of xi

int and xi
tgt are the same.

4.2 Points-wise Matching and Spatial Consistency
Based on MLDAS, we propose a concise and effective
method for point-wise correspond matching between two
frames of point clouds collected by different sensors. Ini-
tially, leveraging the time synchronization within MLDAS,
we identify the point clouds xt

int and xt
tgt from Dint and

Dtgt at the time t. Subsequently, employing the calibration
relationship T , we transform the point cloud xt

tgt to the coor-
dinate system of xt

int. Finally, We utilize the nearest neigh-
bor algorithm [Bentley, 1975] to obtain the nearest corre-

spond point of xt
tgt in xt

int with a distance below a predefined
threshold τ . We record the indexes of the matching pairs in
the array as a correspondence mapping M t. A pair of corre-
spond points reflect the modeling of the same object in spa-
tial by different sensors, possessing consistent contextual in-
formation. Building on this spatial consistency, we train the
model to adapt to diverse sensor data.

4.3 Hierarchical Segmentation
Utilizing the intermediate domain, we propose the Hierarchi-
cal Segmentation Network with Spatial Consistency (HSSC)
learning strategy. Our learning paradigm build up on the
teacher-student framework with two same backbone of 3D
point cloud segmentation, as illustrated in Figure 5. The pro-
cess of our HSSC can be divided into two hierarchical learn-
ing level:
(1) Adapting from source Dsrc to intermediate domain
Dint. We feed xint into the teacher model. Based on
knowledge of Dsrc, the network output the logits predictions
pint, which applied as the supervised signals in the next level.
(2) Adapting from intermediate Dint to target domain
Dtgt. We sequentially input xtgt into the student model
to generate logits predictions ptgt. The adaptation can be
achieved by a spatial-consistency loss that enforce ptgt to be
consistent with pinit.

4.4 Network Architecture and Training
Both networks share the same 3D semantic segmentation
backbone [Choy et al., 2019]. For the source domain, we ap-
ply cross entropy loss Lseg to optimize the student network
and train model with labeled data, F(·) refers to the network:

Lseg =
1

Nsrc

Nsrc∑
i=1

CE
(
yisrc,Fstu

(
xi
src

))
. (1)

To narrow the gap between the target and source domains,
we construct an intermediate domain based on MLDAS, as
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Method mIOU car bicycle pede. rider road sidewalk buil. fence vege. trunk pole sign board oth-obj

Source-only 20.80 35.09 8.54 46.16 17.23 3.08 16.52 87.89 2.01 16.72 11.84 8.71 20.84 14.76 1.77
ST 25.87 26.11 7.77 55.66 29.87 0.11 34.22 94.88 11.79 17.02 11.78 15.49 43.60 5.48 8.35
CosMix 30.52 40.55 11.71 58.69 50.07 32.41 23.76 91.32 2.81 25.07 13.88 13.49 27.18 31.60 4.70
PolarMix 25.46 24.98 13.21 47.38 52.03 34.08 2.43 87.36 0.69 20.84 25.04 1.93 42.02 0.16 4.36
SCT 22.93 34.85 10.86 55.32 19.21 14.42 20.11 93.02 8.58 17.20 11.56 7.47 13.19 13.08 2.18
Ours 45.19 88.26 21.66 51.41 48.00 75.22 51.18 92.46 27.94 48.65 27.30 18.56 49.22 8.93 23.90

Table 2: Adaptation results on Campus(XT32)→Street(OS128). Street(XT32) as intermediate domain.

Method mIOU car bicycle pede. rider road sidewalk buil. fence vege. trunk pole sign board oth-obj

Source-only 37.89 63.27 8.27 43.46 45.4 74.68 46.55 88.57 0.96 53.75 35.14 15.98 42.57 7.60 4.30
ST 39.21 85.43 10.11 43.37 43.18 63.66 40.85 86.84 1.85 37.76 38.91 23.16 51.12 14.80 7.86
CosMix 41.69 61.11 41.06 55.08 65.95 72.46 46.08 86.91 5.40 54.92 30.49 18.52 37.04 2.18 6.42
PolarMix 39.83 64.93 26.54 36.33 41.90 72.92 37.14 88.21 5.00 58.48 33.82 19.45 54.34 14.44 4.20
SCT 41.50 71.31 12.98 43.94 46.56 78.90 47.29 89.36 0.61 53.86 35.05 19.85 65.58 11.21 4.52
Ours 43.52 84.45 18.63 48.78 54.96 84.83 55.44 88.85 0.99 53.66 33.98 19.41 17.85 17.85 5.56

