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Abstract

Cross-modal hashing has garnered considerable re-
search interest due to its rapid retrieval and low
storage costs. However, the majority of existing
methods suffer from the limitations of context loss
and information redundancy, particularly in simu-
lated textual environments enriched with manually
annotated tags or virtual descriptions. To mitigate
these issues, we propose a novel Visual-Textual
Prompt Hashing (VTPH) that aims to bridge the
gap between simulated textual and visual modali-
ties within a unified prompt optimization paradigm
for cross-modal retrieval. By seamlessly integrat-
ing robust reasoning capabilities inherent in large-
scale models, we design the visual and textual
alignment prompt mechanisms to collaboratively
enhance the contextual awareness and semantic ca-
pabilities embedded within simulated textual fea-
tures. Furthermore, an affinity-adaptive contrastive
learning strategy is dedicated to dynamically recali-
brating the semantic interaction between visual and
textual modalities by modeling the nuanced hetero-
geneity and semantic gaps between simulated and
real-world textual environments. To the best of our
knowledge, this is the first attempt to integrate both
visual and textual prompt learning into cross-modal
hashing, facilitating the efficacy of semantic coher-
ence between diverse modalities. Extensive experi-
ments on multiple benchmark datasets consistently
demonstrate the superiority and robustness of our
VTPH method over state-of-the-art competitors.

1 Introduction
With the explosive growth of multimedia data, cross-modal
retrieval [Messina et al., 2021] [Bogolin et al., 2022] has
become a hot issue and attracted continuous research atten-
tion from both academia and industry. Its primary objec-
tive is to retrieve relevant samples of one modality by the
query from another modality. As a promising solution for
similarity queries, cross-modal hashing (CMH) [Cao et al.,

∗Corresponding author.

Dataset: MIRFLICKR
Text: bokeh/flowers/..;
[Concatenate with tags]
Caption: some flowers 
blooming in the grass...
Label: flower; plant life

Dataset: MS-COCO
Text: two zebra …; 
[Repeat with descriptions]
Caption: two zebra 
standing on dirt field… 
Label: zebra

Dataset: NUS-WIDE
Text: wildlife/…; 
[Concatenate with tags]
Caption: a gray coyote
standing in grass...
Label: animal; sky

Figure 1: Illustration of image instances with the corresponding
texts and captions produced by mPLUG. It is observed that texts
extracted from MIRFLICKR-25K and NUS-WIDE lack contextual
relationships, whereas texts utilized in MS-COCO often exhibit se-
mantic redundancy. In contrast, captions produced by the large-scale
model demonstrate a higher degree of realism in describing images.

2018][Zhang et al., 2022] aims to map heterogeneous mul-
timedia data into the Hamming space, ensuring that similar
content possesses analogous representations within this hash
space. Due to the computational efficiency and storage cost
advantages, CMH has been extensively investigated in recent
years for the retrieval and analysis of multimodal data.

In recent years, the rapid advancement of Deep Neural Net-
works (DNN) has stimulated the proposal of numerous deep
cross-modal hashing (DCMH) approaches. According to the
involvement of semantic label supervision signals, existing
DCMH methods can be roughly categorized into two types:
supervised DCMH [Zhu et al., 2022] [Ou et al., 2023a] and
unsupervised DCMH [Luo et al., 2021a][Mikriukov et al.,
2022][Hu et al., 2023]. Technically, unsupervised DCMH
methods leverage co-occurrence information to excavate con-
sistency features from multimodal data and learn the hash
function. In contrast, supervised DCMH methods gener-
ally attain superior retrieval performance than unsupervised
DCMH methods by leveraging label-level information to
learn more discriminative and general representations. To
this end, the objective of our work is to generate discrimina-
tive unified binary codes across modalities for handling cross-
modal retrieval tasks in the supervised learning paradigm.

Despite progress in learning with DCMH, it is noted
that current methods are grounded in an implicit yet ideal
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assumption-namely, that existing manually-annotated mul-
timodal datasets can effectively simulate cross-modal re-
trieval scenarios akin to real-world environments. Due
to the challenges of real-world data collection from noisy
websites and expensive annotation processes, the bench-
mark datasets used in the realm of cross-modal retrieval, in-
cluding MIRFLICKR-25K [Huiskes and Lew, 2008], NUS-
WIDE [Huiskes and Lew, 2008], and MS-COCO [Lin et al.,
2014], remains the inherent limitations posed by context loss
and information redundancy, particularly in the representa-
tion of textual data. As illustrated in Figure 1, the textual con-
tent in both the MIRFLICKR-25K and NUS-WIDE datasets
is generated by a straightforward concatenation of multiple
tags, leading to a deficiency in contextual information. Fur-
thermore, the textual content in the MS-COCO dataset is
composed by merging multiple manually annotated image de-
scriptions, which may introduce a certain level of semantic
redundancy. The challenges mentioned above pose obsta-
cles to the accuracy and generalization capabilities of existing
DCMH methods when applied in real-world scenarios.

