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Abstract
Popular transformer-based detectors detect objects
in a one-to-one manner, where both the bounding
box and category of each object are predicted only
by the single query, leading to the box-sensitive cat-
egory predictions. Additionally, the initialization
of positional queries solely based on the predicted
confidence scores or learnable embeddings neglects
the significant spatial interrelation between dif-
ferent queries. This oversight leads to an imbal-
anced spatial distribution of queries (SDQ). In this
paper, we propose a new MLP-DINO model to
address these issues. Firstly, we present a new
Query-Independent Category Supervision (QICS)
approach for modeling categories information, de-
coupling the sensitive bounding box prediction pro-
cess. Additionally, to further improve the category
predictions, we introduce a deep MLP model into
transformer-based detection framework to capture
the long-range and short-range information simul-
taneously. Thirdly, to balance the SDQ, we design a
novel Graph-based Query Selection (GQS) method
that distributes each query point in a discrete man-
ner by graphing the spatial information of queries
to cover a broader range of potential objects, sig-
nificantly enhancing the hit-rate of queries. Exper-
imental results on COCO indicate that our MLP-
DINO achieves 54.6% AP with only 44M param-
eters under 36-epoch setting, greatly outperform-
ing the DINO by +3.7% AP with fewer parame-
ters and FLOPs. The source codes will be available
at https://github.com/Med-Process/MLP-DINO.

1 Introduction
Object detection (OD) plays a crucial role in computer vi-
sion tasks by identifying the bounding boxes and categories
of objects within images [Girshick, 2015; He et al., 2017].
Over the years, convolution-based detectors [Girshick, 2015;
Liu et al., 2016; Lin et al., 2020; Wang et al., 2023] have
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(a) Epoch-AP (b) Params-AP

Figure 1: Comparison of different models of AP w.r.t the training
epochs and parameters on val2017 of COCO. MLP-DINO gets
the best performance under different training epoch settings.

made remarkable advancements in this field. However, those
methods usually rely on hand-designed components and com-
plex pipelines [Carion et al., 2020], which imposes certain
limitations on their performance and scalability.

Recently, transformer-based detectors simplify the pipeline
of OD and get more attention in computer vision community.
DEtection TRansformer (DETR) [Carion et al., 2020] is a
novel end-to-end detection framework that casts OD as a set
prediction problem to match the predicted object and ground
truth by using a bipartite matching method. DETR achieves
comparable results with the classical state-of-the-art detectors
while eliminating the need of hand-designed components.

However, we argue that the DETR-like framework suffers
from the box-sensitive category predictions and imbalanced-
query distribution issues. On one hand, the bipartite match-
ing process in DETR assigns each decoder query to a single
object. The bounding box and category of this object is pre-
dicted simultaneously by the assigned query. This paradigm
results in the category prediction are mutually influenced by
the box prediction. As illustrated in Fig. 2 (a), the pre-
diction scores of the categories decrease as the accuracy
of the box predictions decreases. Here, we mark this is-
sue as the Box-Sensitivity in Category Prediction (BS-ICP).
On the other hand, the existing model [Carion et al., 2020;
Yao et al., 2021; Li et al., 2022; Zhang et al., 2022] select
the positional queries from all tokens solely based on the
predicted confidence scores or static learnable embeddings.
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Figure 2: The models with (-w-) QICS achieves both higher scores
of categories prediction and boosted performance than that of with-
out (-wo-) utilizing QICS on val2017 of COCO dataset. The
DINO and MLP-DINO model use ResNet50 and Strip-MLP-T-
SWMP as the backbone, respectively.

These approaches explicitly neglect the significant spatial in-
formation of each query, leading to an imbalanced spatial dis-
tribution of selected queries. Fig. 3 (a) illustrates that a con-
siderable proportion of query points tends to cluster around
a single object, resulting in lower query hit-rate for other ob-
jects. The hit-rate represents the proportion of the number of
objects that are successfully hit by the query points, out of the
total number of objects within the image.

Query-Independent Global Categories Modeling. For
the issue of BS-ICP, our observations indicate that modeling
the categories information globally would significantly boost
the detection performance. Therefore, we propose the QICS
approach, which contains an image-level classification layer
and classification loss, to reduce the dependency of category
recognition on the box prediction process. In particular, this
approach uses the feature from backbone and encoder to pre-
dict all categories of objects to be detected. Thus, this cat-
egory prediction is query independent and unrelated to each
box predictions, enabling the model to identify all potential
object categories within the image. This query independence
method draws inspiration from the partitioned intelligence
observed in brain organoid.