Table 3: Adaptation results on Campus(OS128)→Street(XT32). Street(OS128) as intermediate domain.

described in Section 4.1. We employ a self-supervised train-
ing approach for the intermediate and target domain data. Ini-
tially, we select a pair of point cloud data

{
xt
int, x

t
tgt

}
at time

t. We feed xt
int data to the teacher network, obtaining pre-

diction logits ptint = Ftea(x
t
int). Similarly, we obtain the

logits prediction pttgt = Fstu(x
t
tgt) through the student net-

work. Subsequently, based on the mapping relationship ob-
tained M t in Section 2.2, we derive the correspond prediction
logits p̂tint and p̂ttgt. This operation is denoted as Ψ(·) :

p̂tint, p̂
t
tgt = Ψ

(
ptint, p

t
tgt,M

t
)
, (2)

where |p̂tint| = |p̂ttgt|. We then calculate the cosine similarity
loss between p̂tint and p̂ttgt :

Lcons =
1

T

T∑
t=i

1

|p̂tint|

|p̂t
int|∑
i=1

(1− cos(p̂t,iint, p̂
t,i
tgt)), (3)

where p̂t,iint and p̂t,itgt is the prediction logits of the i-th corre-
spond points between xt

int and xt
tgt. The total objective loss

L defined as:

L = Lseg + Lcons. (4)
In the end, We deploy the Expoential Moving Average

(EMA) algorithm to update the weights of the teacher model:

θtea = αθtea + (1− α) + θstu, (5)
where α is a smoothing coefficient hyperparameter.

5 Experiments
5.1 Experiments Setups and Metrics
Setup. We design three experiment setups for 3D semantic
segmentation UDA: (1) cross-sensor&scenario, (2) cross-
sensor, (3) cross-scenario. All experiments are implemented
in Pytorch [Paszke et al., 2019] and MinkowskiEngine [Choy
et al., 2019] on a single NVIDIA RTX 3090 GPU. For
a fair comparison, all methods for experiments select the
MinkowskiNet [Choy et al., 2019] segmentation architecture
as the backbone. The voxel size of the network is set to

0.05m. We train the model on the source domain data us-
ing the SGD optimizer and cross-entropy loss function for 30
epochs. Subsequently, we select the best pre-trained model
based on evaluating the source validation dataset and re-use
the same model for all methods. We select five baseline
methods, including source-only, ST [Zou et al., 2018], Cos-
Mix [Saltori et al., 2022], PolarMix [Xiao et al., 2022a], and
SCT [Xiao et al., 2023a]. Source-only means applying the
pre-trained model to the target data without any extra fine-
tuning. ST is a domain adaptation method for 2D semantic
segmentation, and others are used in 3D point clouds. As SCT
has yet to release its source code, we replicated the method
based on the information provided in the paper. We utilize
target and intermediate domain data for the baselines above
to ensure a fair comparison.

Evaluation Metrics. Following previous research [Behley
et al., 2019], we employ per-class Intersection-over-
Union (IoU) and mean IoU (mIoU) metrics to evaluate the
model on 14 categories. In the following sections, we will
describe the experimental settings under different conditions.

5.2 Experiments on Cross-Sensor&Scenario
The simultaneous influence of two factors on DA is
the most common scenario. Therefore, this experimen-
tal setup most directly reflects the effectiveness of UDA
methods. We conduct two UDA experiments, consider-
ing two LiDAR types (XT32 and OS128) and two scenes
(Campus and Street): (1) Campus(XT32)→Street(OS128),
(2) Campus(OS128)→Street(XT32). We adapt the model
from the source to the target domain. In addition, we apply
Street(XT32), Street(O128) as intermediate domain individu-
ally.