To address these challenges, this paper proposes a novel
Visual-Textual Prompt Hashing (VTPH) paradigm that lever-
ages the powerful semantic reasoning capabilities of large-
scale vision-language models to reconstruct and enrich simu-
lated textual environments, leading to a more effective and ro-
bust cross-modal retrieval process. In comparison to the state-
of-the-art methods [Liu et al., 2023b][Tu et al., 2022][Ou
et al., 2023b], the proposed VTPH approach mainly bene-
fits from the advantages of cross-modal prompt engineering.
Specifically, two well-established prompt mechanisms, i.e.,
visual alignment prompt (VAP) and textual alignment prompt
(TAP), are proposed to collaboratively enhance the contextual
awareness and semantic capabilities embedded within simu-
lated textual features. On the one hand, the VAP mechanism
is meticulously designed to enhance salient features and sup-
press irrelevant information for text representations under the
guidance of the global context from visual features. On the
other hand, the TAP mechanism aims to capture more au-
thentic and context-rich textual representations by bridging
the semantic gap between simulated texts and captions gen-
erated by the large-scale model mPLUG [Li et al., 2022].
By incorporating visual and textual prompts within a unified
framework, our VTPH approach aims to optimize the interac-
tion and alignment between different modalities based on the
assumption of a scenario that closely resembles real-world
environments. Furthermore, we propose an affinity-adaptive
contrastive learning module to explicitly model the nuanced
heterogeneity and semantic gaps between simulated and real-
world textual environments. It can dynamically recalibrate
the semantic interaction between visual and textual modali-
ties, providing a more accurate representation of the semantic
relationships for cross-modal retrieval.

To the best of our knowledge, our work is the first at-
tempt that incorporates both visual-textual prompt learning
to address the limitations of context loss and information re-
dundancy within the domain of cross-modal retrieval. Our
VTPH framework is comprehensively evaluated on multiple
large-scale datasets, and extension experiments are also con-
ducted to demonstrate the robustness of VTPH on benchmark

datasets with noisy correspondences. The promising perfor-
mance collectively demonstrates the effectiveness and supe-
riority of our VTPH method over state-of-the-art algorithms.

2 Related Work
2.1 Deep Cross-Modal Hashing
Cross-modal hashing (CMH) [Cao et al., 2018][Yao et
al., 2021][Zhang et al., 2022] aims to learn hash functions
that map raw data into a binary hash space, along with
the hash metric intended to preserve semantic similarity be-
tween original multimedia data. Benefiting from the pow-
erful representation abilities of deep neural networks, deep
cross-modal hashing (DCMH) [Zhu et al., 2022] [Liu et al.,
2023b] has gained significant attention in addressing large-
scale cross-modal retrieval tasks. Due to the absence of se-
mantic information, the retrieval performance of unsuper-
vised DCMH remains unsatisfactory. By contrast, numerous
supervised DCMH methods have been introduced to utilize
manual annotation label information to facilitate the learn-
ing of hash functions. Specifically, one group of these stud-
ies is based on the CNN framework, such as DADH [Bai et
al., 2020], MSSPQ [Zhu et al., 2022], and CMGCAH [Ou et
al., 2023b]. With the proposal of large-scale vision-language
architectures (i.e., CLIP), transformer-based methods as an-
other group have achieved more promising performances than
traditional CNN-based methods. For instance, DCMHT [Tu
et al., 2022] firstly employed a visual transformer for en-
coding image content to improve the correlation modeling
of CMH. In particular, MITH [Liu et al., 2023b] hierar-
chically considered intra-modal interaction and inter-modal
alignment with multi-granularity in one unified transformer-
based framework. Additionally, CIMON [Luo et al., 2021b]
presents a novel approach to explore noisy data scenarios,
potentially enhancing the robustness against data imperfec-
tions. However, the existing methods rely on simulated en-
vironments crafted from manually annotated datasets, which
suffer from the challenges related to context loss and infor-
mation redundancy.

