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Abstract
Transformer has recently gained significant atten-
tion and achieved state-of-the-art performance in
various computer vision applications, including im-
age classification, instance segmentation, and ob-
ject detection. However, the self-attention mecha-
nism underlying the transformer leads to quadratic
computational cost with respect to image size,
limiting its widespread adoption in state-of-the-
art vision backbones. In this paper we intro-
duce an efficient and effective attention module
we call Composite Attention. It features parallel
branches, enabling the modeling of various global
dependencies. In each composite attention mod-
ule, one branch employs a dynamic channel at-
tention module to capture global channel depen-
dencies, while the other branch utilizes an effi-
cient spatial attention module to extract long-range
spatial interactions. In addition, we effectively
blending composite attention module with convolu-
tions, and accordingly develop a simple hierarchi-
cal vision backbone, dubbed CoAtFormer, by sim-
ply repeating the basic building block over multi-
ple stages. Extensive experiments show our CoAt-
Former achieves state-of-the-art results on vari-
ous different tasks. Without any pre-training and
extra data, CoAtFormer-Tiny, CoAtFormer-Small,
and CoAtFormer-Base achieve 84.4%, 85.3%, and
85.9% top-1 accuracy on ImageNet-1K with 24M,
37M, and 73M parameters, respectively. Further-
more, CoAtFormer also consistently outperform
prior work in other vision tasks such as object de-
tection, instance segmentation, and semantic seg-
mentation. When further pretraining on the larger
dataset ImageNet-22k, we achieve 88.7% Top-1
accuracy on ImageNet-1K.

1 Introduction
In the past years, Convolution Neural Networks (CNNs) have
become a defacto choice for a wide variety of computer vi-
sion tasks [Simonyan and Zisserman, 2014; He et al., 2015;
Ren et al., 2015; He et al., 2017a] since AlexNet [Krizhevsky

Input image Attention Grad-CAM

Figure 1: CoAtFormer attains a new state-of-the-art with respect to
ImageNet Top-1 accuracy vs computational cost trade-off. For fair
comparison, models that are trained and evaluated with input image
size of 224 × 224 on ImageNet-1K dataset and without extra data.

et al., 2012]. However, convolution operations merely cap-
ture local dependencies of pixels, which neglect the depen-
dency modeling between distant pixels to some extent [Wang
et al., 2017]. Recently, self-attention based Transform-
ers [Vaswani et al., 2017] have achieved excellent perfor-
mance in Natural Language Processing (NLP) benchmarks
and became the dominant architecture for various applica-
tions. Meanwhile, numerous researchers attempt to introduce
the Transformer-based architectures into vision domains, and
attain promising performance in various tasks such as image
classification [Dosovitskiy et al., 2020; Touvron et al., 2020],
object detection [?; Zhu et al., 2020], and semantic segmen-
tation [Zheng et al., 2020]. Vision Transformer (ViT) [Doso-
vitskiy et al., 2020], which utilises a sequence of embedded
image patches as input to stacked standard Transformer en-
coders, is the first fully Transformer-based architecture that
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demonstrate comparable performance to CNNs. While ViTs
present strong capabilities to model the long-range depen-
dencies, their computational complexity grows quadratically
with the image size, limiting its application to high resolu-
tion images [Yang et al., 2021] in which modeling multi-scale
global context is essential for accurate representation model-
ing.

To reduce the computational cost, some works [Liu et al.,
2021; Dong et al., 2021; Tu et al., 2022; Ding et al., 2022],
most notably Swin Transformer [Liu et al., 2021], have lim-
ited attention region in a spatial local window. However, the
limited receptive field of local attention challenges the capa-
bility of global self-attention to model global contextual in-
formation. Subsequent works such as MaxViT [Tu et al.,
2022] attempted to mitigate this issue by developing highly
intricate self-attention modules with increased model size.
How to efficiently integrate various long-range interactions
to balance the model complexity and generalizability under a
computation budget still remains challenging.

In this work, we develop a novel Transformer block, called
composite attention block, that capably serves as a funda-
mental architecture component which can model global chan-
nel and spatial interactions in a single module. In con-
trast to vanilla self-attention, composite attention exhibits
greater efficiency and flexibility, specifically adapting seam-
lessly to varying input lengths with linear complexity. Com-
pared to window/local attention, composite attention per-
forms stronger perception capacity by simultaneously cap-
turing global spatial and channel dependencies. Moreover,
with only linear complexity, composite attention can serve as
a basic stand-alone attention block in any layer of a neural
network, even in high-resolution stages.