Long-range and Short-range Information Modeling. In
the original DETR architecture, conventional CNNs, such as
ResNet50 and ResNet101 [He et al., 2016], are employed
as the backbone to generate lower-resolution feature maps.
Then, these feature maps are directly utilized by the sub-
sequent encoder and decoder modules. Here, we make a
hypothesis that incorporating a backbone model capable of
aggregating both long and short range information can sig-
nificantly enhance the detection performance across objects
of varying scales. To verify our hypothesis and further im-
prove the category predictions, we conduct a comprehensive
research on CNN-based, Transformer-based, and MLP-based
backbone architectures in DETR-like frameworks. Recently,
MLP-based models [Liu et al., 2022a] have shown effective-
ness in capturing both long-range and short-range informa-
tion, yielding promising performance in image classification
tasks. We introduce a new MLP-based backbone model into
the DINO framework, and the experiment results demonstrate
their effectiveness. As presented in Fig. 2, the category pre-

An image with 5 objects and 4 classes.

(a) Imbalanced query distribution.
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Figure 3: Example of different spatial distributions of 20 query
points on 5 objects (4 classes marked with different shapes) within
an image. (a) Queries are selected only by the predicted confidence
score, with many query points (in red color) clustering in a single
object (e.g. indicated by the rectangle). (b) By representing query
points as nodes in a graph, we incorporate spatial information into
the query selection process, getting updated distribution of query
points (in black color) and enabling higher hit-rate of queries to ob-
jects, as presented in Table 5.

dictions and detection performance are remarkably improved
with MLP-based backbone model than CNN-based model.

Query Graphing for Distribution Balanced. Query se-
lection is a significant process in DETR-like models [Yao
et al., 2021; Zhang et al., 2022]. In original DETR, the
query has no clear meaning and is simply initialized as learn-
able parameters. The follower-up works [Yao et al., 2021;
Liu et al., 2022b] make efforts mainly on optimizing the
query formulations, such as specifying the composition of the
query [Meng et al., 2021], initializing the query in static [Li et
al., 2022], dynamic [Zhu et al., 2020] or mixed [Zhang et al.,
2022] ways, etc. However, these works neglect the spatial
distribution of queries, leading to an imbalance distribution
in selected queries. As illustrated in Fig. 3 (a), most selected
queries cluster around a large object, leading to many redun-
dant queries and a low query hit-rate on other objects.

We argue that incorporating the spatial information into the
query selection process can effectively mitigate the query re-
dundancy and improve the hit-rate of queries on objects. In
this study, inspired by the functional connectivity networks
observed among biological neurons, we propose a novel GQS
method that utilizes the relative distance information between
paired queries to select decoder queries with higher discrete-
ness. This approach ensures that the selected queries are more
representative and informative. Fig. 3 (b) illustrates a sparser
distribution with higher hit-rate of queries to objects, balanc-
ing the selected queries distribution.

Our new proposed MLP-DINO detector is illustrated
Fig. 4, which is the first attempt to integrate the deep MLP
model into transformer-based detection framework. The per-
formance comparison between MLP-DINO and other popular
models is presented in Fig 1. Our contributions are as follows:

• We design a new MLP-DINO model by introducing the
deep MLP model with our Sharing Weight on Mini-
Patch (SWMP) approach into DINO framework, model-
ing the long and short range information simultaneously,
and propose a QICS method to decouple the box regres-
sion process and boost the category predictions.

• We propose a novel GQS method to balance the spa-
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tial distribution of queries, reducing the redundancy of
queries and improving the hit-rate of query points to ob-
jects, enhancing the model’s performance.

• Extensive experiments indicate that MLP-DINO re-
markably improves the performances of the DINO
model. MLP-DINO achieves 54.6% AP with only 44M
parameters under 36-epoch setting, higher than original
DINO by +3.7% AP with fewer parameters and FLOPs.

2 Related Work
Classical Detectors. Over the past decade, convolution-
based detectors have made tremendous advancements, pri-
marily including anchor-based and anchor-free methods.
Anchor-based methods, like Faster R-CNN [Girshick, 2015]
and Mask R-CNN [He et al., 2017], generate anchor boxes in
the first stage, and then classify them and regress their coor-
dinates relative to the anchor. Anchor-free methods are de-
signed to reduce the dependency on predefined anchors by
directly predicting the locations of bounding boxes or key-
points without the need for explicit anchor boxes, like Cen-
terNet [Duan et al., 2019], YOLOX [Ge et al., 2021]. How-
ever, all those methods rely on handcrafted components such
as Non-Maximum Suppression and complex pipelines, which
significantly limits their performance [Carion et al., 2020].
Transformer-based Detectors. DETR [Carion et al.,
2020] is the first transformer-based detector that directly pre-
dicts objects by utilizing a fixed small set of learned object
queries. Each query is responsible for the prediction of the
class label and bounding box coordinates of a single ob-
ject. Therefore, how to initialize and select these queries
has become crucial research directions in DETR-like mod-
els [Zhang et al., 2022].