2.2 Prompt Learning
Initially originating from the natural language processing
(NLP) domain, prompt learning leverages pre-trained models
to undertake downstream tasks by seamlessly incorporating
handcrafted prompt templates into the input [Brown et al.,
2020]. Nevertheless, the meticulous design of crafted prompt
templates requires extensive domain expertise and common
knowledge, ultimately limiting the model’s flexibility. In
contrast, prompt tuning enables the model to adapt prompts
as continuous vectors and optimize them directly during the
fine-tuning process. Inspired by the significant success of
prompt tuning in NLP, recent studies [Zhou et al., 2022b]
[Zhou et al., 2022a] [Khattak et al., 2023] have tried to in-
corporate the concept of prompt learning in vision-language
models. Based on the CLIP pre-trained vision-language ar-
chitecture, CoOp [Zhou et al., 2022b] was the earliest work to
apply trainable text prompt vectors for few-shot transferring.
Co-CoOp [Zhou et al., 2022a] introduced conditional context
optimization that dynamically made a prompt conditioned on
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Figure 2: Illustration of the proposed Visual-Textual Prompt Hashing (VTPH) framework for cross-modal retrieval. Two prompt strategies,
i.e., visual alignment prompt and textual alignment prompt, are dexterously established in the inter and intra-modal interaction phases.
Meanwhile, an affinity-adaptive contrastive learning module is designed to model the heterogeneity and semantic gaps across modalities.

each input image instead of fixed ones. Recently, MaPLe
[Khattak et al., 2023] and DCP [Liu et al., 2023a] facilitated
a strong coupling between visual and language prompts to
ensure their mutual collaboration. However, whether prompt
learning is effective for cross-modal hashing remains under-
explored and investigated. In this paper, we first attempt to
design a multi-modal prompt learning paradigm to enhance
the interaction between visual and textual representations for
tackling the challenge of cross-modal hashing.

3 Methodology
3.1 Notations and Problem Formulation
In the context of N image-text pairs denoted as P = {Pi}Ni ,
where Pi = {(vi, ti); ci; li}, vi and ti represents the im-
age and text modalities of the i-th image-text pair, ci de-
notes the image captions generated offline by mPLUG, and
li indicates the associated label matrix with Q categories. In
our work, the similarity matrix S for cross-modal retrieval
is generated based on labels. With the supervision guidance
of S , the objective of this study is to acquire unified hash
codes by projecting both image and text data from a high-
dimensional space into a common K-bit discrete Hamming
space, where K is the length of the hash codes. Based on the
Hamming distance between similar instances, we aim to learn
two hashing functions, i.e., bvi = Hv(vi; θ

v) ∈ {−1,+1}K
and bti = Ht(ti; θ

t) ∈ {−1,+1}K , where bvi and bti repre-
sent the learned hash codes to preserve the semantic similar-
ities between visual and textual modalities, θv and θt denote
the trainable parameters during the prompt-tuning stage.

3.2 Modality-Specific Feature Embedding
Figure 2 provides a detailed pipeline of the proposed VTPH
framework. Following previous work [Liu et al., 2023b], our
VTPH framework adopts the pre-trained Vision Transformer
(VIT) [Dosovitskiy et al., 2021] and GPT-2 [Radford et al.,
2019] as image and text encoders to extract modality-specific
feature representations, i.e., Fv

i = [gv
i , z

v
i ], F t

i = [gt
i , z

t
i ],

and Fc
i = [gc

i , z
c
i ], where g represents the global class em-

beddings, and z represents the sequence of local token em-
beddings. It is noted that the obtained image captions can
be considered as additional text modalities to augment the
original textual features. In this part, we implement a weight-
sharing strategy between the text encoder and caption encoder
to ensure the consistency of textual representations.

3.3 Visual-Textual Prompt Learning
By keeping the backbone network fixed during fine-tuning,
we incorporate two well-designed prompt mechanisms, i.e.,
visual alignment prompt (VAP) and textual alignment prompt
(TAP), to jointly enrich the contextual content and semantic
representations of simulated textual features.
Visual Alignment Prompt. The goal of the VAP compo-
nent is to enhance the salient features and suppress irrele-
vant information within textual features under the guidance
of global embeddings from images. Specifically, the distri-
bution of textual feature information is reshaped by applying
the attention prompts to local text features from the image
branch. The prompted feature zt

i is formulated as:
zt
i = zt

i · Softmax(gv
i · Wvap), (1)
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where Wvap ∈ Rd×d are learnable weights from the visual
adapter, d represents the dimensionality of feature representa-
tions. During the adaptation process, the dimensions of both
input and output remain constant. Importantly, the adapted
features could seamlessly replace the original local text fea-
tures as enhanced text features, that effectively filter out irrel-
evant information while retaining discriminative features to
facilitate the subsequent multimodal fusion process.
Textual Alignment Prompt. To harness the robust reason-
ing capabilities inherent in large-scale models, we design the
TAP component to augment the semantic capabilities within
simulated textual features and align them more closely with
real-world scenarios. Following previous work [Pei et al.,
2023], the prompted feature gt

