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Abstract

Attribute-based Zero-Shot Learning (ZSL) has rev-
olutionized the ability of models to recognize new
classes not seen during training. However, with
the advancement of large-scale models, the ex-
pectations have risen. Beyond merely achieving
zero-shot generalization, there is a growing demand
for universal models that can continually evolve
in expert domains using unlabeled data. To ad-
dress this, we introduce a scaled-down instantia-
tion of this challenge: Evolutionary Generalized
Zero-Shot Learning (EGZSL). This setting allows
a low-performing zero-shot model to adapt to the
test data stream and evolve online. We elaborate
on three challenges of this special task, i.e., catas-
trophic forgetting, initial prediction bias, and evo-
lutionary data class bias. Moreover, we propose
targeted solutions for each challenge, resulting in
a generic method capable of continuous evolution
from a given initial IGZSL model. Experiments
on three popular GZSL benchmark datasets demon-
strate that our model can learn from the test data
stream while other baselines fail. The codes are
available at https://github.com/cdb342/EGZSL.

1 Introduction
In the era of large-scale models, it is critical that systems
learn autonomously from data without human supervision,
generalize to new concepts, and minimize data-induced bi-
ases [Radford et al., 2021; Ferrara, 2023; Burns et al., 2023].
Traditional attribute-based zero-shot learning (ZSL) [Lam-
pert et al., 2009; Farhadi et al., 2009] has instantiated these
challenges on a smaller scale by utilizing attributes as inter-
mediaries that enable models to recognize novel categories.
However, conventional ZSL paradigms primarily engage in
training static models, which struggle to correct prediction
biases from unseen concepts and adapt to varying dynamic
demands. Consequently, we ponder how a model trained on
limited data can dynamically, cost-effectively, and efficiently
self-evolve when exposed to data on novel concepts during
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deployment, making better decisions on unfamiliar concepts
while maintaining its core capabilities.

In this paper, we build on the foundational principles of
attribute-based ZSL and introduce a new setting: Evolution-
ary Generalized Zero-Shot Learning (EGZSL). We envisage a
ZSL model that, after its initial training, can continually learn
from a stream of unlabeled data. This model is designed to
autonomously identify and adapt to unseen concepts, thereby
evolving in conjunction with its underlying knowledge.

Distinct from existing ZSL settings (i.e., inductive ZSL
(IGZSL) [Chao et al., 2016; Xian et al., 2017] and transduc-
tive ZSL (TGZSL) [Kodirov et al., 2015; Paul et al., 2019;
Wan et al., 2019; Narayan et al., 2020]), EGZSL allows
for unsupervised online enhancement during deployment, en-
abling the model to perpetually evolve through exposure to
an unlabeled test data stream. This makes EGZSL (i) mit-
igate the domain shift problem [Fu et al., 2014] by expos-
ing the model to previously unseen class samples; and (ii)
suitable for real-world deployment. Fig. 1 briefly depicts
the training and testing process of the proposed setting. At
time 0, a base model is trained with the same settings as in
IGZSL. At each subsequent time t, the model from time t−1
is first tested on the current batch, followed by unsupervised
evolution. Unlike continual ZSL [Chaudhry et al., 2019;
Gautam et al., 2020], we do not assume a fixed ratio of seen-
unseen classes in each batch. Instead, data in each batch is
randomly sampled from a mixture of both seen and unseen
test sets. The model can only access the current data stream
without having access to the base training data or the test data
at other time stamps.

EGZSL meets three main challenges. First, the model
is prone to catastrophic forgetting [McCloskey and Cohen,
1989; French, 1999] when training on streaming data. Sec-
ond, due to the lack of unseen class samples in the base
training phase, the prediction bias of the model is easily and
consistently amplified when trained on the unlabeled data
stream. Third, the model is vulnerable to potential data
class imbalance problems. We then propose specific ap-
proaches to address these challenges. The overall frame-
work is based on pseudo-label learning [Lee and others, 2013;
Xie et al., 2020], which is a common self-training approach
for limited-supervised learning. We avoid forgetting by main-
taining a global model, updated as the exponential moving
average of the per-stage model. Historical information of the
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Figure 1: Illustration of the proposed EGZSL setting, featuring training with labeled seen class samples at time 0, followed by iterative
predictive re-training on randomly divided data from the mixture of seen and unseen test sets in subsequent time steps (ratio of classes in
a small batch is undefined). Train: train the current model at each time step with only the data indicated by the arrows. Test: predict the
current data with the model obtained in the last time step. Inherit: train the current model based on the model of the last time step.

