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Abstract
By learning expressive representations, deep learn-
ing (DL) has revolutionized autonomous driving
(AD). Despite significant advancements, the inher-
ent opacity of DL models engenders public dis-
trust, impeding their widespread adoption. For ex-
plainable autonomous driving, current studies pri-
marily concentrate on extracting features from in-
put scenes to predict driving actions and their cor-
responding explanations. However, these meth-
ods underutilize semantics and correlation infor-
mation within actions and explanations (collec-
tively called categories in this work), leading to
suboptimal performance. To address this issue,
we propose Semantic-Guided Dynamic Correla-
tion Learning (SGDCL), a novel approach that ef-
fectively exploits semantic richness and dynamic
interactions intrinsic to categories. SGDCL em-
ploys a semantic-guided learning module to obtain
category-specific representations and a dynamic
correlation learning module to adaptively capture
intricate correlations among categories. Addi-
tionally, we introduce an innovative loss term to
leverage fine-grained co-occurrence statistics of
categories for refined regularization. We exten-
sively evaluate SGDCL on two well-established
benchmarks, demonstrating its superiority over
seven state-of-the-art baselines and a large vision-
language model. SGDCL significantly promotes
explainable autonomous driving with up to 15.3%
performance improvement and interpretable atten-
tion scores, bolstering public trust in AD.

1 Introduction
The field of autonomous driving (AD) has witnessed sig-
nificant strides, mainly owing to recent advancements in
deep learning (DL). Despite their efficiency, DL models typ-
ically operate as opaque black-box neural networks, offering
limited explainability. The significance of explainability in
AD is emphasized by various studies that illustrate its influ-
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Figure 1: Illustration of the problem studied by SGDCL. The model
predicts driving actions and provides corresponding explanations.

ence on public trust and regulatory oversight [Atakishiyev et
al., 2021; Omeiza et al., 2021; Goldman and Bustin, 2022;
Madhav and Tyagi, 2022; Zablocki et al., 2022]. For in-
stance, Madhav et al. emphasize that increased transparency
in the AD’s decision-making processes is crucial for users to
trust these systems [Madhav and Tyagi, 2022]. Similarly, the
survey conducted by Omeiza et al. finds that the societal ac-
ceptance of autonomous vehicles largely hinges on their ex-
plainability and trustworthiness [Omeiza et al., 2021].

In explainable autonomous driving (EAD), Xu et al.
introduce a new multi-task and multi-label classification
paradigm [Xu et al., 2020]. As depicted in Figure 1, the ob-
jective extends beyond the mere prediction of forthcoming
driving actions (e.g., “Stop”) and includes generating a set of
plausible explanations (e.g., “Red Traffic Light”). These jus-
tifications are vital for enhancing the explainability of the AD
system, thereby bolstering public trust. To this end, various
methods have been developed [Zablocki et al., 2022]. For
example, OIA [Xu et al., 2020] utilizes an object detector to
identify action-inducing objects while F-Transformer [Dong
et al., 2023] employs a transformer-based [Vaswani et al.,
2017] module to obtain a global scenario understanding.
Limitations. Despite considerable developments, current
EAD methods suffer from two fundamental deficiencies.
Firstly, there is an inadequate exploitation of the semantic in-
formation inherent in actions and explanations (referred to as
categories in this work). This semantic richness can guide
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the learning of more discriminative representations. For in-
stance, the explanation “Solid Line on the Left” should direct
the model to focus on the left-side lane marking, a feature
frequently overlooked by object detectors and transformers
in existing EAD models. Secondly, current approaches ne-
glect the dynamic correlations among categories. These inter-
category relations are imperative for avoiding inconsistencies
between predicted categories and identifying categories that
image feature extractors may ignore. For example, detecting
a “Red Traffic Light” should trigger the “Stop” action and in-
herently inhibit the “Go Forward” action, potentially coupled
with anticipating the “Obstacle: Person” explanation.
Contributions. To address these limitations, we introduce
Semantic-Guided Dynamic Correlation Learning (SGDCL).
SGDCL is designed to leverage semantics within categories
to learn category-specific representations and model their in-
teractions for enhanced performance. Specifically, SGDCL
utilizes a semantic-guided learning module to refine features
for each category. This allows each category to focus on its
semantically relevant scene regions, resulting in more distinc-
tive representations. Building on this, we use graphs derived
from co-occurrence statistics of categories to link these repre-
sentations. We then employ a graph neural network to explore
their intricate interplay. In particular, SGDCL implements a
graph attention network [Veličković et al., 2018] to dynam-
ically assess category relevance for each sample while con-
sidering the heterogeneity of graphs. Moreover, we devise a
readout function to obtain a compact graph-level embedding
by combining node-level representations, facilitating a holis-
tic understanding of the scene. To regularize model training,
we introduce a novel loss function term that harnesses co-
occurrence statistics of categories in a fine-grained manner.
In summary, our contributions are as follows:

• We exploit a semantic-guided learning module that di-
rects categories to their relevant scene regions, gen-
erating more discriminative category-specific features.
These tailored features accurately signal a category’s
presence, enhancing prediction performance.