i is adapted as follows:

gt
i = RELU(gt

i · W1
tap) · W2

tap, (2)

where W1
tap ∈ Rd×h and W2

tap ∈ Rh×d are learnable weights
serving as textual adapters, h = d/4 is hidden dimensional-
ity of feature representations. Subsequently, the output gt

i is
directly supplied to the forward process as the global textual
feature. Instead of employing a straightforward projection
for attention weight generation, we introduce a cosine triplet
contrastive learning objective [Khan et al., 2023] to optimize
the global text features, ensuring a more seamless alignment
with authentic textual expressions,

Ltriplet =
M∑
i=1

M∑
j=1

(
[1− < gt

i, g
c
i > + < gt

i, g
c
j >]+

+[1− < gt
i, g

c
i > + < gt

j , g
c
i >]+

)
,

(3)

where M is the number of batch size, i ̸= j, < ·, · > denotes
the cosine simarility function, and [x]+ = max(0,x).
Visual-Textual Collaboration. To obtain more compre-
hensive and realistic feature representations, we insert zc

i ex-
tracted from image captions into the text encoder as addi-
tional textual tokens. Notably, we selectively unfreeze the
last two layers of the transformer-based encoder to fully uti-
lize the informative cues provided by prompts and enhance
the overall learning capability. Formally, the proposed visual
and textual prompt mechanisms can be formulated as:

[gt
i,d−1, z

t
i,d−1, z

c
i,d−1] = SA

(
[gt

i,d−2, z
t
i,d−2, z

c
i,d−2]

)
[gt

i,d, z
t
i,d,−] = SA

(
[gt

i,d−1, z
t
i,d−1, z

c
i,d−1]

)
,

(4)

where d represents the depth of the self-attention (SA) layer
in the text encoder, [·, ·] represents the concatenation function,
and the symbol “−” indicates that the output tokens at the
corresponding positions are discarded.

3.4 Affinity-Adaptive Contrastive Learning
Based on the aforementioned operations, both global embed-
dings g∗

i provided by visual and textual modalities are applied
to the residual multi-layer perceptrons (ResMLP) to align
them to the same dimensionalities,

g̃
(∗)
i = ResMLP(g(∗)

i ). (5)

Simultaneously, the local embeddings z(∗)
i employ a local-

ized token aggregation (LTA) strategy [Liu et al., 2023b] to

localize the preservation of the most crucial implicit seman-
tic knowledge from the global embeddings by selecting the
top-m features of high confidence to form embedding,

z̃
(∗)
i = TE

(
(W (∗)

i )⊤z
(∗)
i

)
, (6)

where TE represents a two-layer transformer encoder.
To mitigate the heterogeneity and semantic gaps between

simulated and real-world textual environments, we design the
Affinity-Adaptive Contrastive Learning (AACL) module to
dynamically recalibrate the semantic interaction between vi-
sual and textual modalities. Different from traditional con-
trastive learning [Chen et al., 2020] [He et al., 2020] [Grill et
al., 2020], the affinity Ai is specifically designed to capture
the nuanced heterogeneity and semantic gaps between simu-
lated and caption textual environments. Specifically, we em-
ploy Jensen-Shannon divergence [Lin, 1991] to compute the
affinity between the global features gt

i extracted from image
captions and original global text features gc

i ,

Ai = Di
JS(g

t
i ||gc

i )

=
1

2

(∑
j

gt
ij log

2gt
ij

gt
ij + gc

ij

+
∑
j

gc
ij log

2gc
ij

gt
ij + gc

ij

)
,

(7)

where DJS ∈ [0, 1] indicates the Jensen-Shannon divergence.
Given the i-th image-text pairs (g̃v

i , g̃
t
i) in a minibatch, we

treat two modality data as queries and keys alternatively to
learn the positive image-text pairs and the remaining pairs
as considered negative samples. By automatically adjusting
the temperature hyperparameter to fine-tune the strength of
traditional contrastive learning, the objective of the AACL
module can be formulated as follows:

Laacl =
1

M

M∑
i=1

(
− log

exp((g̃v
i )

⊤g̃t
i/τ̂i)∑M

c=1 exp((g̃
v
i )

⊤g̃t
c/τ̂i)

− log
exp((g̃t

i)
⊤g̃v

i /τ̂i)∑M
c=1 exp((g̃

t
i)

⊤g̃v
c /τ̂i)

)
,

(8)

where τ̂i denotes the temperature parameter, which is adap-
tively determined by the affinity Ai,

τ̂i = τ + γ · Ai. (9)

By multiplying the affinity value Ai with a hyperparameter
γ, the temperature can be automatically updated in a residual
manner. In this way, the dynamic bridging of heterogeneity
and semantic gaps across different modalities brings the rep-
resentation closer to real-world scenarios.