Many related works have focused on improving the query
selection method. Instead of randomly initialing the query in
original DETR, Conditional DETR [Meng et al., 2021] de-
couples queries into positional and content queries, and de-
fines the positional query as 2D coordinates to learn a spa-
tial query for better matching with image features. Effi-
cient DETR [Yao et al., 2021] indicates that selecting Top-
K dense prior features is better than random initialization of
queries. DAB-DETR [Liu et al., 2022b] constructs the posi-
tional query with 4D anchor box coordinates to join the object
scales information, improving the query-to-feature similar-
ity. DN-DETR [Li et al., 2022] introduces a denoising query
part to reconstruct the original boxes, accelerating the train-
ing process. Based on DN-DETR, DINO [Zhang et al., 2022]
designs a new query part for rejecting “no object” anchors,
and proposes a mixed query selection method for initializ-
ing query better. Although these works enhance the query
selection process and get improved performance, all of them
ignores the issues of BS-ICP and the imbalanced spatial dis-
tribution of selected queries.
Detection with Deep MLP Models. Since the introduction
of MLP-Mixer [Tolstikhin et al., 2021] into the field of com-
puter vision, many MLP-based variants models [Liu et al.,
2021a; Tang et al., 2022a; Tang et al., 2022b; Cao et al.,
2023] have made significant advancements in image classi-
fication tasks. As an attention-free model, deep MLP model

offers advantages such as simple structure and low compu-
tational complexity, achieving comparable accuracy to other
approaches. Researchers have also observed improved accu-
racy and robustness in object detection tasks by incorporating
the deep MLP model into CNN-based detection frameworks,
such as Mask R-CNN [He et al., 2017] and Cascade Mask
R-CNN [Cai and Vasconcelos, 2018].

However, the reliance on fully-connected (FC) layers in
deep MLP models makes them highly resolution sensi-
tive [Liu et al., 2022a], as the number of neurons in FC
layer is related to the input size of the image, which means
the model cannot accept the input image with arbitrary size.
This sensitivity poses a significant challenge that these mod-
els cannot apply to dense prediction tasks like object de-
tection. Indeed, some deep MLP methods, such as Cycle-
MLP [Chen et al., 2021], Hire-MLP [Guo et al., 2022], and
Wave-MLP [Tang et al., 2022b] have addressed this issue
by employing techniques such as feature shifting or using
smaller kernels within local windows. But, the method of
feature-shifting operation relies on specific model designs
and is not universally applicable to other MLP models. Us-
ing smaller kernels also limits the advantages of long-range
information aggregation of MLP models. Moreover, their
performance in downstream detection tasks is also limited.
Consequently, it is valuable to address the resolution limita-
tion of deep MLP models and extend their application within
transformer-based frameworks.

3 Method
In this section, we first describe the overall architecture of
our new MLP-DINO with deep MLP backbone model. Then,
we introduce the QICS approach for the category modeling
by decoupling the box regression process. Furthermore, we
introduce a Graph-based Query Selection (GQS) method to
balance the SDQ. Finally, we propose the Sharing Weight on
Mini-Patch (SWMP) approach to accept input images with
arbitrary size for MLP-based models.

3.1 Overall Architecture
Our MLP-DINO architecture, depicted in Fig. 4, extends the
robust DINO framework and comprises three key compo-
nents: a backbone for feature extraction, a multi-layer Trans-
former encoder for feature enhancement, and a multi-layer
decoder with two feed-forward networks (FFN) for box pre-
diction. The process begins with feeding an image of arbi-
trary size into the model. The backbone network extracts fea-
tures from this image, resulting in backbone features repre-
sented as b1 ∼ b4. Then, these backbone features are flat-
tened before being fed into the transformer-encoder along
with the positional embedding [Vaswani et al., 2017] and get
enhanced feature e1 ∼ e4. This step serves to boost these
backbone features by leveraging attention mechanisms to dis-
entangle the different objects within the image.

Next, we introduce the QICS approach to address the BS-
ICP issue and introduce the Strip-MLP [Cao et al., 2023]
model into detection framework to further boost the cate-
gory predictions. Strip-MLP is a MLP-based model that ag-
gregates long-range and short-range information simultane-
ously and efficiently improves the token interaction power,
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Figure 4: The overall architecture of the proposed MLP-DINO. b1 ∼ b4 and e1 ∼ e4 represent the output features from the deep MLP
backbone and transformer-encoder, respectively. These features are at different levels and resolutions.

showing promising performance in classification tasks. How-
ever, the main limitation of the Strip-MLP is that it cannot
accept images with arbitrary input sizes, as the number of
neurons in MLP layers must align with the size of the input
feature, which is still the common challenge in MLP-based
models [Liu et al., 2022a]. To overcome this limitation, we
reformulate the Strip-MLP model with our SWMP approach
to accept images with arbitrary size.