current model can be preserved by distilling it from the global
model. We specify updateable class-related parameters for
the class imbalance problem based on the data classes that
occurred each time step. This avoids the error accumulation
that causes predictions to deviate from certain classes. More-
over, we prevent confirmation bias by filtering noise labels.
To avoid the effect of the initial prediction bias problem, we
set a class-independent filtering threshold for each class. Fi-
nally, we propose evaluation criteria for this novel task, along
with four baselines. The effectiveness of our proposed ap-
proach is demonstrated on three public ZSL benchmarks, on
which the performance of our approach surpasses the base
IGZSL method, while other baselines fail. Our contributions
are summarized as follows:

• We establish a practical yet challenging evolutionary
generalized zero-shot learning task, that is better suited
for real-world applications than existing ZSL settings.

• We analyze the main challenges of EGZSL and propose
a targeted approach to address each of them.

• We determine the evaluation criteria for EGZSL and
conduct extensive experiments on three public ZSL
datasets. The proposed method consistently improves
over baselines. The effectiveness of our method is
demonstrated by a series of explanatory experiments.

2 Related Work
Zero-Shot Learning (ZSL) [Lampert et al., 2009; Lam-
pert et al., 2013; Xian et al., 2017] aims at recognizing un-
seen classes when given only seen class samples. Early
approaches [Akata et al., 2013; Elhoseiny et al., 2013;
Frome et al., 2013]. typically embedded images and semantic
descriptors (e.g., attributes, word vectors) to the same space,
then conduct a nearest neighbor search. However, these meth-
ods were sensitive to the domain shift problem [Fu et al.,
2014]. They performed especially poorly in the General-
ized Zero-Shot Learning (GZSL) setting [Chao et al., 2016;
Xian et al., 2017], which requires classifying both seen and
unseen classes in the test phase. In the follow-up research,
[Xian et al., 2018; Xian et al., 2019; Shen et al., 2020; Han et
al., 2021; Chen et al., 2023] employed conditional generative

models [Kingma and Welling, 2013; Arjovsky et al., 2017;
Dinh et al., 2014] to generate pseudo-unseen class samples,
thereby transferring GZSL into a supervised task. [Atzmon
and Chechik, 2019; Chou et al., 2021] distinguished seen or
unseen classes with out-of-distribution detectors [Fang et al.,
2022], then classified in the corresponding subset of classes.
[Xu et al., 2020; Jiang et al., 2024] emphasized learning a
deep embedding model.
Transductive Zero-Shot Learning (TZSL) [Kodirov et al.,
2015; Wan et al., 2019; Narayan et al., 2020] assumed the un-
labeled unseen test data is available during training. As a dis-
tinction, the earlier setting is called inductive ZSL. Existing
methods [Fu et al., 2014; Bo et al., 2021] typically relied on
pseudo-labeling strategies. [Xian et al., 2019; Narayan et al.,
2020] also employed generative models. TZSL is a variant of
semi-supervised learning [Grandvalet and Bengio, 2004] on
ZSL. It mitigates the domain shift problem and yields better
recognition performance. However, for ZSL, the accessibility
of unseen class samples in training is a too strong hypothesis,
leading to limited application scenarios.
Continual Zero-Shot Learning (CZSL) [Chaudhry et al.,
2019; Gautam et al., 2020; Skorokhodov and Elhoseiny,
2021; Yi and Elhoseiny, 2021] extended traditional ZSL into
a class-incremental paradigm [Rebuffi et al., 2017]. A-GEM
[Chaudhry et al., 2019] marked the inception of lifelong
learning within the ZSL framework, exploring the efficacy
of continuous learning methods and introducing a pragmatic
evaluation protocol where each example is encountered only
once. [Wei et al., 2020] refined this setup, proposing Life-
long Zero-Shot Learning, which sequentially learns from all
seen classes across multiple datasets and evaluates on unseen
data with the learned model. [Skorokhodov and Elhoseiny,
2021] extended it to unlimited label searching space and let
the model recognize unseen classes sequentially. Many sub-
sequent methods in CZSL have built upon this framework,
with a focus on enhancing performance [Ghosh, 2021] or
adapting to diverse applications. [Yi and Elhoseiny, 2021]
extended the paradigm to various domains such as painting
and sketching, introducing domain-aware continual zero-shot
learning. In contrast, our EGZSL begins with a model trained
on seen class samples, which are no longer accessible during
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the evolutionary process. We target to recognize forthcoming
data streams comprising both seen and unseen classes, itera-
tively refining the model’s recognition capability over time.
Test Time Adaptation (TTA) [Sun et al., 2020; Liu et al.,
2021; Wang et al., 2021; Wang et al., 2022] enables the
model to better adapt the test domain by constructing self-
supervised learning (SSL) tasks on test data. This concept has
been further developed into an online framework for contin-
ual refinement. [Sun et al., 2020] employed a rotation predic-
tion task to update the model in test time, which also served
as an auxiliary task in training. [Liu et al., 2021] assessed
TTA performance across various distribution shifts, and pro-
posed to adopt contrastive learning as the SSL task. [Wang et
al., 2021] removed the auxiliary task during training and em-
ployed the minimum entropy strategy for optimization during
testing. Existing TTA research has focused chiefly on the dis-
tribution shift task, i.e., domain adaptation [Wang et al., 2021;
Wang et al., 2022]. We adapt TTA’s strategy of unsuper-
vised self-training during the testing phase to extend tradi-
tional ZSL, providing a more realistic setting than TGZSL
and mitigating the domain shift problem in IGZSL. Due to the
extreme class imbalance problem in the base training phase,
the proposed EGZSL faces specific challenges.