It is worthwhile to note that our proposed composite atten-
tion contains two parallel branches to capture various global
context. In composite attention block, one branch exploits a
dynamic channels module to model global channel dependen-
cies, while the other branch employs an efficient spatial atten-
tion module to capture long-range spatial interactions. Con-
cretely, We replace the self-attention, as originally introduced
by Vaswani et al. [Dosovitskiy et al., 2020], with a efficient
spatial attention. Instead of capturing the pairwise interac-
tions between keys, queries, we model the interactions be-
tween a learnable global token embedding and queries only,
computing the global context-aware spatial attention weights
with linear complexity. Additionally, we use a simple graph
neural network as the core component of dynamic channel
attention to encourage the communication across channels.

Based on the composite attention mechanism, we fur-
ther propose a simple but effective vision Transformer ar-
chitecture named “CoAtFormer” by hierarchically stacking
repeated blocks composed of composite attention and con-
volutions. This architecture exhibits significantly stronger
modeling power while limiting computation cost. As a
general-purpose vision backbone, the CoAtFormer demon-
strates state-of-the-art (SOTA) performance for a broad range
of visual tasks including image classification, object detection
and segmentation. Specifically, for image classification using
ImageNet-1K dataset, CoAtFormer with 24M, 37M, 73M pa-
rameters achieve new SOTA performance of 84.4%, 85.3%,

85.9% Top-1 accuracy and without using any extra data. As
Figure 1 shows, CoAtFormer consistently outperforms both
GCViT [Hatamizadeh et al., 2023], MaxViT [Tu et al., 2022]
and ConvNeXt [Liu et al., 2022] models by a significant mar-
gin. Furthermore, for object detection and instance segmen-
tation using MS COCO dataset, our model achieves a box
mAP of 54.9 for object and a mask mAP of 47.5, surpassing
recent state-of-the-art MaxViT counterpart by +1.5 and +1.8
respectively.

The main contributions of our work are summarized as fol-
lows:

• We propose a strong vision backbone, CoAtFormer,
that can capture various global interactions throughout
every stage of the network.

• We develop a simple but effective composite attention
block composed of dynamic channel and efficient spatial
attention, enjoining global context in linear complexity.

• Large amounts of performance analysis shows that
CoAtFormer outperforms previous SOTA transformers
on ImageNet dataset, with a significantly lesser number
of parameters. In addition, CoAtFormer also has supe-
rior performance on other downstream tasks.

2 Related work
CNNs. Since AlexNet [Krizhevsky et al., 2012], convolu-
tional neural networks (CNNs) have shown remarkable suc-
cess in various vision applications [Chen et al., 2017; Tan
and Le, 2019; Howard et al., 2017; Sandler et al., 2018; Si-
monyan and Zisserman, 2014; He et al., 2015]. VGGNet [Si-
monyan and Zisserman, 2014] and InceptionNets [Szegedy
et al., 2014; Szegedy et al., 2015] show that a deep neural
network consisted of convolutional layers and pooling lay-
ers can attain adequate performance in image recognition.
ResNet [He et al., 2015] show stronger generalization ability
by introducing skip connections every two layers to the base
architecture. ConvNeXt [Liu et al., 2022] has re-introduced
core designs of vision transformers and demonstrate a pure
CNN can achieve performance comparable to vision trans-
formers on various vision tasks.

Vision transformers. Since Transformers [Vaswani et al.,
2017; Devlin et al., 2019] achieve tremendous successes
in wide natural language processing (NLP) tasks, many ef-
forts [Dosovitskiy et al., 2020; Liu et al., 2021; Dong et al.,
2021; Tu et al., 2022; Ding et al., 2022; Hatamizadeh et al.,
2023; Yang et al., 2023] have been devoted to developing
stronger Transformer based architectures for various vision
applications. The pioneering work ViT [Dosovitskiy et al.,
2020] directly applies the transformer encoder architecture to
a sequence of image patches. However, ViT requires large
datasets such as JFT300M [Sun et al., 2017] for training.
DeiT [Touvron et al., 2020] utilizes a new training paradigm
to enable training of high-performance ViT architecture with
fewer data. PVT [Wang et al., 2021] leverages the pyra-
mid structure to generate multi-scale feature maps for generl
pixel-level dense prediction tasks. MaxViT [Tu et al., 2022]
introduces multi-axis attention to capture both local and
global context. DaViT [Ding et al., 2022] presents the dual at-
tention mechanism, which contains spatial self-attention and
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Figure 2: CoAtFormer architecture. We follow a typical hierar-
chical design of CNN practices (e.g., ResNet) but instead build a
new type of basic building block that unifies Conv and composite
attention blocks. Normalization layers are omitted for simplicity.

channel self-attention. DualViT [Yao et al., 2023] incorpo-
rates a critical semantic pathway to obtain global semantics
with reduced order of complexity. SMT [Lin et al., 2023]
proposes Multi-Head Mixed Convolution (MHMC) module
and Scale-Aware Aggregation (SAA) module to enhance the
convolutional modulation.