3.5 Cross-Modal Hashing Learning
The primary purpose of the cross-modal hashing module is to
map features into the Hamming space and ensure that the dis-
tance relationships between hash codes reflect the semantic
similarity of different modalities [Jiang and Li, 2017] [Cao
et al., 2018] [Tu et al., 2022]. To this end, a hashing linear
projection layer (HashLayer) with the tanh activation func-
tion is designed to decompose the projected features to global
semantic features h(∗)

i , i.e.,

h
(∗)
i = HashLayer(g̃(∗)

i ). (10)
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Similarly, the linear projection hashing layer is designed to
map z̃(∗)

i to the K-bit Hamming space as local semantic fea-
tures f (∗)

i , which can be expressed as:

f
(∗)
i = HashLayer(z̃(∗)

i ). (11)

To learn the unified hash code, we employ the sign function to
integrate global and local semantic features to collaboratively
accomplish the encoding process,

bi = sign(λ(hv
i + ht

i) + (1− λ)(fv
i + f t

i )), (12)

where λ ∈ [0, 1] denotes a tunable weight parameter. More-
over, the quantization loss is used to learn a uniform semantic
representation and generate compact hash codes, and the ob-
jective functions can be defined as follows,

Lquan =
1

KM

M∑
i=1

(
∥bi−

1

2
(hv

i+fv
i )∥22+∥bi−

1

2
(ht

i+f t
i )∥22

)
.

(13)
Inspired by [Liu et al., 2023b], both intra-modal similar-

ity preservation loss and inter-modal similarity preservation
loss are introduced in our cross-modal hashing learning. In
particular, the intra-modal similarity preservation loss aims
to preserve semantic similarities within modalities,

Lintra = − 1

MN

N∑
i=1

M∑
j=1

(
SijΩ

(∗)
ij − log

(
1 + eΩ

(∗)
ij

))
,

(14)
where Ω(∗)

ij = 1
2 (f

(∗)
i )Tf (∗)

j indicates the inner product
among local semantic representations. Meanwhile, inter-
modal similarity preservation is designed to preserve seman-
tic similarities across modalities, that is,

Linter = − 1

MN

( N∑
i=1

M∑
j=1

(
SijΘij − log

(
1 + eΘij

))
+

N∑
i=1

M∑
j=1

(
SijΦij − log

(
1 + eΦij

)))
,

(15)

where Θij = 1
2 (h

t
i)

Thv
j and Φij = 1

2 (h
v
i )

Tht
j denotes the

inner product among global semantic representations. Thus,
the overall objective of cross-modal hashing learning is de-
fined as follows:

Lhash = α · Linter + β · Lquan + Lintra, (16)

where α and β are trade-off hyper-parameters.

3.6 Training and Optimization
Based on the above analyses, the comprehensive training ob-
jective of the proposed VPTH approach encompasses a com-
bination of various loss functions, i.e.,

Ltotal = Ltriplet + Laacl + Lhash. (17)

By jointly optimizing these losses, our approach can further
enhance the performance of cross-modal retrieval, ensuring
better adaptability to noisy data in real-world scenarios.

4 Experiments
4.1 Experimental Settings
Datasets. Three commonly used multi-label image-text
cross-modal datasets, i.e., MIRFLICKR-25K, NUS-WIDE,
and MS-COCO, are selected for our experiments. In addition,
our settings follow the data splitting protocol used in [Tu et
al., 2022][Liu et al., 2023b], which are shown in the supple-
mentary document for details. To demonstrate the robustness
of our VTPH approach, we also conduct extension experi-
ments on these benchmark datasets with randomly 30% noisy
correspondence, which are referred to as MIRFLICKR-25K-
N, NUS-WIDE-N, and MS-COCO-N [Huang et al., 2021].