3 EGZSL: Settings and Challenges
In this section, we formulate the EGZSL setting, analyze its
key challenges, and compare it to other limited-supervision or
incremental learning tasks. Fig. 2 illustrates the differences
between EGZSL and other similar settings.

3.1 Problem Formulation
EGZSL aims to evolve continually from a data stream. Let Ys

and Yu denote two disjoint class label sets (Y = Ys ∪ Yu).
X ⊆ Rdx and A ⊆ Rda are feature space and attribute
space, respectively, and dx and da are dimensions of these
two spaces. ZSL conventionally entails acquiring the asso-
ciative relationship between visual features and semantic at-
tributes to facilitate the transfer of knowledge to previously
unseen classes. the goal of traditional GZSL is to learn such
a classifier, i.e., fgzsl : X → Ys ∪ Yu given the training set
Dtr = {x, y|x ∈ X , y ∈ Ys} and the global semantic set A.

In the initial phase (time 0), EGZSL endeavors to
learn a foundational model f0 using a base set Db =
{xi, yi,ayi

|xi ∈ X , yi ∈ Ys,ayi
∈ A}Nb

i=1, where
Nb represents the volume of data in the base set. The
base model f0 inherently possesses the capability to dis-
tinguish between both seen and unseen classes, denoted as
f0 : X → Y . Subsequently, in time 1, ..., t, ..., T , the
base model undergoes testing and evolution on the test data
streams Dte

1 , ...,Dte
t , ...,Dte

T , resulting in f1, ..., ft, ..., fT ,
where Dte

t = {xj , yj |xj ∈ X , yj ∈ Y}Nt
j=1. Here, Nt de-

notes the data volume at time t. Notably, Dte
t is tested with

ft−1, and ft−1 is subsequently retrained with the unlabeled
data in Dte

t . The objective for ft is to exhibit improved per-
formance compared to ft−1 in classifying data with labels in
Y . Training in the labeled base set and the unlabeled sequen-
tial test set is referred to as base learning and evolutionary
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Figure 2: Comparasion of EGZSL with other similar settings
in chronological progression. TTA: Test-Time Adaptation; CL:
Continual Learning; IGZSL: Inductive Generalized Zero-Shot
Learning; TGZSL: Transductive Generalized Zero-Shot Learning;
CGZSL: Continual Generalized Zero-Shot Learning. In TTA, seen
represents the source domain, and unseen is the target domain. In
other settings, the labeled classes that appear in the training set are
denoted as seen, and vice versa are unseen. An unknown class means
that it can be any class (in seen or unseen classes).

learning, respectively. Ultimately, EGZSL performance is as-
sessed based on the test results across all test subsets.

3.2 Challenges Analysis
Catastrophic forgetting problem. When training on the
one-time given data, it is able to repeatedly utilize the data
to achieve the global optimum. On the contrary, there is a
contradiction between falling into a local optimum and un-
derutilization of data when dealing with incremental data
streams. Since only a small amount of data can be ac-
cessed at a time, overfitting on this batch of data will lead
to catastrophic forgetting [McCloskey and Cohen, 1989;
French, 1999] the previously learned knowledge. Conversely,
the batch of data cannot be fully utilized, resulting in low
training efficiency. Finding a solution that balances efficient
data utilization with preventing forgetting is imperative.
Initial bias problem. Unlabeled training on evolving data
is heavily influenced by the accuracy of pseudo-labels pre-
dicted by the base model. However, when the base model is
trained on imbalanced data classes, its prediction will be bi-
ased towards specific classes. This problem exists in EGZSL
since the base set lacks unseen class samples. The predic-
tion imbalance problem will cause error accumulation when
continuing training with unbalanced pseudo-labels.
Sensitivity to data class bias. Since the EGZSL setting as-
sumes arbitrary class distributions for the evolutionary learn-
ing phase, the model is at risk of being exposed to class-
biased batch data. Training on biased data can lead to bias
in the model predictions for pseudo-labeling the next phase,
which in turn increases the model bias, ultimately causing a
progressive impact on the sequential data.