Channel-wise Attention. Channel attention mechanisms
have been widely adopted in CNNs [Hu et al., 2017; Woo
et al., 2018; Qin et al., 2020]. One of the most success-
ful methods is SENet [Hu et al., 2017], which learns chan-
nel attention. It first squeezes the feature maps with global
average pooling and captures the cross-channel relationships
using two fully connected layers. FcaNet [Qin et al., 2020]
learns many valuable frequency components by compressing
channels using the discrete cosine transform (DCT). Some vi-
sion transformers architectures apply channel-wise attention
to reduce the computational costs. XCiT [El-Nouby et al.,
2021] proposes cross-covariance attention (XCA) to compute
channel attention maps. DaViT [Ding et al., 2022] introduces
channel group attention (CGA) to perform image-level inter-
actions within each group.

Our work presents dynamic channel attention to capture
global channel interactions in Transformers. We demon-
strate its power when combined with efficient spatial atten-
tion, forming our composite attention mechanism.

3 Method
3.1 Overall Architecture
We propose Composite Attention Vision Transformers
(CoAtFormer), a general, efficient, yet effective Transformer
backbone capturing both local and global denpendices. The
overall architecture of CoAtFormer is illustrated in Figure 2.
For an input image with size of H ×W × 3, we leverage the
Convolutional Token Embedding layer (two 3×3 convolution
layer with a stride 2) to obtain H

4 ×W
4 ×C1 feature maps. Fol-

lowing the design in modern CNNs (e.g., ResNet [He et al.,
2015]), the whole network has four stages to generate fea-
ture maps of different scales which are important for dense
prediction tasks. To produce the hierarchical representation,
A downsampling layer (3 × 3 convolution, stride 2) is used
between two consecutive stages to reduce the number of to-
kens and increase the channel dimension. In each stage, sev-

eral CoAtFormer blocks are stacked sequentially for feature
transformation while maintaining the number of tokens. The
CoAtFormer block is able to capture local-global representa-
tions.

3.2 CoAtFormer Block
The proposed CoAtFormer block contains a conv encoder and
a composite attention block, as illustrated in Figure 3. We will
detail these parts in the following.

Conv Encoder. The baseline MaxViT [Tu et al., 2022] em-
ploys MBConv block [Sandler et al., 2018] as a local token
mixer. Although MBConv block has been widely used in ef-
ficient models [Tu et al., 2022; Yang et al., 2022a], replacing
them with ”modernize” convolution block [Liu et al., 2022]
does not increase the computational cost. Further, it improves
the performance and generalization without increasing the pa-
rameters. Using conv encoder before attention provides an
additional benefit, as depth-wise convolutions can be con-
sidered as conditional position encoding (CPE) [Chu et al.,
2021], eliminating the need for explicit positional encoding
layers in our model. Specifically, a 3 × 3 depth-wise convo-
lution (DWConv) is first applied to capture the local spatial
interactions between pixels. Then, the derived features are
fed into two point-wise convolutions with GELU activation.
Finally, we introduce a residual connection [He et al., 2015]
to enable information to flow across the network. Formally,
given an input tensor X ∈ RC×H×W (H, W, C are its height,
width, and channels), the conv encoder is represented as fol-
lows:

X̂ = BN(DWConv3×3(X)), (1)

X̂ = Conv1×1(X̂), (2)

X̂ = GELU(X̂), (3)

X̂ = Conv1×1(X̂) +X, (4)

where BN, GELU, Conv1×1, and DWConv3×3 denote Batch
Normalization [Ioffe and Szegedy, 2015], Gaussian error Lin-
ear Unit [Hendrycks and Gimpel, 2016], 1 × 1 point-wise
convolution, and 3× 3 depth-wise convolution, respectively.