To address the issue of imbalanced query distribution, we
propose a new graph-based GQS method on encoder features
to select decoder queries in a discrete manner. In general,
each object is directly detected by a single query. However,
the number of queries is typically much larger than the num-
ber of objects within the image to be detected. The key in-
sight behind this approach is that queries with higher hit-rate
on objects tend to achieve better detection performance.

Finally, with selected positional queries, we update the po-
sitional bias of box predictions layer-by-layer with the de-
formable attention [Zhu et al., 2020] in transformer-decoder.
The detection results of boxes and corresponding classes are
finally predicted by two FFN networks, respectively.

3.2 Query-Independent Category Supervision
In DETR-like models, a single decoder query predicts the
bounding box and category simultaneously, leading the box-
sensitive category prediction. That means the category pre-
diction is affected by the box regression process. As illus-
trated in Fig. 2, as the IoU of the box regression decreases, the
category score also decreases. To address this issue, we pro-
pose a QICS approach, which contains a Global Classifica-
tion Module (GCM) and a Global Classification Loss (GCL),
aiming to decouple the box regression process and identify
all potential object categories within the image.

In DETR, the backbone and encoder features contain more
global semantic information rather than query-specific in-
stance information. As shown in Fig. 4, the query is only
explicit involved in the decoder part of the network for the
box prediction. Accordingly, to enable query-independent
global category prediction, we apply QICS solely to the back-
bone feature and encoder features, which contain a wealth of
category information of all objects. Specifically, the GCM
in QICS achieves query-independent category prediction by

utilizing global average pooling (GAP) [Lin et al., 2013] to
pool features from different levels with varying spatial dimen-
sions. This process reduces the spatial dimension of the input
features to 1, making them independent of any queries and
effectively reducing the spatial complexity of the GCM mod-
ule. Subsequently, we concatenate the pooled features from
different levels along the channel dimension to generate mul-
tiple image-level category predictions.

Finally, a linear layer is adopted to predict all classes of the
objects within the image. The GCM can be formulated as:

GCM(X) = Linear(Cat(GAP (X1, X2, X3, X4))) (1)

where X is the input feature, and X1 ∼ X4 are the input fea-
tures at four levels with different spatial resolutions. Linear
is a head of FC layer for predicting the categories of objects.

With those class prediction results, we achieve the query-
independent category supervision by adopting the binary
cross-entrophy (BCE) loss, which can be defined as:

lbce = − 1

N

N∑
i=1

yi log(σ(xi))−(1−yi) log (1− σ(xi)) (2)

where yi is the binary label for each object category among
N images. A label of 1 indicates that the image contains an
object belonging to a specific category, while a label of 0 de-
notes the absence of the target category within the image. xi

is the prediction from the GCM. σ(∗) is the sigmoid func-
tion. With such a light-weight module (nearly 0.02M), our
QICS approach contributes to decoupling the box regression
process and identifying all potential object categories within
the image from a global perspective.

3.3 Graph-based Query Selection
In DETR-like models, the performance suffers from the spa-
tial distribution of the decoder queries, as each detection re-
sult is directly predicted from the corresponding query. Con-
sequently, a series of research works have focused on the
query formulations [Meng et al., 2021; Zhu et al., 2020;
Liu et al., 2022b; Zhang et al., 2022], including the num-
ber and pattern of queries, the composition of queries, the
initialization method of queries, and so on. However, these
existing works ignores the spatial distribution information of
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the queries, which significantly reduces the effectiveness of
both the redundant queries and the model.

To deal with this concern, we propose a new GQS method
to balance the distribution of positional queries by incorpo-
rating the spatial distribution information of queries into the
Top-K method. To be specific, we design a two-step query se-
lection method for positional queries, where Nq is the number
of queries to be selected for the decoder. The output features
from the transformer-encoder have different resolutions at 4
levels, denoted as Fe = {e1, e2, e3, e4}. In the first step, these
features are flattened and concatenated in the spatial dimen-
sion. Then, this feature is fed into a head of linear layer to
obtain the class predictions. We sort these predictions based
on their scores and get the Top-K indices of the queries for
the second step, where K = λNq (λ ⩾ 1). The first step can
be formulated as:

QNq = TopK(Argmax(Linear(Cat(e1, e2, e3, e4))))
(3)

where QNq
means the selected candidate queries.