Metrics. To comprehensively evaluate the performance of
our method, we perform two cross-modal retrieval tasks, i.e.,
image-to-text retrieval (I → T) and text-to-image retrieval (T
→ I). These tasks involve searching relevant texts by using
images as queries and vice versa. As standard evaluation
metrics, the mean Average Precision (mAP) and precision-
recall curve (PR-curve) are also considered to measure the
effectiveness of different methods under the hamming rank-
ing protocol and hash lookup protocol, respectively.

Baselines. In our experiments, we conduct a comprehen-
sive comparison with the state-of-the-art DCMH methods,
including CNN-based methods and transformer-based meth-
ods. Specifically, the CNN-based methods consist of DCMH
[Jiang and Li, 2017], SSAH [Li et al., 2018], GCH [Xu et al.,
2019], DADH [Bai et al., 2020], TEACH [Yao et al., 2021],
MSSPQ [Zhu et al., 2022], and CMGCAH [Ou et al., 2023b].
In addition, the transformer-based methods contain DCMHT
[Tu et al., 2022] and MITH [Liu et al., 2023b].

4.2 Comparisons with State-of-The-Art
Hamming Ranking Protocol. To evaluate the effective-
ness of our VTPH framework, we conduct a comprehensive
comparison with a range of state-of-the-art baselines on three
benchmark datasets by the image-to-text and text-to-image
retrieval task. The comparative results are summarized in
Table 1. We can obtain the following observations: 1) The
proposed VTPH method outperforms all state-of-the-art base-
lines with significant performance improvements across all
hash code lengths. 2) In particular, the latest Transformer-
based framework, namely MITH, surpasses all classic previ-
ous works such as DADH, DCHMT, and CMGCAH. This
phenomenon demonstrates that the multi-modal CLIP ar-
chitecture has stronger feature extraction and discriminative
hash code learning capabilities than the CNN-based base-
line. 3) Despite the reliable performance achieved by MITH,
our VTPH approach, with its visual-textual prompt tuning
strategy and affinity-adaptive contrastive learning, demon-
strates superior performance. Importantly, it can consistently
achieve the best performance and surpass the second-best
method by the mean mAP of 6.02%, 6.97%, 1.34% for I →
T, and 8.13%, 5.55%, 1.36% for T → I, respectively. These
findings underscore the efficacy of our approach in leverag-
ing visual-textual prompts to enhance text feature representa-
tions, thereby optimizing the interaction and alignment across
modalities for the learning of discriminative hash codes.
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I → T

Methods Reference MIRFLICKR-25K NUS-WIDE MS-COCO
16bits 32bits 64bits mean 16bits 32bits 64bits mean 16bits 32bits 64bits mean

DCMH CVPR’2017 0.7321 0.7464 0.7465 0.7416 0.5493 0.5925 0.6178 0.5865 0.4928 0.5007 0.5145 0.5026
SSAH CVPR’2018 0.7641 0.7790 0.7867 0.7766 0.6318 0.6542 0.6488 0.6449 0.5520 0.5884 0.5893 0.5765
AGAH ICMR’2019 0.7625 0.7805 0.7902 0.7777 0.5776 0.5706 0.6246 0.5909 0.5663 0.6011 0.6065 0.5913
GCH IJCAI’2019 0.7514 0.7620 0.7672 0.7601 0.6054 0.6343 0.6241 0.6212 0.5581 0.6010 0.5973 0.5854
DADH ICMR’2020 0.7876 0.8027 0.8128 0.8010 0.6447 0.6739 0.6736 0.6640 0.6233 0.6458 0.6498 0.6396
DCHMT MM’2022 0.8217 0.8262 0.8280 0.8252 0.6685 0.6709 0.6876 0.6757 0.6081 0.6156 0.6328 0.6188
MSSPQ ICMR’2022 0.7868 0.8011 0.8172 0.8017 0.6346 0.6478 0.6615 0.6480 0.5710 0.5881 0.5862 0.5818
CMGCAH TITS’2023 0.7901 0.8030 0.8123 0.8018 0.6213 0.6440 0.6462 0.6372 – – –
MITH MM’2023 0.8464 0.8645 0.8718 0.8609 0.7004 0.7148 0.7297 0.7150 0.7039 0.7359 0.7664 0.7354

VTPH Ours 0.9056 0.9249 0.9328 0.9211 0.7733 0.7870 0.7936 0.7846 0.7202 0.7477 0.7786 0.7488
Increased↑ 5.92% 6.04% 6.10% 6.02% 7.29% 7.22% 6.39% 6.97% 1.63% 1.18% 1.20% 1.34%