Composite Attention Block. The detailed architecture of
the composite attention block is presented in Figure 3. The
composite attention block aims to learn enriched local-global
features. It begins with local convolutional layers to extract
local representations, followed by the composite attention
mechanism. As the core element in a composite attention
block, the composite attention contains two parallel branches.
The two branches share the same input, but focus on rela-
tionships of different global context, which can be comple-
mentary to each other. In each branch, we first extract global
channel or spatial dependencies using Dynamic Channel At-
tention (DCA) Module or Efficient Spatial Attention (ESA)
Module, respectively, then the outputs of two branches can be
merged using concatenation. We then describe our dynamic
channel attention module and efficient spatial attention mod-
ule.
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Figure 3: Composite attention. An illustration of the composite attention block for computing spatial and channel attention. The dynamic
channel attention module captures global channel interactions through a simple graph neural network, while the efficient spatial attention
module is able to compute the global context-aware spatial attention weights with linear complexity.

Dynamic Channel Attention Module. In Figure 3, the top
branch in composite attention aims to model cross-channel
interactions. For an input feature tensor X ∈ RC×H×W ,
we first squeeze global spatial information into a channel de-
scriptor. This is achieved by using T-Pool layer to reduce the
spatial dimension of the input tensor to three by concatenat-
ing the average pooled, max pooled and std pooled features
across that dimension. Mathematically, the channel responses
T ∈ RC×3 are calculated by:

µc =
1

HW

H∑
i=1

W∑
j=1

xc,i,j, (5)

σc =

√√√√ 1

HW

H∑
i=1

W∑
j=1

(xc,i,j − µc)2, (6)

νc = max
i,j

xc,i,j (7)

tc = [µc, σc, νc] . (8)

These channel features can be viewed as a set of unordered
nodes which are denoted as V = {v1, v2, ...vC}. We then
can build a graph G = (V, E), where E stands for all the
edges. Each edge reflects the relation weight between two
nodes. Based on this graph, we employ a double-layer graph
convolution network [Kipf and Welling, 2016] to propagate
information between nodes, the information diffusion process
can be expressed as:

F = h(Ah(ATW1)W2), (9)

where W1 ∈ R3×d1 and W2 ∈ Rd1×d2 are state up-
date matrix to be learned, h denotes a non-linear activation,
which is GELU [Hendrycks and Gimpel, 2016] in our work.

A ∈ RC×C is a correlation matrix for propagating informa-
tion, which contains the relation weight between nodes. In
our experiments, A is randomly initialized and trained in an
end-to-end manner along with the whole model. After graph-
level processing, we aggregate node features F ∈ RC×d2 by
taking average of node feature map on the feature dimension
then exploit a sigmoid activation to generate channel-wise
weights:

S = sigmoid(
1

d2

d2∑
i=1

Fc,i). (10)

Consequently, the output feature maps of DCA module can
be formulated as:

Ydca = X ∗ S, (11)

where ∗ denotes element-wise multiplication.
Compared to the recent SOTA channel group attention

(CGA) [Ding et al., 2022], our proposed DCA enables a more
comprehensive communication through a double-layer graph
convolution network by treating each channel as a node in the
graph. We will verify the effectiveness of DCA in subsequent
sections.

Efficient Spatial Attention Module. In Figure 3, the bot-
tom branch of composite attention focuses on global spatial
context. For an input feature tensor X ∈ RC×H×W , we re-
shape it to get the input token embedding X ∈ Rn×d, where
n = H × W is the number of patches, d = C is the di-
mensions of the token embedding. The input token embed-
ding X is linearly transformed into query Q, key K, and
value V using three matrices Wq, Wk, and Wv, where
Q,K,V ∈ Rn×d, Wq,Wk,Wv ∈ Rd×d. First, we com-
pute the dot products of the query with a learnable global to-
ken vector g ∈ Rd, and then apply a softmax function to
produce the global context scores cs ∈ Rn as:
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α = softmax(
Q.g√

d
). (12)

The global context scores are able to capture the importance
of each query element. Next, the global context scores are
multiplied by the key and pooled, resulting in a single global
context vector as follows:

c =
n∑

i=1

αi ∗Ki. (13)

Then, the global context vector is multiplied element-wise
with the value to form the global spatial information and fed
to a linear layer with weights Wo ∈ Rd×d to obtain the out-
put tensor Yesa, it can be described as:

Yesa = (V ∗ c)Wo. (14)

Finally, the output tensor Yesa is reshaped to the original
input feature dimensions (C × H × W ). Our proposed
ESA module is comparatively cheap to compute compared
to vanilla MHSA [Dosovitskiy et al., 2020] and has linear
complexity with the token length.

After obtaining the outputs from these two branches, we
concatenate them along the channel dimension and then
project the result back to the original dimension:

Ymerged = concat(Ydca,Yesa)Wm, (15)

where, Wm ∈ R2C×C is a weight matrix. We employ the
FFN of vanilla ViT [Dosovitskiy et al., 2020], which consists
of two linear layers and a GELU activation.