Comparisons with SOTA. Table 2, 3 present the detailed
experimental results. Our method consistently outperforms
all state-of-the-art UDA methods on mIoU across different
experimental settings, significantly achieving an improve-
ment of +14.67 mIoU over the suboptimal result. These find-
ings demonstrate the ability of our approach to robustly learn
knowledge from different sensors and scenes. Our approach
maintains commendable performance when migrating from a
high-beam LiDAR to a low-beam LiDAR.
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Method mIOU car bicycle pede. rider road sidewalk buil. fence vege. trunk pole sign board oth-obj

Source only 57.10 38.59 59.07 60.02 53.48 72.19 68.58 86.78 33.81 81.89 53.85 62.02 54.87 44.6 29.59
ST 59.06 51.57 61.66 64.97 49.04 76.19 72.5 90.19 38.53 82.31 53.16 58.73 41.61 55.80 30.56
CosMix 54.03 38.56 54.35 63.39 52.48 61.94 62.46 82.36 40.82 75.1 51.07 53.03 41.07 60.09 19.64
Polarmix 58.00 38.83 60.79 63.01 54.58 74.64 70.23 87.93 36.52 82.61 53.99 61.62 49.13 44.68 33.51
SCT 57.36 46.54 59.03 60.08 58.13 75.45 71.22 88.87 31.50 82.40 52.82 57.67 47.40 44.32 27.65
Ours 63.47 63.23 64.29 68.26 57.40 81.31 77.50 92.01 34.63 84.64 55.55 63.00 55.31 54.61 36.78

Table 4: Adaptation results on Campus(OS128)→Campus(XT32).

Method mIOU car bicycle pede. rider road sidewalk buil. fence vege. trunk pole sign board oth-obj

Source-only 48.20 92.25 15.14 58.74 63.48 86.11 53.19 91.65 7.01 73.13 31.27 21.36 62.58 8.36 10.47
ST 53.96 92.69 42.75 65.11 67.73 83.05 58.90 94.26 13.32 75.84 33.52 23.68 68.33 11.06 25.15
CosMix 52.17 87.09 31.70 63.25 65.84 86.29 58.62 88.11 33.76 68.25 33.55 23.17 60.14 11.68 18.96
PolarMix 49.29 85.22 15.86 56.13 47.37 87.25 53.40 91.74 29.44 78.26 42.70 21.20 65.81 5.36 10.27
SCT 48.79 92.15 19.03 62.23 66.71 87.92 59.79 92.42 10.88 65.55 26.09 20.33 60.8 7.76 11.28
Ours 52.01 89.82 23.29 58.95 56.39 88.86 54.72 92.28 23.34 75.63 35.78 27.31 67.59 12.07 22.09

Table 5: Adaptation results on Campus(XT32)→Street(XT32). Street(OS128) as intermediate domain.

Training data mIOU

Source-only 36.66
Source & Place C (OS128) & Place C (XT32) 42.31
Target & intermediate 43.96
Source & target & intermediate 45.24

Table 6: Adaptation results on Street(OS128)→Campus(XT32).
Performances of our approach trained on different datasets. “inter-
mediate” refers to Campus(OS128). “Place C” shares the same Li-
DAR type with the source and target domain, but the data is scanned
from other places.

5.3 Experiments on Cross-Sensor
In this experiment, we select the Campus to conduct sen-
sor adaptation from OS128 to XT32 data, denoted as
Campus(OS128)→Campus(XT32), without introducing an
intermediate domain.

Comparisons with SOTA. Analyzing the experimental re-
sults from Table 4, we can draw several conclusions: (1) The
pre-trained model achieves satisfactory metrics in the target
domain. (2) However, the large gap between sensors makes
the improvement of existing methods insignificant and even
performance degradation. (3) Our proposed method, de-
signed to adapt to sensor variations, successfully learns the
target data’s characteristics and outperforms other methods.

5.4 Experiments on Cross-Scenario
In this experiment, we select XT32 data and design the
experiments: Campus(XT32)→Street(XT32), and apply
Street(OS128) as intermediate domain. As we exclude sensor
factors, introducing additional intermediate domain data may
adversely affect other methods. Hence, we conduct experi-
ments with and without intermediate domain data for other
methods and select the best results.

Comparisons with SOTA. From the results of Table 5,
when adapting from Campus to Street, ST achieves the best
results for its class-balance strategy. Due to the introduction
of intermediate domain data (considering the massive data
volume of OS128), our method inevitably incurs negative im-
pacts. Our method still achieves results comparable to it.

5.5 Discussion
The above experiments assume that the intermediate and tar-
get domains share similar scenes and scan simultaneously.
This assumption may not hold since we only have one data
type for the target domain (LiDAR type is known). Some-
times, we may have no access to the source domain. Here, we
will briefly examine the generalization of our approach to the
above cases. First, we construct an intermediate data domain
using the MLDAS multi-LiDAR system to collect data, where
the LiDAR type corresponds to the source domain and the tar-
get domain. Due to the lack of intersection between Campus
and Street and semantic annotation, we name the scene Place
C. Under the setting of Street(OS128)→Campus(XT32), dif-
ferent datasets were used for training and verification on the
target domain, and the experimental results are presented in
Table 6. The results indicate that our method can be gener-
alized without relying on assumptions derived from previous
experiments. More ablation studies are presented in the Sup-
plementary Material.