Argmax(∗) gets the highest scores among all class
predictions. Cat(∗) denotes the concatenation operation.

In our second step, we leverage the relative positional in-
formation to select Nq queries from the larger candidate pool
of λNq queries, where each query corresponds to a specific
location (or point) within the 2D spatial space. Considering
that each query point can be located anywhere on the 2D spa-
tial space, we construct a graph, denoted by G, to describe the
relative positional distribution of the query points, with each
query’s spatial coordinate serving as a node, as illustrated in
Fig. 3 (b). The edges between nodes reflect the spatial relative
distance between each paired queries. Specifically, we adopt
the Euclidean Distance (ED) as the distance metric to mea-
sure the relative distance of all paired queries. Based on these
distances, we further create an adjacency matrix, referred as
A ∈ RλNq×λNq for the graph G, where each row and column
of A corresponds to a query point, and the distance value in
each cell represents the weight of the edge between the cor-
responding pair of query points in G.

The objective of our approach is to distribute the query
points in a discrete manner in the 2D spatial space of the
feature, to cover a larger number of potential objects and in-
crease the query hit-rate. Due to the varying sizes between
images, it is challenging to only adopt the absolute distance
information to accurately represent the distribution of queries
in a uniform manner. To this end, we utilize the Coefficient
of Variation (CV) [Abdi, 2010], also known as Normalized
Root-Mean-Square Deviation (NRMSD), aiming to measure
the discreteness of each query point. The CV denoted CV

is a standardized statistical measure of the dispersion of dis-
tance distribution, which is defined as the ratio of the standard
deviation σ to the mean µ:

CV =
σ

µ
(4)

With the adjacency matrix A, we can calculate the standard
deviation Aσ and mean Aµ of positional distribution along
the second dimension of A for each query. By computing
the ratio of Aσ to Aµ, we obtain the CV of A denoted as
ACV

. The values in ACV
represent the level of discreteness

in the distance distribution between query points. A lower
value indicates a more concentrated distribution of distances
between the current point and other points, implying that the
current point is more scattered.

After obtaining the discreteness and classification predic-
tion scores of each query, we design the criterion with these
two matrix in Eq. 5 for query selection. In particular, we ap-
ply the Top-K strategy once again on this new criterion to
select Nq queries with higher scores from the pool of λNq

queries. Specifically, query points with higher confidence
scores and larger discreteness will be selected as the final
queries. This process can be formulated as:

Q = TopK(σ(QNq
)⊙ (1−ACV

)) (5)

where K = Nq , and σ means the sigmoid function. ⊙ means
the Hadamard product of the matrix.

3.4 SWMP for Fixed Image Size of Deep MLP
As described in the previous section of Related Work
about deep MLP Models, their reliance on FC layers for
token interaction presents a significant challenge that MLP-
based models pre-trained on image classification datasets are
not easily transferable to downstream dense prediction tasks,
which significantly limits their development and application.

To address this challenge, we propose a new SWMP ap-
proach, which involves applying MLP layers with shared
weights on mini-patches within cross-regions. Initially, we
assume that a pre-trained MLP model is available for image
classification with a fixed input size of Ho × Wo. For the
downstream task such as object detection, where input im-
ages have varying sizes of H ×W , we crop (or pad) the im-
age into mini-patches with overlap, ensuring each patch has
the same size as Ho × Wo. The overlap size of lh and lw
is determined adaptively by the remainder of H and W di-
vided by Ho and Wo, respectively. Afterwards, we utilize the
shared MLP layer to process all these mini-patches. To re-
store those processed patches to their original size, we com-
bine the overlapping regions of the patches with an average
weight. The SWMP approach is a general method to transfer
the MLP-based models into resolution-free models, making
them suitable for a wider range of dense prediction tasks.

4 Experiments
4.1 Experiments Setup
The experiments are conducted on the benchmark dataset of
COCO2017 [Lin et al., 2014], which contains 118k train-
ing images of train2017 and 5k validation images of
val2017. We develop MLP-DINO model by reformulat-
ing the Strip-MLP [Cao et al., 2023] with our SWMP method
to integrate it into original DINO [Zhang et al., 2022] frame-
work, incorporating with the QICS and GQS to model the
category and balance the query distribution. For a fair com-
parison, we follow the training recipe in DINO and train the
model with AdamW [Loshchilov and Hutter, 2017] optimizer
with weight decay of 1× 10−4 using Tesla V100 GPUs, with
the batch size of 8. The number of decoder queries and de-
noising queries are 900 and 100 for all of our models, respec-
tively. The default value of λ is 2 for GQS. All MLP-DINO
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Model Backbone Epochs AP AP50 AP75 APS APM APL Params GFLOPs
Faster-RCNN [Ren et al., 2015] ResNet50 108 42.0 62.4 44.2 20.5 45.8 61.1 42M 180G