With the aforementioned these components, the CoAt-
Former block can be formulated as:

Yl = Conv-Encoder(Xl−1), (16)
Ml = DWConv3×3(Conv1×1(Yl)), (17)
Zl = Composite-Attention(BN(Ml)) +Ml, (18)
Xl = FFN(BN(Zl)) + Zl, (19)

where Yl, Ml and Zl denote the intermediate output features
in the l-th block, respectively. BN denotes the batch normal-
ization [Ioffe and Szegedy, 2015].

3.3 Architecture Variants
For a fair comparison with the other vision Transformer,
we consider four different models with various number
of parameters and computational complexity. Specif-
ically, we introduce CoAtFormer-T(iny), CoAtFormer-
S(mall), CoAtFormer-B(ase) and CoAtFormer-L(arge) vari-
ants, which is corresponded to CoAtFormer-T, CoAtFormer-
S, CoAtFormer-B and CoAtFormer-L, respectively. In all
these variants, the expansion ratio of each FFN is set as 3.
The detail configurations of basic embedding channels C and
number of blocks Ni are presented as following:

• CoAtFormer-T:C = 64, Ni = {1, 3, 12, 1}
• CoAtFormer-S:C = 80, Ni = {1, 3, 12, 1}
• CoAtFormer-B:C = 96, Ni = {1, 6, 18, 1}
• CoAtFormer-L:C = 128, Ni = {1, 10, 22, 1}

Model Year Params FLOPs Top-1 Acc (%)
DeiT-S/16 [Touvron et al., 2020] ICML21 22.1M 4.5G 79.8

PVT-S [Wang et al., 2021] ICCV21 24.5M 3.8G 79.8
Swin-T [Liu et al., 2021] ICCV21 28.3M 4.5G 81.2

ConvNeXt-T [Liu et al., 2022] CVPR22 28.6M 4.5G 82.1
DaViT-T [Ding et al., 2022] ECCV22 28.3M 4.5G 82.8
MOAT-0 [Yang et al., 2022a] ICLR23 27.8M 5.7G 83.3

GPViT-L2 [Hatamizadeh et al., 2023] ICLR23 23.8M 15.0G 83.4
Dual-ViT-S [Yao et al., 2023] TPAMI23 24.6M 4.8G 83.4

GCViT-T [Hatamizadeh et al., 2023] ICML23 28.0M 4.7G 83.5
MaxViT-T [Tu et al., 2022] ECCV22 31.0M 5.6G 83.6

SMT-S [Lin et al., 2023] ICCV23 20.5M 4.7G 83.7
CoAtFormer-T (Ours) 24.3M 4.5G 84.4
Swin-S [Liu et al., 2021] ICCV21 50.0M 8.7G 83.0

ConvNeXt-S [Liu et al., 2022] CVPR22 50.0M 8.7G 83.1
CSwin-S [Dong et al., 2021] CVPR22 35.0M 6.9G 83.6
DaViT-S [Ding et al., 2022] ECCV22 49.7M 8.8G 84.2

MOAT-1 [Yang et al., 2022a] ICLR23 41.6M 9.7G 84.2
CrossrFormer++-B [Wang et al., 2023] TPAMI23 52.0M 9.5G 84.2
GPViT-L3 [Hatamizadeh et al., 2023] ICLR23 36.2M 22.9G 84.1
GCViT-S [Hatamizadeh et al., 2023] ICML23 51.0M 8.5G 84.3

MaxViT-S [Tu et al., 2022] ECCV22 69.0M 11.7G 84.4
Dilate-S [Jiao et al., 2023] TMM23 49.0M 10.0G 84.4
SMT-B [Lin et al., 2023] ICCV23 32.0M 7.7G 84.3
CoAtFormer-S (Ours) 37.5M 7.2G 85.3

Swin-B [Liu et al., 2021] ICCV21 88.0M 15.4G 83.3
ConvNeXt-B [Liu et al., 2022] CVPR22 89.0M 15.4G 83.8
HiViT-B [Zhang et al., 2023] ICLR23 66.4M 15.9G 83.8
CSwin-B [Dong et al., 2021] CVPR22 78.0M 15.0G 84.2

GPViT-L4 [Hatamizadeh et al., 2023] ICLR23 75.4M 48.2G 84.3
DaViT-B [Ding et al., 2022] ECCV22 87.9M 15.5G 84.6