3.3 EGZSL v.s.Similar Settings
As shown in Fig. 2, we compare EGZSL to existing settings.
In detail, IGZSL depicts a static model that is trained once
on seen classes, which does not adapt over time. TGZSL
is similar to IGZSL but integrates (unlabeled) unseen class
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data during training. TTA adapts at test time, but the model
trains on a fixed set of classes and it does not continue to learn
or adapt beyond time. CL progressively trains the model on
different subsets of classes, testing it on both new and previ-
ously learned classes, challenging the model to remember old
knowledge. CGZSL extends CL by including unseen classes
in tests, pushing the model to adapt to new information con-
stantly. Moreover, the proposed EGZSL raises the stakes, re-
quiring the model to identify new classes, learn from ongoing
unlabeled data flows, make sense of data without labels, and
work without setting class limits at each time step. To put it in
another perspective, EGZSL can be regarded as a strict ver-
sion of TGZSL. TGZSL assumes that all labeled seen class
data and unlabeled unseen class test data are given one-off,
along with a fixed test set and known seen-unseen class split-
ting in the test set. In experiments, we consider IGZSL and
TGZSL as upper and lower bounds for EGZSL to evaluate its
performance since there is no existing method for EGZSL.

4 Method
EGZSL extends the IGZSL setting in test time. Any exist-
ing IGZSL models can be employed in our setting without
retraining on the base data. Since base learning has been well
studied, we focus mainly on the evolutionary learning phase.
This section describes our method and explains each compo-
nent that promotes evolutionary learning.

At each time step t, we first predict the pseudo-label of
current data. To prevent catastrophic forgetting, we maintain
a momentum model to preserve global data information and
distill it to the current model. In addition, we select learn-
able class parameters to prevent class imbalance learning and
filter unreliable data to avoid error accumulation. A specific
training process is described in Algorithm 1.

4.1 Training with Pseudo Labels
Suppose a base model has been trained on the base set. We
employ a pseudo-labeling strategy [Lee and others, 2013;
Xie et al., 2020] to enable continual improvement from
the unlabeled data, which is a typical technique in semi-
supervised learning [Lee and others, 2013] and domain adap-
tation [Wang et al., 2021]. In time t, the pseudo label ŷx of a
datum x is predicted with the highest compatibility with the
model of the immediately preceding stage:

ŷx = ft−1(x) = argmax
y

Ft−1(x, y;Wt−1). (1)

Here, Ft−1 measures the compatibility score between x and
any class y, with Wt−1 denoting its parameter. Based on the
pseudo labels, we employ cross-entropy in label space Y to
further optimize Wt−1, i.e.,

ℓce(x) = − log pt−1(x, ŷx;Y),

pt−1(x, y;Y) =
exp(Ft−1(x, y;Wt−1))∑
c∈Y exp(Ft−1(x, c;Wt−1))

.
(2)

4.2 Maintenance of Global Information
A challenge of EGZSL is the unavailability of all evolu-
tionary data at one time. Directly updating the model with

gradient descent at a certain time step can lead to catas-
trophic forgetting [McCloskey and Cohen, 1989; French,
1999], which is a typical difficulty in sequential learning.
We resort to the momentum updated model as the surrogate
of historical information, similar to MoCo [He et al., 2020;
Chen et al., 2020]. Formally, the parameters of the momen-
tum model undergo updates as exponential moving averages
(EMA) based on the parameters of the model from the previ-
ous time step. Denoting Fema as the momentum model with
parameters Wema, at each time step t, Wema is updated as

Wema = m1 ·Wema + (1−m1) ·Wt, (3)

where m1 ∈ [0, 1) is a smoothing factor. We update Wema

with the gradient detached. Wema is considered to retain the
global information from past time steps, exhibiting smoother
changes than Wt. We distill [Hinton et al., 2015] this in-
formation into the current model with Kullback-Leibler (KL)
divergence:

ℓkl(x) =
∑
y∈Y

pt(x, y;Y) log
pt(x, y;Y)

pema(x, y;Y)
. (4)

Here pt(x, y;Y) and pema(x, y;Y) denote the probability
distribution over the variable y. Note that at each time step
t, Wema is updated after Wt. With the distillation loss, the
model can learn from the current data stream while avoiding
catastrophic forgetting of previous information. This creates
conditions for balancing the data utilization efficiency.