6 Conclusion
We introduced a new dataset, MLDAS, for 3D segmentation
domain adaptation, incorporating three precisely synchro-
nized and calibrated LiDARs and two diverse scenes. More-
over, we proposed a novel hierarchical segmentation network
with spatial consistency (HSSC) to address cross-sensor and
cross-scenario problems. Extensive experiments demonstrate
that the proposed HSSC significantly improves the 3D seg-
mentation performance over the state-of-the-art methods. We
hope our work will inspire more investigation into the 3D seg-
mentation domain adaptation problem.

Acknowledgments
This work was supported by the Fundamental Research Funds
for the Central Universities (No.20720230033), and PDL
(2022-PDL-12).

Contribution Statement
Shaoyang Chen and Bochun Yang have made equal contribu-
tions to this work.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

656



References
[Behley et al., 2019] Jens Behley, Martin Garbade, Andres

Milioto, Jan Quenzel, Sven Behnke, Cyrill Stachniss, and
Jurgen Gall. Semantickitti: A dataset for semantic scene
understanding of lidar sequences. In Proceedings of the
IEEE/CVF international conference on computer vision,
pages 9297–9307, 2019.

[Bentley, 1975] Jon Louis Bentley. Multidimensional binary
search trees used for associative searching. Communica-
tions of the ACM, 18(9):509–517, 1975.

[Caesar et al., 2020] Holger Caesar, Varun Bankiti, Alex H
Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush
Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom.
nuscenes: A multimodal dataset for autonomous driving.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 11621–11631, 2020.

[Choy et al., 2019] Christopher Choy, JunYoung Gwak, and
Silvio Savarese. 4d spatio-temporal convnets: Minkowski
convolutional neural networks. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pages 3075–3084, 2019.

[Eidson and Kang, 2002] John Eidson and L Kang. Ieee
standard for a precision clock synchronization protocol for
networked measurement and control systems. IEEE Std,
1588, 2002.

[Geiger et al., 2012] Andreas Geiger, Philip Lenz, and
Raquel Urtasun. Are we ready for autonomous driving?
the kitti vision benchmark suite. In 2012 IEEE conference
on computer vision and pattern recognition, pages 3354–
3361. IEEE, 2012.

[Grigorescu et al., 2020] Sorin Grigorescu, Bogdan Trasnea,
Tiberiu Cocias, and Gigel Macesanu. A survey of deep
learning techniques for autonomous driving. Journal of
Field Robotics, 37(3):362–386, 2020.

[Hu et al., 2020] Qingyong Hu, Bo Yang, Linhai Xie, Ste-
fano Rosa, Yulan Guo, Zhihua Wang, Niki Trigoni, and
Andrew Markham. Randla-net: Efficient semantic seg-
mentation of large-scale point clouds. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 11108–11117, 2020.

[Huang et al., 2024] Weijie Huang, Pufan Zou, Yan Xia,
Chenglu Wen, Yu Zang, Cheng Wang, and Guoqing Zhou.
Opoca: One point one class annotation for lidar point
cloud semantic segmentation. IEEE Transactions on Geo-
science and Remote Sensing, 2024.

[Jiang and Saripalli, 2021] Peng Jiang and Srikanth Sari-
palli. Lidarnet: A boundary-aware domain adaptation
model for point cloud semantic segmentation. In 2021
IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 2457–2464. IEEE, 2021.

[Langer et al., 2020] Ferdinand Langer, Andres Milioto,
Alexandre Haag, Jens Behley, and Cyrill Stachniss. Do-
main transfer for semantic segmentation of lidar data us-
ing deep neural networks. In 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
pages 8263–8270. IEEE, 2020.

[Li et al., 2023] Wen Li, Shangshu Yu, Cheng Wang, Gu-
osheng Hu, Siqi Shen, and Chenglu Wen. Sgloc: Scene
geometry encoding for outdoor lidar localization. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 9286–9295, 2023.