CrossFormer++-L [Wang et al., 2023] TPAMI23 92.0M 16.6G 84.7
MOAT-2 [Yang et al., 2022a] ICLR23 73.4M 17.2G 84.7
MaxViT-B [Tu et al., 2022] ECCV22 120.0M 74.2G 84.9

GCViT-B [Hatamizadeh et al., 2023] ICML23 90.0M 14.8G 85.0
CoAtFormer-B (Ours) 73.4M 15.4G 85.9

Pre-trained on ImageNet-22k
Swin-L [Liu et al., 2021] ICCV21 196.5M 34.5G 86.3

Swin-L [Liu et al., 2021]† ICCV21 196.5M 103.9G 87.3
ConvNeXt-L [Liu et al., 2022] CVPR22 198.0M 34.4G 86.6

ConvNeXt-L [Liu et al., 2022]† CVPR22 198.0M 101.0G 87.5
CSwin-L [Dong et al., 2021] CVPR22 173.0M 31.5G 86.5

CSwin-L [Dong et al., 2021]† CVPR22 173.0M 96.8G 87.5
MOAT-3 [Yang et al., 2022a] ICLR23 190.0M 44.9G 86.8

MOAT-3 [Yang et al., 2022a]† ICLR23 190.0M 141.2G 88.2
GCViT-L [Hatamizadeh et al., 2023] ICML23 201.0M 32.6G 86.6

DaViT-L [Ding et al., 2022]† ECCV22 196.8M 103.0G 87.5
MaxViT-L [Tu et al., 2022]† ECCV22 212.0M 128.7G 88.3

CoAtFormer-L (Ours) 157.6M 36.2G 87.6
CoAtFormer-L (Ours)† 157.6M 105.8G 88.7

Table 1: Comparison of image classification on ImageNet-1K for
different models. All models are trained and evaluated with 224×224
resolution on ImageNet-1K by default, unless otherwise noted. †
denotes the model is evaluated with resolution of 384 × 384.

4 Experiments
To validate the efficacy of CoAtFormer as a general vision
backbone, we conduct experiments on ImageNet-1K [Deng
et al., 2009] classification, COCO [Lin et al., 2014] object
detection and instance segmentation, and ADE20K [Zhou et
al., 2017] semantic segmentation. We also perform compre-
hensive ablation studies to evaluate the effectiveness of each
component of CoAtFormer.

4.1 Image Classification
Setup. For fair comparison, we follow the same training
strategies as previous works [Touvron et al., 2020; Liu et al.,
2021]. Specifically, we train all our models for 300 epochs
with the input size of 224×224. We employ the AdamW op-
timizer with weight decay of 0.05. The default batch size and
initial learning rate are set to 1024 and 0.001. Additionally,
we explore the effectiveness of our models when pretrained
on ImageNet-22K.

Results. In Table 1, we compare our proposed CoAt-
Former with current state-of-the-art models. It shows that
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Figure 4: Visualization: (a) input images (b) efficient spatial attention maps from CoAtFormer-T model (c) corresponding Grad-CAM
attention maps.

our CoAtFormer attains new state-of-the-art and consistently
outperforms other models by large margins. Specifically,
CoAtFormer-T achieves 84.4% Top-1 accuracy with only
4.6G FLOPs, surpassing Swin-T, DaViT-T and MaxViT-T by
3.2%, 1.6% and 0.8% respectively. In addition, when com-
pared to small-sized and base-sized models, our CoAtFormer
also achieves the best performance. Notably, CoAtFormer-S
achieves a top-1 accuracy of 85.3% with only 37.5M param-
eters and 7.2GFLOPs of computation, outperforming many
counterpart-Base models such as Swin-B [Liu et al., 2021],
ConvNeXt-B [Liu et al., 2022], and MaxViT-B [Tu et al.,
2022], which have over 80M parameters and 15GFLOPs of
computation. For example, our CoAtFormer-S attains 2.0%
and 0.7% higher accuracy than Swin-B and DaViT-B, respec-
tively, using near half computations.

We further present the ImageNet-22K pre-training results
in Table 1. CoAtFormer-L achieves an 88.7% top-1 accuracy,
surpassing MOAT-3 [Yang et al., 2022a] by 0.5% while utiliz-
ing fewer parameters (157.5M vs. 190M) and lower FLOPs
(105.8G vs. 141.2G). This highly highlights the remarkable
scalability capabilities of CoAtFormer.