T → I

DCMH CVPR’2017 0.7640 0.7725 0.7757 0.7707 0.5675 0.5829 0.6200 0.5901 0.5268 0.5393 0.5327 0.5329
SSAH CVPR’2018 0.7790 0.7885 0.8041 0.7905 0.6484 0.6645 0.6677 0.6602 0.5589 0.5819 0.5844 0.5750
AGAH ICMR’2019 0.7590 0.7732 0.7890 0.7737 0.5441 0.5367 0.5894 0.5567 0.5492 0.5848 0.5948 0.5762
GCH IJCAI’2019 0.7644 0.7789 0.7863 0.7765 0.6063 0.6321 0.6281 0.6221 0.5543 0.6035 0.5908 0.5828
DADH ICMR’2020 0.7876 0.8053 0.8166 0.8031 0.6489 0.6752 0.6932 0.6724 0.6076 0.6270 0.6336 0.6227
DCHMT MM’2022 0.7896 0.7972 0.7974 0.7947 0.6863 0.6893 0.6993 0.6916 0.6088 0.6140 0.6308 0.6179
MSSPQ ICMR’2022 0.7946 0.7885 0.8022 0.7951 0.6312 0.6631 0.6882 0.6608 0.5472 0.5630 0.5985 0.5696
CMGCAH TITS’2023 0.7823 0.7932 0.8045 0.7933 0.6782 0.6801 0.6844 0.6809 – – –
MITH MM’2023 0.8228 0.8389 0.8468 0.8362 0.7140 0.7276 0.7401 0.7272 0.7017 0.7358 0.7661 0.7345

VTPH Ours 0.9020 0.9226 0.9278 0.9175 0.7708 0.7840 0.7933 0.7827 0.7185 0.7515 0.7743 0.7481
Increased↑ 7.92% 8.37% 8.10% 8.13% 5.68% 5.64% 5.32% 5.55% 1.68% 1.57% 0.82% 1.36%

Table 1: Comparison of mAP scores on MIRFLICKR-25K, NUS-WIDE, and MS-COCO datasets, where the best and second-best results are
highlighted in bold and underlined, respectively. Additionally, ‘–’ denotes the unavailable results due to the unreleased codes.

Hash Lookup Protocol. To verify the performance of our
VTPH under the lookup protocol, we calculate the PR-curve
metric for the returned instances, and the comparison results
with variations of different hash codes (i.e., 16bits, 32bits,
64bits) on three datasets are illustrated in Figure 3. From
these figures, it can be observed that our proposed method
consistently achieves the best retrieval results in comparison
with all the state-of-the-art baselines over three datasets.

4.3 Extended Robustness Evaluation
We further investigate the robustness of our VTPH ap-
proach in noisy environments. Following the cross-modal
matching studies [Huang et al., 2021] [Qin et al., 2022]
[Yang et al., 2023], we perform extension experiments on
the MIRFLICKR-25K-N, NUS-WIDE-N, and MS-COCO-N
datasets with 16 bits of 30% noisy correspondence. Partic-
ularly, we generate synthetic noisy correspondence by ran-
domly shuffling the training images and captions to simu-
late real-world environments. The comparative results are
summarized in Table 2. We can observe that all methods
suffer from varying degrees of performance degradation un-
der the influence of noisy data. Nonetheless, the proposed
method consistently achieves competitive performance with
all cases on three datasets. Specifically, our VTPH yields an
improvement of 8.45%, 11.52%, 6.6% for I → T and 10.77%,
10.11%, 6.61% for T → I in average mAP than the second-
best method, respectively. Moreover, our VTPH approach
exhibits the least impact on the experimental results in most
cases, indicating that our method can mitigate the negative
impact of noisy correspondence to a certain extent.

4.4 Ablation Study
In this part, we conduct comprehensive ablation studies by
systematically evaluating the impact of each component in

I → T

Methods MIRFLICKR NUS-WIDE-N MS-COCO-N-25K-N

DCHM 0.7146 (-1.75%) 0.5139 (-3.45%) 0.4440 (-4.88%)
SSAH 0.7060 (-5.81%) 0.5596 (-7.22%) 0.4988 (-5.32%)
AGAH 0.6813 (-8.12%) 0.5351 (-4.52%) 0.5235 (-4.28%)
DADH 0.7124 (-7.52%) 0.5742 (-7.05%) 0.5880 (-3.53%)

DCHMT 0.8101 (-1.16%) 0.6498 (-1.87%) 0.5976 (-1.05%)
MITH 0.7633 (-8.31%) 0.6508 (-4.96%) 0.6265 (-9.37%)
VTPH 0.8946 (-1.10%) 0.7660 (-0.73%) 0.6925 (-2.77%)