[Pan et al., 2020] Yancheng Pan, Biao Gao, Jilin Mei, Sibo
Geng, Chengkun Li, and Huijing Zhao. Semanticposs:
A point cloud dataset with large quantity of dynamic in-
stances. In 2020 IEEE Intelligent Vehicles Symposium
(IV), pages 687–693. IEEE, 2020.

[Paszke et al., 2019] Adam Paszke, Sam Gross, Francisco
Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural in-
formation processing systems, 32, 2019.

[Qi et al., 2017] Charles Ruizhongtai Qi, Li Yi, Hao Su, and
Leonidas J Guibas. Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. Advances in neu-
ral information processing systems, 30, 2017.

[Saltori et al., 2022] Cristiano Saltori, Fabio Galasso,
Giuseppe Fiameni, Nicu Sebe, Elisa Ricci, and Fabio
Poiesi. Cosmix: Compositional semantic mix for domain
adaptation in 3d lidar segmentation. In European Con-
ference on Computer Vision, pages 586–602. Springer,
2022.

[Segal et al., 2009] Aleksandr Segal, Dirk Haehnel, and Se-
bastian Thrun. Generalized-icp. In Robotics: science and
systems, volume 2, page 435. Seattle, WA, 2009.

[Shen et al., 2023] Shuo Shen, Yan Xia, Andreas Eich,
Yusheng Xu, Bisheng Yang, and Uwe Stilla. Segtrans: Se-
mantic segmentation with transfer learning for mls point
clouds. IEEE Geoscience and Remote Sensing Letters,
2023.

[Sun et al., 2020] Pei Sun, Henrik Kretzschmar, Xerxes
Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul Tsui,
James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, et al.
Scalability in perception for autonomous driving: Waymo
open dataset. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 2446–
2454, 2020.

[Tang et al., 2022] Haotian Tang, Zhijian Liu, Xiuyu Li, Yu-
jun Lin, and Song Han. Torchsparse: Efficient point cloud
inference engine. Proceedings of Machine Learning and
Systems, 4:302–315, 2022.

[Thomas et al., 2019] Hugues Thomas, Charles R Qi, Jean-
Emmanuel Deschaud, Beatriz Marcotegui, François
Goulette, and Leonidas J Guibas. Kpconv: Flexible and
deformable convolution for point clouds. In Proceedings
of the IEEE/CVF international conference on computer vi-
sion, pages 6411–6420, 2019.

[Unal et al., 2022] Ozan Unal, Dengxin Dai, and Luc
Van Gool. Scribble-supervised lidar semantic segmen-
tation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 2697–
2707, 2022.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

657



[Wu et al., 2018] Bichen Wu, Alvin Wan, Xiangyu Yue, and
Kurt Keutzer. Squeezeseg: Convolutional neural nets with
recurrent crf for real-time road-object segmentation from
3d lidar point cloud. In 2018 IEEE international con-
ference on robotics and automation (ICRA), pages 1887–
1893. IEEE, 2018.

[Wu et al., 2019] Bichen Wu, Xuanyu Zhou, Sicheng Zhao,
Xiangyu Yue, and Kurt Keutzer. Squeezesegv2: Improved
model structure and unsupervised domain adaptation for
road-object segmentation from a lidar point cloud. In
2019 international conference on robotics and automation
(ICRA), pages 4376–4382. IEEE, 2019.

[Wu et al., 2020] Yuan Wu, Diana Inkpen, and Ahmed El-
Roby. Dual mixup regularized learning for adversarial do-
main adaptation. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part XXIX 16, pages 540–555. Springer,
2020.

[Xia et al., 2021a] Yan Xia, Yusheng Xu, Shuang Li, Rui
Wang, Juan Du, Daniel Cremers, and Uwe Stilla. Soe-
net: A self-attention and orientation encoding network for
point cloud based place recognition. In Proceedings of
the IEEE/CVF Conference on computer vision and pattern
recognition, pages 11348–11357, 2021.

[Xia et al., 2021b] Yan Xia, Yusheng Xu, Cheng Wang, and
Uwe Stilla. Vpc-net: Completion of 3d vehicles from mls
point clouds. ISPRS Journal of Photogrammetry and Re-
mote Sensing, 174:166–181, 2021.

[Xia et al., 2024] Yan Xia, Letian Shi, Zifeng Ding, João F
Henriques, and Daniel Cremers. Text2loc: 3d point cloud
localization from natural language. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2024.