4.2 Object Detection and Instance Segmentation
Setup. We evaluate our models on object detection with
COCO 2017 [Lin et al., 2014]. All the backbones are first
pretrained using ImageNet-1K. The pretrained models are
then plugged into two detectors, Mask R-CNN [He et al.,
2017b] and Cascade Mask R-CNN [Cai and Vasconcelos,
2017] . We follow the finetuning strategy used in Con-
vNeXt [Liu et al., 2022] on the COCO training set.

Results. Table 2 reports the results of our models on
MS COCO dataset. Using a Mask-RCNN detector, our
CoAtFormer-T (49.1/44.8) backbone outperforms counter-
parts with ConvNeXt-T (46.2/41.7) by +2.9 and +3.1 and
DaViT-T (47.4/42.9) by +1.7 and +1.9 in terms of box
AP and mask AP, respectively. Using a Cascade Mask-

Backbone Param (M) FLOPs (G) APbox APbox
50 APmask APmask

50

Mask-RCNN 3× schedule

PVT-S [Wang et al., 2021] 44 245 43.0 65.3 39.9 62.5
Swin-T [Liu et al., 2021] 48 267 46.0 68.1 41.6 65.1
ConvNeXt-T [Liu et al., 2022] 48 262 46.2 67.9 41.7 65.0
DaViT-T [Ding et al., 2022] 48 263 47.4 69.5 42.9 66.8
GCViT-T [Hatamizadeh et al., 2023] 48 291 47.9 70.1 43.2 67.0
CoAtFormer-T 44 263 49.1 70.6 44.8 67.6

Cascade Mask-RCNN 3× schedule

DeiT-S/16 [Touvron et al., 2020] 80 889 48.0 67.2 41.4 64.2
ResNet-50 [He et al., 2015] 82 739 46.3 64.3 40.1 61.7
Swin-T [Liu et al., 2021] 86 745 50.4 69.2 43.7 66.6
ConvNeXt-T [Liu et al., 2022] 86 741 50.4 69.1 43.7 66.5
GCViT-T [Hatamizadeh et al., 2023] 85 770 51.6 70.4 44.6 67.8
CoAtFormer-T 81 742 52.8 71.4 46.3 69.2

Swin-S [Liu et al., 2021] 107 838 51.9 70.7 45.0 68.2
ConvNeXt-S [Liu et al., 2022] 108 827 51.9 70.8 45.0 68.4
GCViT-S [Hatamizadeh et al., 2023] 108 866 52.4 71.0 45.4 68.5
CoAtFormer-S 96 825 53.5 72.8 47.1 70.7

Swin-B [Liu et al., 2021] 145 982 51.9 70.5 45.0 68.1
ConvNeXt-B [Liu et al., 2022] 146 964 52.7 71.3 45.6 68.9
GCViT-B [Hatamizadeh et al., 2023] 146 1018 52.9 71.7 45.8 69.2
MaxViT-B [Tu et al., 2022] 157 856 53.4 72.9 45.7 70.3
CoAtFormer-B 138 960 54.9 74.1 47.5 71.2

Table 2: Object detection and instance segmentation performance on
the COCO val2017 with Mask R-CNN and Cascade Mask R-CNN.
All models are pretrained on ImageNet-1K.

RCNN detector, we also observe substantial gains across
all model configurations. Furthermore, we observe a al-
most saturated mAP in Swin Transformer [Liu et al., 2021]
and GCViT [Hatamizadeh et al., 2023] from small to base
model, while the mAP of our model consistently improves
with larger model size, demonstrating enhanced scalability.

4.3 Semantic Segmentation on ADE20k
Setup. We further benchmark our method for semantic seg-
mentation using the ADE20K dataset. We use UperNet [Xiao
et al., 2018] as the segmentation method and our CoAtFormer
as the backbone. We follow the same training recipe proposed
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Backbone Param (M) FLOPs (G) mIoU

DeiT-Small/16 [Touvron et al., 2020] 52 1099 44.0
Swin-T [Liu et al., 2021] 60 945 44.5
ResNet-101 [He et al., 2015] 86 1029 44.9
ConvNeXt-T [Liu et al., 2022] 60 939 46.0
DaViT-T [Ding et al., 2022] 60 940 46.3
FocalNet-T [Yang et al., 2022b] 61 944 46.5
GCViT-T [Hatamizadeh et al., 2023] 58 947 47.0
CoAtFormer-T 56 940 48.8

Swin-S [Liu et al., 2021] 81 1038 47.6
GCViT-S [Hatamizadeh et al., 2023] 84 1163 48.3
ConvNeXt-S [Liu et al., 2022] 84 1027 48.7
DaViT-S [Ding et al., 2022] 81 1030 48.8
FocalNet-S [Yang et al., 2022b] 83 1035 49.3
Daliate-B [Jiao et al., 2023] 79 1046 50.8
CoAtFormer-S 70 1012 51.3