DETR [Carion et al., 2020] ResNet50 500 42.0 62.4 44.2 20.5 45.8 61.1 41M 86G
DETR-DC5 [Carion et al., 2020] ResNet50 500 43.3 63.1 45.9 22.5 47.3 61.1 41M 187G

Deformable-DETR [Zhu et al., 2020] ResNet50 50 46.2 65.2 50.0 28.8 49.2 61.7 40M 173G
Efficient-DETR [Yao et al., 2021] ResNet50 36 44.2 62.2 48.0 28.4 47.5 56.6 32M 159G

Conditional DETR [Meng et al., 2021] ResNet50 108 43.0 64.0 45.7 22.7 46.7 61.5 44M 90G
DAB-DETR [Liu et al., 2022b] ResNet50 50 42.6 63.2 45.6 21.8 46.2 61.1 44M 100G

DN-DETR [Li et al., 2022] ResNet50 50 44.1 64.4 46.7 22.9 48.0 63.4 44M 94G
Focus-DETR [Zheng et al., 2023] ResNet50 36 50.4 68.5 55.0 34.0 53.5 64.4 48M 154G

DETR [Carion et al., 2020] ResNet101 500 43.5 63.8 46.4 21.9 48.0 61.8 60M 152G
Conditional DETR [Meng et al., 2021] ResNet101 108 44.5 65.6 47.5 23.6 48.4 63.6 63M 156G

Efficient-DETR [Yao et al., 2021] ResNet101 36 45.2 63.7 48.8 28.8 49.1 59.0 51M 239G
DAB-DETR [Liu et al., 2022b] ResNet101 50 44.1 64.7 47.2 24.1 48.2 62.9 63M 179G

DN-DETR [Li et al., 2022] ResNet101 50 45.2 65.5 48.3 24.1 49.1 65.1 63M 174G
DINO [Zhang et al., 2022] ResNet50 12 49.0 66.6 53.5 32.0 52.3 63.0 47M 279G

Grounding DINO [Liu et al., 2023] ResNet50 12 48.1 65.8 52.3 30.4 51.3 62.3 - -
Co-DETR-4scale [Zong et al., 2023] ResNet50 12 49.5 67.6 54.3 32.4 52.7 63.7 - -
Co-DETR-5scale [Zong et al., 2023] ResNet50 12 52.1 69.4 57.1 35.4 55.4 65.9 - -
H-Deformable-DETR [Jia et al., 2023] Swin-T 12 50.6 - - 33.4 53.7 65.9 - -

DINO [Ren et al., 2023] Swin-T 12 51.3 69.0 56.0 34.5 54.4 66.0 48M 278G
DINO (ours) Strip-MLP-T-SWMP 12 51.7 69.5 56.8 34.7 55.1 66.0 44M 263G

MLP-DINO (ours) ResNet50 12 50.1 67.5 54.6 33.2 53.1 64.9 47M 279G
MLP-DINO (ours) Swin-T 12 52.2 69.8 57.1 34.3 55.3 67.1 48M 280G
MLP-DINO (ours) Strip-MLP-T-SWMP 12 52.4 70.3 57.3 36.1 56.0 66.7 44M 263G

DINO [Zhang et al., 2022] ResNet50 24 50.4 68.3 54.8 33.3 53.7 64.8 47M 279G
MLP-DINO (ours) ResNet50 24 51.1 68.7 55.9 34.6 54.3 65.3 47M 279G
MLP-DINO (ours) Swin-T 24 54.0 71.7 59.0 36.8 57.1 68.7 48M 280G
MLP-DINO (ours) Strip-MLP-T-SWMP 24 54.0 72.2 58.9 36.2 57.6 68.9 44M 263G

DINO [Zhang et al., 2022] ResNet50 36 50.9 69.0 55.3 34.6 54.1 64.6 47M 279G
H-Deformable-DETR [Jia et al., 2023] Swin-T 36 53.2 - - 35.9 56.4 68.2 - -

MLP-DINO (ours) ResNet50 36 51.5 69.2 56.2 35.6 54.6 65.8 47M 279G
MLP-DINO (ours) Swin-T 36 54.3 72.2 59.4 38.2 57.4 69.1 48M 280G
MLP-DINO (ours) Strip-MLP-T-SWMP 36 54.6 (+3.7) 72.9 59.5 37.4 58.4 69.9 44M 263G

Table 1: Comparison results of MLP-DINO with other popular detection models under different backbones and training epochs on val2017
of COCO. Models of DINO and MLP-DINO adopt 4 scales of feature maps from the backbone network.

models adopt 4-scale features from the backbone. All our
models are trained for 12 epochs (1× training scheduler) in
the ablation study, except for specially marked ones. The de-
tection performance is measured by the standard average pre-
cision (AP) under different IoU thresholds and object scales.