T → I

DCHM 0.7303 (-3.37%) 0.5453 (-2.22%) 0.4862 (-4.06%)
SSAH 0.7520 (-2.70%) 0.6058 (-4.26%) 0.5489 (-1.00%)
AGAH 0.7259 (-3.31%) 0.5134 (-3.07%) 0.5270 (-2.22%)
DADH 0.7509 (-3.67%) 0.5947 (-5.42%) 0.5983 (-0.93%)

DCHMT 0.7490 (-4.06%) 0.6449 (-4.14%) 0.5659 (-4.29%)
MITH 0.7870 (-3.58%) 0.6637 (-5.03%) 0.6260 (-9.25%)
VTPH 0.8947 (-0.73%) 0.7648 (-0.60%) 0.6921 (-2.64%)

Table 2: Comparison of mAP scores using 16 bits on MIRFLICKR-
25K-N, NUS-WIDE-N, and MS-COCO-N datasets containing 30%
randomly assigned corresponding noise. In particular, the changes
in mAP from clean data to noisy data are shown in parentheses.

VTPH on the MIRFLICKR-25K dataset. Five variations are
involved, including a) BASE is regarded as the base model
that only utilizes two transformer-based encoders of CLIP
and hash layers for hashing learning; b) BASE + VAP adds
the visual alignment prompt component based on the basic
model; c) BASE + TAP adds the textual alignment prompt
component to the basic model, along with the image cap-
tion branch; d) BASE + VAP + TAP integrate both the visual
and textual prompt learning strategy into the base model; d)
VTPH is considered as the “full” model, incorporating the
affinity-adaptive contrastive learning.

The comparative results are presented in Table 3. It can
be observed that both the visual alignment prompt and tex-
tual alignment prompt can work cooperatively with different
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Figure 3: The PR curves w.r.t. different code lengths on the MIRFLICKR-25K, NUS-WIDE and MS-COCO datasets.

I → T

Methods mAP Scores
16bits 32bits 64bits mean

BASE 0.8421 0.8606 0.8649 0.8559
BASE+VAP 0.8655 0.8966 0.9045 0.8889
BASE+TAP 0.8803 0.9035 0.9125 0.8988

BASE+VAP+TAP 0.8830 0.9125 0.9249 0.9068
VTPH 0.9056 0.9249 0.9328 0.9211

T → I

BASE 0.8224 0.8366 0.8441 0.8344
BASE+VAP 0.8541 0.8857 0.9041 0.8813
BASE+TAP 0.8767 0.8980 0.9030 0.8926

BASE+VAP+TAP 0.8834 0.9132 0.9247 0.9071
VTPH 0.9020 0.9226 0.9278 0.9175

Table 3: Comparison of mAP scores on the MIRFLICKR-25K
dataset with different components.

hash code lengths, leading to more powerful semantic sim-
ilarity learning capabilities. Furthermore, affinity-adaptive
contrastive learning effectively mitigates heterogeneity and
semantic gaps across modalities by introducing an augmented
contrastive relationship, leading to an improvement in mAP
scores from 0.8834 to 0.9020. The above results of the abla-
tion studies demonstrate the importance of each component
and their collective integration for cross-modal retrieval.

4.5 Parameter Sensitivity
To assess the sensitivity of parameters, we perform an ex-
haustive parameter analysis of the proposed VTPH method
on MIRFLICKR-25K with 16 bits under different parameter
configurations. Specifically, we focus on analyzing the ef-
fects of three hyper-parameters, i.e., α, β, and γ, as shown
in Eqn. (9) and Eqn. (16). Through careful experimentation
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Figure 4: Comparison of mAP scores on the MIRFLICKR-25K
dataset with different parameter configurations.

and analysis in Figure 4, it can be observed that our VTPH
method achieves the best performance when α = 10, β = 8,
and γ = 500, respectively. Hence, we can summarize that
our VTPH model can obtain superior performance through
an optimal combination of these hyperparameters.

5 Conclusion
In this paper, we identified the challenge of context loss
and information redundancy in existing manually annotated
cross-modal retrieval datasets. To overcome these challenges,
we proposed a novel Visual-Textual Prompt Hashing frame-
work that integrated both visual and textual prompt learn-
ing with a unified framework for cross-modal retrieval. Im-
portantly, the proposed affinity-adaptive contrastive learning
module modeled the affinity differences between simulated
and real-world environments to augment the contrastive re-
lationship across modalities. Benefiting from these powerful
components, our VTPH approach can effectively mitigate the
heterogeneity and semantic gaps among different modalities,
even in real-world environments with noisy correspondences.
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