[Xiao et al., 2021] Pengchuan Xiao, Zhenlei Shao, Steven
Hao, Zishuo Zhang, Xiaolin Chai, Judy Jiao, Zesong Li,
Jian Wu, Kai Sun, Kun Jiang, et al. Pandaset: Advanced
sensor suite dataset for autonomous driving. In 2021 IEEE
International Intelligent Transportation Systems Confer-
ence (ITSC), pages 3095–3101. IEEE, 2021.

[Xiao et al., 2022a] Aoran Xiao, Jiaxing Huang, Dayan
Guan, Kaiwen Cui, Shijian Lu, and Ling Shao. Po-
larmix: A general data augmentation technique for lidar
point clouds. Advances in Neural Information Processing
Systems, 35:11035–11048, 2022.

[Xiao et al., 2022b] Aoran Xiao, Jiaxing Huang, Dayan
Guan, Fangneng Zhan, and Shijian Lu. Transfer learn-
ing from synthetic to real lidar point cloud for semantic
segmentation. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pages 2795–2803, 2022.

[Xiao et al., 2023a] Aoran Xiao, Dayan Guan, Xiaoqin
Zhang, and Shijian Lu. Domain adaptive lidar point cloud
segmentation with 3d spatial consistency. IEEE Transac-
tions on Multimedia, 2023.

[Xiao et al., 2023b] Aoran Xiao, Jiaxing Huang, Weihao
Xuan, Ruijie Ren, Kangcheng Liu, Dayan Guan, Abdul-

motaleb El Saddik, Shijian Lu, and Eric P Xing. 3d seman-
tic segmentation in the wild: Learning generalized mod-
els for adverse-condition point clouds. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 9382–9392, 2023.

[Xie et al., 2020] Saining Xie, Jiatao Gu, Demi Guo,
Charles R Qi, Leonidas Guibas, and Or Litany. Point-
contrast: Unsupervised pre-training for 3d point cloud un-
derstanding. In Computer Vision–ECCV 2020: 16th Eu-
ropean Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part III 16, pages 574–591. Springer, 2020.

[Yi et al., 2021] Li Yi, Boqing Gong, and Thomas
Funkhouser. Complete & label: A domain adapta-
tion approach to semantic segmentation of lidar point
clouds. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages
15363–15373, 2021.

[Yun et al., 2019] Sangdoo Yun, Dongyoon Han, Seong Joon
Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers
with localizable features. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 6023–
6032, 2019.

[Zhao et al., 2021] Sicheng Zhao, Yezhen Wang, Bo Li,
Bichen Wu, Yang Gao, Pengfei Xu, Trevor Darrell, and
Kurt Keutzer. epointda: An end-to-end simulation-to-real
domain adaptation framework for lidar point cloud seg-
mentation. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 35, pages 3500–3509, 2021.

[Zheng et al., 2022] Chunran Zheng, Qingyan Zhu, Wei Xu,
Xiyuan Liu, Qizhi Guo, and Fu Zhang. Fast-livo: Fast and
tightly-coupled sparse-direct lidar-inertial-visual odome-
try. In 2022 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pages 4003–4009. IEEE,
2022.

[Zhou and Tuzel, 2018] Yin Zhou and Oncel Tuzel. Voxel-
net: End-to-end learning for point cloud based 3d object
detection. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 4490–4499,
2018.

[Zhu et al., 2021] Xinge Zhu, Hui Zhou, Tai Wang,
Fangzhou Hong, Yuexin Ma, Wei Li, Hongsheng Li, and
Dahua Lin. Cylindrical and asymmetrical 3d convolution
networks for lidar segmentation. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pages 9939–9948, 2021.

[Zou et al., 2018] Yang Zou, Zhiding Yu, BVK Kumar, and
Jinsong Wang. Unsupervised domain adaptation for se-
mantic segmentation via class-balanced self-training. In
Proceedings of the European conference on computer vi-
sion (ECCV), pages 289–305, 2018.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

658


	Introduction
	Related Works
	LiDAR Segmentation Datasets
	Domain Adaptation in 3D Semantic Segmentation

	MLDAS Dataset
	Sensors Setup
	Sensors Synchronization and Calibration
	Scene Selection
	Annotation
	Dataset Statistics

	HSSC Methods
	Definition
	Points-wise Matching and Spatial Consistency
	Hierarchical Segmentation
	Network Architecture and Training

	Experiments
	Experiments Setups and Metrics
	Experiments on Cross-Sensor&Scenario
	Experiments on Cross-Sensor
	Experiments on Cross-Scenario
	Discussion

	Conclusion