4.2 Main Results
Our MLP-DINO enhances the DINO model by effectively
modeling the category information and balancing the query
distribution. Table 1 presents a comprehensive comparison
of our MLP-DINO with other DETR-like detectors [Carion
et al., 2020; Zhu et al., 2020; Yao et al., 2021; Meng et al.,
2021; Liu et al., 2022b; Li et al., 2022; Zheng et al., 2023;
Jia et al., 2023; Zhang et al., 2022], as well as Faster R-
CNN [Ren et al., 2015]. MLP-DINO achieves the best per-
formance on all evaluation metrics. In particular, under the
12-epoch setting, MLP-DINO achieves 52.4% AP with fewer
parameters and GFLOPs, higher than original DINO [Zhang
et al., 2022] by +3.4% AP. In addition, in both 24-epoch and
36-epoch settings, our MLP-DINO consistently outperforms
all other methods, demonstrating superior performance.

4.3 Ablation Study
Ablation on All Components of MLP-DINO. In Table 2,
we present the results of ablation studies, using DINO as the
baseline model with the backbone of ResNet50. The incor-
poration of the Strip-MLP-T-SWMP backbone leads to a sig-
nificant improvement of +2.7% AP compared to the baseline,
highlighting the importance of modeling long and short range

Eps BackB QICS GQS AP AP50 AP75 APS APM APL

12

49.0 66.6 53.5 32.0 52.3 63.0
✓ 51.7 69.5 56.8 34.7 55.1 66.0
✓ ✓ 52.3 70.2 57.3 35.7 55.9 66.6
✓ ✓ 52.3 70.3 57.3 35.7 56.0 66.6
✓ ✓ ✓ 52.4 70.3 57.3 36.1 56.0 66.7

Table 2: Ablation results on all components of the MLP-DINO.

information in the backbone network. Fig. 2 illustrates that
both the category predictions and detection performance are
improved with the MLP model and QICS approach. Addi-
tionally, the models show an additional performance boost of
+0.6% AP when QICS or GQS is applied individually.

General Effectiveness of QICS and GQS. To verify the
general effectiveness of the QICS and GQS approaches,
we apply these two approach to different backbone archi-
tectures, including both CNN-based and Transformer-based
models. Table 3 displays the ablation results, indicating
that both QICS and GQS lead to the average improvement
of +0.7%/+0.8% AP on ResNet50 and SwinT, respectively.
These results demonstrate the general effectiveness of these
approaches across different DINO models.

Ablation on Different Backbones in DINO. To verify the
effectiveness of modeling the long-range and short-range in-
formation, we conduct experiments with different backbones
in DINO, such as CNN-based, Transformer-based, and MLP-
based models. Table 4 clearly demonstrates that the models
incorporating long-range information, such as Swin-T [Liu
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QICS GQS BackB AP AP50 AP75 APS APM APL

R50 49.0 66.6 53.5 32.0 52.3 63.0
✓ R50 49.7 (+0.7) 67.0 54.5 33.2 52.9 63.9

✓ R50 49.8 (+0.8) 67.1 54.6 32.6 53.0 64.3
Swin-T 51.3 69.0 56.0 34.5 54.4 66.0

✓ Swin-T 52.2 (+0.9) 69.8 56.9 35.0 55.1 67.0
✓ Swin-T 52.0 (+0.7) 69.7 56.8 35.0 54.7 66.7

Table 3: The ablation results of the QICS and GQS on the DINO of
CNN-based and Transformer-based backbones.

et al., 2021b] and Strip-MLP-T, outperform ResNet50, which
only models short-range information. Impressively, we find
that Strip-MLP-T gets higher performance than ResNet50
and Swin-T by +2.0% and +0.4% AP, respectively, show-
ing that the Strip-MLP model is more robust and efficient to
aggregate features. The results highlight the advantage of in-
corporating both the long-range and short-range information,
as it provides more robust feature and enhances the category
predictions, as shown in Fig. 2.

Backbone Type AP AP50 AP75 APS APM APL

ResNet50 S 49.0 66.6 53.5 32.0 52.3 63.0
Swin-T L 51.3 69.0 56.0 34.5 54.4 66.0

Strip-MLP-T S&L 51.7 69.5 56.8 34.7 55.1 66.0

Table 4: The ablation comparison of different backbones in DINO.
The type of S and L represent short-range and long-range informa-
tion built by the model, respectively. The number of parameters and
FLOPs of Strip-MLP-T model is fewer than ResNet50 and Swin-T.