4.3 Class Selection for Stable Training
As discussed in Sec. 3.2, the potential imbalance of data
classes in the evolutionary stage can lead to unbalanced
predictions by the model, resulting in error accumulation.
This problem becomes more pronounced when the num-
ber of samples available at each time step is small. It is
prone to missing samples in certain classes, and cross-entropy
based on pseudo-hard labels may produce sharper constraints
that cause model predictions to abruptly deviate from these
classes. To address this, we propose selecting specific class
parameters to update at each time step. Consider typical
GZSL classifiers are implemented with a linear model, i.e.,
W is a matrix with |Y| rows and dx columns:

F (x, y;W) := Wy · x. (5)

To ensure smoother updates of the weights for each class, at
time step t, we choose to update only the classes present in
the pseudo labels, i.e.,

Ysel
t = unique({ŷx}x∈Dte

t
). (6)

Here unique(·) denotes the function that returns the unique
elements of the label set, which can be achieved by di-
rectly calling the PyTorch function. Consequently, the cross-
entropy loss in Eq. (2) is substituted with

ℓselce (x) = − log pt−1(x, ŷx;Ysel
t ). (7)

Note that Eq. (4) is still computed with the full label set Y .
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4.4 Data Selection for Effective Training
Since the unlabeled data is trained using the pseudo-labeling
strategy, noisy pseudo-labels will introduce confirmation
bias. Hence, at each time step, we employ the model from
the previous stage to select samples with low uncertainty. The
uncertainty reflects the confidence level of the model predic-
tion, typically measured by entropy or max softmax predic-
tion [Mukhoti et al., 2021]. We use the latter to select samples
with more reliable pseudo labels. Intuitively, we can establish
a constant threshold to filter the samples where softmax pre-
diction fails to surpass this value, i.e.,

M(x) = 1(max
y

pt−1(x, y;Y) > τ), (8)

where 1 denotes the indicator function, and τ ∈ (0, 1] is the
predefined threshold. M(·) enables the selection of the sam-
ples with high confidence. However, when softmax predic-
tion values are unbalanced across classes, employing a fixed
threshold results in unbalanced data selection. For instance,
the base model is trained only on the seen classes, exhibit-
ing higher confidence in samples from seen classes and lower
confidence in those from unseen classes. Using the fixed
threshold approach could lead to filtering out too many un-
seen class samples. This selection imbalance in sequential
data learning can give rise to the Matthew Effect.

We adopt an adaptive threshold for each class to address
this problem. Recognizing that the imbalance in selec-
tion arises from variations in softmax prediction distributions
across classes, we leverage class statistics to establish class-
independent thresholds. Specifically, we incorporate a cur-
riculum learning strategy [Bengio et al., 2009] to consider
the learning progress of each class. Given the limited number
of samples available at each time step, we aggregate statistics
across all historical time steps to compute class confidence
statistics. These statistics are momentum updated as follows:

δema(y) = m2 · δema(y) + (1−m2) · δt−1(y),

δt−1(y) =
1

Ny
t

∑
x∈Dte

t

1(y = ŷx)pt−1(x, ŷx;Y), (9)

where m2 ∈ [0, 1) denotes a momentum coefficient, and
Ny

t =
∑

x∈Dte
t
1(y = ŷx) (ŷx is defined in Eq. (1)). δt−1(y)

represents the averaged softmax prediction for class y, pre-
dicted by the immediately preceding stage model. δema

serves as the surrogate of the class learning status and is up-
dated before data selection at time t. It is then utilized to
adjust the fixed threshold τ . The scaled data mask is

Mscl(x) = 1((x, ft−1(x)) > δt−1(ft−1(x)) · τ). (10)

Mscl(·) is subsequently employed as a weighting factor for the
loss of each datum to facilitate data selection, i.e.,

Lsel
ce = Ex∈Dte

t
Mscl(x) · ℓselce (x),Lkl = Ex∈Dte

t
Mscl(x) · ℓkl(x). (11)

Notably, the class and data selection processes only incur neg-
ligible extra computation.