Swin-B [Liu et al., 2021] 121 1188 48.1
ConvNeXt-B [Liu et al., 2022] 122 1170 49.1
GCViT-B [Hatamizadeh et al., 2023] 125 1348 49.2
DaViT-B [Ding et al., 2022] 121 1175 49.4
FocalNet-B [Yang et al., 2022b] 124 1180 50.2
CoAtFormer-B 106 1173 52.1

Table 3: Comparison with SoTA methods for semantic segmenta-
tion on ADE20K val set. Single-scale inference is used. FLOPs are
measured by 512× 2048.

Model Param (M) FLOPs (G) Top-1 (%)

DCA → ESA 23.1 4.4 84.0
ESA → DCA 23.1 4.4 84.1
Parallel branch (ours) 24.3 4.5 84.4

Table 4: Quantitative comparisons of different composite attention
layouts on ImageNet-1K.

by [Liu et al., 2021]. Specifically, we train UperNet for 160k
iterations with an input size of 512 × 512. We use the AdamW
optimizer with a weight decay of 0.01 and set the batch size
to 16.
Results. In Table 3, the results show that our CoAtFormer
outperforms DaViT, FocalNet, and GCViT significantly un-
der all configurations. Concretely, CoAtFormer-T (48.8),
CoAtFormer-S (51.3) and CoAtFormer-B (52.1) backbones
improve 1.8, 2.5 and 1.9 mIoU gains over counterpart models
with GCViT [Hatamizadeh et al., 2023], respectively.

4.4 Ablation Study
Composite attention layout. We perform experiments on
the arrangement of our composite attention mechanism.
Three options with comparable computations are explored:
(i) dynalic channel attention (DCA) first; (ii) efficient spatial
attention (ESA) first; and (iii) parallel arrangement of both
types of attention. The results are presented in Table 4. It
can be observed that the three strategies yield similar perfor-
mance, with a slight advantage for the ’parallel arrangement
of both types of attention’ approach.
Component analysis. Table 5 demonstrates the signifi-
cance of composite attention block and conv encoder in our

Model Param FLOPs Top-1 (%)

Baseline CoAtFormer-T 24.3M 4.5G 84.4

Different w/o Conv Encoder 22.0M 4.1G 83.4
Components w/o Composite Attention 17.6M 3.3G 81.5

Composite Attention w/o Dynamic Channel Attention 22.0M 4.2G 83.1
Components w/o Efficient Spatial Attention 17.6M 3.3G 82.9

Table 5: Ablation on different components of CoAtFormer and com-
posite attention block. The results show the benefits of composite
attention block in our design.

Fusion method Param (M) FLOPs (G) Top-1 (%)

Concat & project 24.3 4.5 84.4
Sum 19.5 3.6 83.5
Weighted sum 19.6 3.6 83.6

Table 6: Comparison of different fusion methods in composite at-
tention mechanism.

proposed architecture. Substituting composite attention block
with convolution encoder leads to a decrease in accuracy by
2.9%, highlighting the effectiveness of composite attention
block in our design. Moreover, removing conv encoder in all
four stages of the network results in an additional accuracy
reduction of 1.0%. In addition, We also measure the con-
tributions of composite attention components (e.g., dynamic
channel attention (DCA) and efficient spatial attention (ESA)
) in Table 5. Removing DCA module and ESA module de-
crease the accuracy by 1.3 and 1.5, respectively.

Different fusion method. We try two general operations as
the alternatives to the fusion method in composite attention.
One is element-wise addition, the other is weighted sum. The
results are shown in Table 6. It is clear that concatenation
and an project layer as the fusion module achieves the best
model size and accuracy trade-off among the different fusion
methods we evaluated.

5 Interpretability
In Figure 4, we can find that learned spatial attention distribu-
tions align the region of image semantics, and hence demon-
strate the effictiveness of efficient spatial attention. Addition-
ally, corresponding Grad-CAM maps present accurate object
localization with most intricate details.

6 Conclusion
In this work, we propose a novel architecture named CoAt-
Former, which can efficiently capture global channel and spa-
tial contexts by utilizing dynamic channel attention and effi-
cient spatial attention. The proposed CoAtFormer architec-
tures take advantages of both CNNs and transformers to cap-
ture local and global information, improving the representa-
tion ability of the model. Extensive experiments on on Ima-
geNet and other downstream vision applications demonstrate
the effectiveness and superiority of the proposed architecture.
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