Effectiveness of GQS on Hit-Rate. We conduct a statisti-
cal analysis of the hit-rate for each model with different back-
bones. In Table 5, all models with GQS consistently get better
performance and higher hit-rate, indicating that GQS effec-
tively leverages the spatial distribution of queries and thus
improve the detection performance of the model.

Model BackB GQS AP AP50 AP75 APS APM APL Hit-Rate
DINO R50 49.0 66.6 53.5 32.0 52.3 63.0 0.8118
DINO R50 ✓ 49.8 67.1 54.6 32.6 53.0 64.3 0.8154
DINO Swin-T 51.3 69.0 56.0 34.5 54.4 66.0 0.8252
DINO Swin-T ✓ 52.0 69.7 56.8 35.0 54.7 66.7 0.8299
DINO Wave-T 49.7 67.2 54.0 33.9 53.1 63.0 0.8005
DINO Wave-T ✓ 50.4 68.0 54.9 33.1 53.8 64.0 0.8117

MLP-DINO Strip-T 51.7 69.5 56.8 34.7 55.1 66.0 0.8316
MLP-DINO Strip-T ✓ 52.3 70.3 57.3 35.7 56.0 66.6 0.8342

Table 5: Ablations of GQS on different backbone models.

Ablation of QICS on Different Features. The QICS ap-
proach aims to decouple the box regression process and iden-
tify all potential object categories within the image. To show
the different impacts of QICS on different features, we ap-
ply the QICS to the different part of backbone features of
b1 ∼ b4 and encoder features of e1 ∼ e4. As presented in
Table 6, the ablation study reveals that the best results are
achieved when applying QICS only to the high-level feature
b4 and the enhanced features of e1 ∼ e4, as the low-level

Different Features QICS AP AP50 AP75 APS APM APL

baseline 51.7 69.5 56.8 34.7 55.1 66.0
b1 ∼ b4 ✓ 51.7 69.6 56.7 35.0 55.5 65.8

b4 ✓ 51.8 69.6 56.7 34.6 55.2 66.2
e1 ∼ e4 ✓ 52.2 70.0 57.2 35.2 56.1 66.8

b1 ∼ b4 and e1 ∼ e4 ✓ 52.1 69.9 57.0 33.9 55.8 66.7
b4 and e1 ∼ e4 ✓ 52.3 70.2 57.3 35.7 55.9 66.6

Table 6: Ablation results of applying QICS to different part of back-
bone features and encoder features of MLP-DINO.

features of b1 ∼ b3 lack of necessary semantic category in-
formation. It would introduce additional noises and decrease
accuracy when the QICS is applied to the low-level feature of
b1 ∼ b3. Therefore, we apply the QICS on the features of b4
and e1 ∼ e4 for other experiments of this work.
Ablation of the Queries Pool Size for GQS. In the first
step of GQS method, the hyper-parameter of λ determines
the size of queries candidate pool. A smaller value, such as
λ = 1, would result in the method degrading to the original
Top-K approach. On the other hand, a larger value of λ in-
dicating more candidate queries would introduce additional
noise and complicate the training and optimization process.
Consequently, choosing an appropriate value for λ is crucial
to enhance the model’s performance. We conduct additional
experiments using various λ to identify the optimal values.
Table 7 displays the results, indicating that λ = 2 achieves
the best performance for the GQS method. Therefore, we set
λ = 2 for the GQS method in our MLP-DINO models.

λ AP AP50 AP75 APS APM APL

1 51.7 69.5 56.8 34.7 55.1 66.0
2 52.3 70.3 57.3 35.7 56.0 66.6
3 51.9 69.4 56.7 34.6 55.7 66.2

Table 7: The ablation results of different queries candidate pool size
of λ for GQS. The backbone model is Strip-MLP-SWMP.

5 Conclusion
This paper introduces a novel MLP-DINO model, which
is the first attempt to integrate deep MLP models into
transformer-based detection framework, leveraging the
strengths of both models. We emphasize the crucial roles
of both category modeling and balanced query distribution
in DETR-like models. To address this, we decouple the cat-
egory prediction process by a novel QICS approach and fur-
ther enhance the category predictions by introducing the deep
MLP models into DINO with our general SWMP approach,
enabling the MLP models to accept the input image of any
size and greatly extending their application to downstream
dense prediction tasks. In addition, we design a new GQS
method to balance the query distribution, leveraging the spa-
tial information of queries into query selection process. Our
extensive experimental results demonstrate the effectiveness
and potential of MLP-DINO in detection task. We hope that
our results can spark further research based on MLP-DINO
in computer vision community, such as the segmentation and
other vision tasks.
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