4.5 Overall Objectives
Overall, the total objective loss function at each time t is

Lall = Lsel
ce + λLkl, (12)

Algorithm 1 The Proposed EGZSL Method

Input: Subset of data {xi}Nt
i=1; Model ft−1 with parame-

ters Wt−1; Momentum model fema with parameters Wema;
Class momentum confidence δema; Hyper-parameters
m1,m2, τ, λ.

1: Predict pseudo-label: ŷx = ft−1(x).
2: Select training classes by Eq. (6).
3: Update class momentum confidence δema by Eq. (9).
4: Calculate data mask by Eq. (10).
5: Update Wt−1 by cross-entropy loss and KL divergence

loss in Eq. (12).
6: Update weights Wema of momentum model by Eq. (3).

Output: Prediction {ft−1(x)|x ∈ Dte
t }; Updated model ft;

Updated momentum model fema; Updated class momentum
confidence δema.

where λ is a hyper-parameter for balancing loss Lsel
ce and Lkl.

Algorithm 1 describes the concrete training process in one
evolutionary learning step.

5 Experiments
In this section, we propose a protocol for evaluating EGZSL
methods and compare the performance of our method to po-
tential upper and lower boundaries. We also report on further
experiments that shed light on the working mechanisms of
our method by isolating the effects of individual components.

5.1 Benchmark Protocol
Evaluation Procedure. As there is no established benchmark
protocol for assessing EGZSL performance, we propose the
following evaluation procedure: for a given ZSL dataset, the
original training set serves as the base set, while the test set
is partitioned into various batches in a fixed random order.
Each method is initially trained on the base set, followed by
prediction and online updating on the divided test data stream.
Predictions for the current time step are made by the model
from the previous step. We present two variations of the test
data splitting: dividing the test set into batches of 10 or 100
samples. To compare with traditional GZSL methods, we em-
ploy the same metrics [Xian et al., 2017] for the EGZSL task,
computed as the harmonic mean (H ) of the average per-class
top-1 accuracies in the seen (As) and unseen (Au) classes.
EGZSL performance is evaluated by aggregating predictions
across all test batches. Each benchmark is repeated five times
with different random data orders, and averages along with
standard deviations of the results are reported.
Datasets. We evaluate EGZSL methods on three public ZSL
benchmarks: 1) Animals with Attributes 2 (AWA2) [Lampert
et al., 2013] contains 50 animal species and 85 attribute an-
notations, accounting for 37,322 samples. 2) Attribute Pascal
and Yahoo (APY) [Farhadi et al., 2009] includes 32 classes of
15,339 samples and 64 attributes. 3) Caltech-UCSD Birds-
200-2011 (CUB) [Wah et al., 2011] consists of 11,788 sam-
ples of 200 bird species, annotated by 312 attributes. We split
the data into seen and unseen classes according to the com-
mon GZSL benchmark procedure in [Xian et al., 2017]. We
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Method AWA2 CUB APY
Au As H Au As H Au As H

T
COND [Li et al., 2019] 80.2 90.0 84.8 57.0 68.7 62.3 51.8 87.6 65.1
TF-VAEGAN [Narayan et al., 2020] 87.3 89.6 88.4 69.9 72.1 71.0 - - -
STHS [Bo et al., 2021] 94.9 92.3 93.6 77.4 74.5 75.9 - - -

I

COND [Li et al., 2019] 56.4 81.4 66.7 47.4 47.6 47.5 26.5 74.0 39.0
FREE [Chen et al., 2021] 60.4 75.4 67.1 55.7 59.9 57.7 - - -
Chou et al. [Chou et al., 2021] 65.1 78.9 71.3 41.4 49.7 45.2 35.1 65.5 45.7
GCM-CF [Yue et al., 2021] 60.4 75.1 67.0 61.0 59.7 60.3 37.1 56.8 44.9
ZLA [Chen et al., 2022] 65.4 82.2 72.8 50.9 58.4 54.4 38.4 60.3 46.9

COND+ERM@10 51.9±0.3 75.5±0.2 61.5±0.3 41.1±0.4 45.4±0.5 43.1±0.3 26.3±0.4 45.8±0.8 33.4±0.5

COND+ERM@100 51.2±0.3 74.7±0.4 60.1±0.1 36.3±0.3 39.6±0.7 37.9±0.4 25.4±1.1 43.0±0.6 32.0±0.8

COND+ours@10 57.1±0.5 82.1±0.1 67.4±0.3 45.2±0.1 54.6±0.1 49.4±0.1 32.1±0.7 60.1±0.2 41.9±0.6

COND+ours@100 59.2±1.1 80.7±0.4 68.3±0.8 45.0±0.2 55.2±0.3 49.6±0.1 35.2±0.2 58.0±0.6 43.8±0.2

ZLA+ERM@10 54.2±6.5 60.4±3.1 56.9±4.2 45.2±4.3 42.7±4.0 43.9±4.0 8.6±0.2 0.4±0.3 0.9±0.4

ZLA+ERM@100 55.0±3.1 64.6±2.5 59.4±2.7 52.0±0.7 51.2±0.7 51.6±0.6 11.5±1.4 5.1±0.9 6.8±0.5

ZLA+ours@10 65.4±0.6 85.8±0.5 74.2±0.2 51.0±0.3 58.9±0.3 54.6±0.1 39.1±1.1 60.1±1.1 47.3±0.8

E

ZLA+ours@100 73.3±1.0 81.3±0.8 77.0±0.2 51.7±0.6 57.9±0.3 54.6±0.3 40.0±1.0 58.6±0.7 47.5±0.8

Table 1: Performance comparison between the proposed baselines and sota IGZSL and TGZSL methods. T , I, and E denote methods in the
TGZSL, IGZSL, and EGZSL settings, respectively. @10 and @100 indicate the amount of data accessed in a single evolutionary time step.
Au and As represent per-class accuracy scores (%) in seen and unseen test sets, and H is their harmonic mean. The best results are bolded.
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(b) ERM

Figure 3: (a), (b) A comparison of evolution curves between our ap-
proach and ERM (on AWA2, with 100 samples per time step). Our
method displays a rise in accuracy over time, while ERM experi-
ences a decline in accuracy.

follow [Xian et al., 2017] to adapt the 2048-dimensional vi-
sual representation (instead of the original images) extracted
from the pre-trained ResNet101 [He et al., 2016].

5.2 Implementation Details
Model. As the base learning phase setup remains unchanged
from IGZSL, we simply borrow the off-the-shelf IGZSL
model for conducting EGZSL experiments. Our EGZSL ap-
proach is developed using linear classifiers (Eq. (5)) that were
trained by COND [Li et al., 2019] and ZLA [Chen et al.,
2022]. The base models are acquired with their official codes.
Please refer to the original papers for details on the base phase
training procedure.
Optimization. We employ the Adam optimizer [Kingma and
Ba, 2015] with a learning rate of 5e-5 for the main experi-
ments. We set the (mini) batch size equal to the total number
of data in each evolutionary stage. Each stage of data is opti-
mized for one epoch only.

5.3 Main Results
Baselines. We establish our proposed method on COND [Li
et al., 2019] and ZLA [Chen et al., 2022], as shown in Tab. 1.
For comparison, we also report the results of a basic empir-

ical risk minimization (ERM) approach with pseudo-labels.
Additionally, we evaluate the performance of our approach
against the IGZSL and TGZSL methods, which establish the
potential high and low limits of the EGZSL performance.
Results. Tab. 1 presents our main experimental results, ac-
cording to which we have the following findings:

Our approach improves upon the IGZSL baseline, whereas
the straightforward ERM approach fails. For unsupervised
data stream learning, relying on the basic method without
addressing issues such as catastrophic forgetting, prediction
bias, and data bias, results in unreliable gradients, especially
when the initial model exhibits significant bias (as in the
case of APY). In contrast, the superior results of our method
demonstrate that it effectively handles these challenges.

The process of evolutionary learning provides greater ben-
efits to coarse-grained datasets, such as AWA2 and APY, com-
pared to fine-grained datasets like CUB. This is attributed to
the prevalence of visual bias [Fu et al., 2014] resulting from
missing unseen classes during base training, which is more
pronounced in coarse-grained datasets. Consequently, miti-
gating this bias leads to a more substantial performance im-
provement. Additionally, the limited amount of evolutionary
data per class (23 in CUB v.s.275 in AWA2) also contribute
to the modest improvement observed in CUB.

The performance improvement is slightly larger when more
data is provided per time step. Accessing more data at once
lessens the probability of being overwhelmed by erroneous
pseudo-label samples and presents a consistent gradient. In a
real-world deployment, the batch size of a single evolutionary
step can be selected according to specific requirements and
resource usage.

Even though our approach outperforms the IGZSL base-
line, there remains a significant gap between its results and
those obtained by methods in the TGZSL setting. This is
primarily owing to three reasons: first, TGZSL allows for
repeatedly training on all of the test data; second, TGZSL
offers a more relaxed constraint by providing prior knowl-
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Baseline AWA2 APY
Au As H Au As H

(i) W/O Momentum Model 57.2 80.2 66.7 17.8 45.5 25.6
(ii) W/O Class Selection 66.4 72.9 69.5 39.1 51.3 44.4
(iii) W/O Data Selection 62.3 86.7 72.5 38.7 57.3 46.2
(iv) Adaptive→fixed thre. 57.4 86.2 68.9 27.6 50.4 35.7

Full model 65.9 85.5 74.4 38.6 61.5 47.4

Table 2: Ablation study results of the proposed method on AWA2
and APY datasets (with 10 samples per time step).

edge regarding whether the test data belong to seen or un-
seen classes; and third, greater attention has been paid to
the TGZSL area, while there is still potential for further ad-
vancement in EGZSL. Regardless, the EGZSL setting is bet-
ter suited for practical applications and holds greater potential
for real-world deployment.

5.4 Evolution Curves
To evaluate model performance across different time steps,
we plot its evolution curve as the evolutionary task pro-
gresses. Given that the test data differs among time steps, we
compile the evolution curve using all test data. This is legit-
imate within the TGZSL setting and only applies to explana-
tory experiments. As shown in Fig. 3, our method demon-
strates a consistent improvement in performance over time,
whereas basic ERM leads to continuous forgetting of initial
knowledge. This experiment is conducted based on ZLA.

5.5 Ablation Analysis
We validated the effectiveness of our motivation and design
through the following baselines, and the results are presented
in Tab. 2. These results are obtained by utilizing ZLA as
the base model and maintaining a consistent random seed
throughout the testing process.
(i) W/O Momentum Model. We first investigate the effect of
the momentum model, which aids in preserving historical in-
formation. As shown in Tab. 2, omitting this component leads
to performance degradation on both datasets. The decline in
performance is particularly pronounced when the initial accu-
racy is low (as observed in APY). In the absence of historical
information, noisy pseudo-labels dominate the training pro-
cess. This demonstrates the importance of suppressing catas-
trophic forgetting in training with streaming data.
(ii) W/O Class Selection. We also evaluate the importance
of the class selection module. As previously discussed, this
module helps mitigate the adverse effects of potentially im-
balanced data classes. There is a noticeable decrease in per-
formance when ablating it.
(iii) W/O Data Selection. This baseline removes the opera-
tions defined by Eq. (9), (10), and (11). The removal of data
selection implies that all samples are involved in the training.
The decline in performance aligns with our expectation that
filtering out low-confidence samples is beneficial.
(iv) Adaptive→fixed thre. To demonstrate the effectiveness of
the adaptive threshold strategy in data selection, we conduct
an experiment with a fixed threshold. This baseline is also
described in Sec. 4.4 that replaces Eq. (10) with Eq. (9).
We set τ to 0.8 for the best results of this baseline, but the
performance is even worse than without data selection. This
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Figure 4: Hyperparameters w.r.t. EGZSL performance on AWA2.
(a) Effects of loss balancing coefficient λ (Eq. 12). (b) Effects of
thresholds τ in Eq. (10). (c), (d) Effects of the smoothing factors
m1 and m2 in Eq. (3) and (9).

validates our analysis that a fixed threshold comes with the
risk of data class imbalance.

5.6 Hyperparameters
We study the influence of the loss weighting coefficient λ,
the threshold τ , and the momentum coefficients m1 and m2,
which are reported in Fig. 4. Although performance under
different hyperparameter settings varies, our method is over-
all stable. The results are more sensitive to λ and m1 as these
two parameters are related to catastrophic forgetting. In con-
trast, τ and m2, two variables related to data selection, have
a slightly smaller fluctuation in performance. We set λ at 1,
τ at 0.5, m1 at 0.99, and m2 at 0.9 for the best results. More
experiments can be found in the supplemental.

6 Conclusion
In this paper, we introduce a novel and more realistic GZSL
setting: Evolutionary GZSL. This setting aims to address the
domain shift problem inherent in IGZSL, while maintaining
greater deployability than TGZSL. EGZSL starts from the
traditional learned GZSL models and gradually boosts itself
by simultaneously recognizing and learning from the unla-
beled test data. To evaluate the proposed EGZSL, we de-
vise a new protocol involving random division of datasets
into episodic training and testing with multiple time steps.
Furthermore, we propose a method to tackle this task and
present baseline results on three benchmark datasets. The
results demonstrate the feasibility and superiority of our ap-
proach compared to several traditional methods.
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