• We develop a dynamic correlation learning module with
the pioneering usage of co-occurrence statistics for regu-
larization. This module dynamically determines sample-
specific category interactions, providing extra insights
for more consistent and comprehensive predictions.

• We extensively evaluate SGDCL on two widely used
benchmarks, showcasing its superiority over seven state-
of-the-art baselines and a large vision-language model.
Notably, SGDCL improves the performance up to 15.3%
and provides interpretable attention scores, advancing
the explainability of AD systems by a large margin.

2 Related Work
Explainable Autonomous Driving. Explainability in au-
tonomous driving systems is pivotal to bolster human trust in
self-driving vehicles [Atakishiyev et al., 2021; Omeiza et al.,
2021; Goldman and Bustin, 2022; Madhav and Tyagi, 2022;
Zablocki et al., 2022]. Explainable autonomous driving goes
beyond driving action predictions and strives to elucidate the

explanations behind the predicted actions, which has wit-
nessed significant innovation [Cultrera et al., 2020; Koh et al.,
2020; Xu et al., 2020; Jing et al., 2022; Zhang et al., 2022;
Dong et al., 2023; Feng et al., 2023]. Xu et al. introduce
a dataset for benchmarking prediction of actions and expla-
nations, alongside a model based on Faster R-CNN [Ren et
al., 2015] to recognize action-inducing objects [Xu et al.,
2019]. To attain a comprehensive scene understanding, NLE-
DM [Feng et al., 2023] and F-Transformer [Dong et al.,
2023] adopt a scene segmentation module and a transformer-
based [Vaswani et al., 2017] architecture, respectively. More-
over, ABIM [Zhang et al., 2022] and InAction [Jing et al.,
2022] consider the interrelations among traffic-related objects
to improve explainability. Nonetheless, these methods over-
look the semantics embedded in categories. For example, nei-
ther object detectors nor scene segmentation models focus on
the lane line, a crucial feature for explanations such as “Solid
Line on the Right”. To this end, our SGDCL exploits category
semantics to learn category-specific representations that at-
tend to relevant semantic regions. Furthermore, the interplay
between categories, which can benefit prediction, remains un-
explored. For instance, detecting a “Red Traffic Light” should
inform both the “Stop” action and possible “Obstacle: Per-
son” explanation. To model such interactions, we propose
to construct graphs based on co-occurrence statistics of cate-
gories and conduct message passing on generated graphs us-
ing a graph neural network (GNN) [Wu et al., 2020].
GNNs for Relationship Exploration. Applying GNNs to
explore relationships among multiple elements has proven
effective across various fields [Chen et al., 2019a; Chen et
al., 2019b; Wang et al., 2020; Ye et al., 2020; Chen et
al., 2021b]. For image recognition, SSGRL [Chen et al.,
2019a] employs a gated recurrent unit (GRU) for message
propagation on graphs and refining node-level features. ML-
GCN [Chen et al., 2019b] applies a graph convolutional net-
work (GCN) [Kipf and Welling, 2017] to aggregate infor-
mation and update node representations. However, directly
applying these strategies for the joint prediction of actions
and explanations yields suboptimal results due to (i) the ig-
nored heterogeneity of nodes (i.e., action nodes and expla-
nation nodes) and edges in the constructed category graph,
(ii) the simplistic utilization of node-level features, and (iii)
underexplored category correlation information. These over-
sights result in the neglect of essential information: (i) the
differences in the interaction patterns between heterogeneous
nodes, (ii) an overall understanding of the driving scenario,
and (iii) the individual and collective interplay among cate-
gories. In contrast, our SGDCL (i) distinguishes edge types
and corresponding interplay patterns during message passing,
(ii) derives a more expressive graph-level representation from
node features through a readout function, and (iii) incorpo-
rates a graph attention module to dynamically learn category
correlations with the seminal implementation of fine-grained
co-occurrence statistics for global regularization.

3 Method
This section elaborates on our proposed method, namely
SGDCL. It begins with an explicit definition of the problem
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Figure 2: Framework of SGDCL. SGDCL comprises four main components: encoders, semantic-guided learning (SGL) module, dynamic
correlation learning (DCL) module, and classifier heads. The training objective of SGDCL consists of three loss terms: Lact, Lexp, and Lcor .

under study, followed by a systematic overview of our ap-
proach. Subsequently, we delve into in-depth discussions of
model design and the formulation of training objectives.

3.1 Problem Definition
Given a frame captured by an AD vehicle’s dashboard cam-
era (dash-cam), we aim to predict and explain the probable
subsequent driving actions. Building on prior work [Xu et
al., 2020], we frame this problem as a multi-task and multi-
label learning task. For a given dash-cam image xi from
the input space X , our goal is to forecast a set of feasi-
ble actions yi ∈ Y along with their corresponding explana-
tions ei ∈ E . Here Y and E together constitute the output
space. Note that multiple actions for a scene (e.g., “Stop” and
“Turn Left” when an obstacle is detected ahead) and mul-
tiple explanations for an action (e.g., “Obstacle: Car” and
“Red Traffic Light” for the “Stop” action) are plausible. Ac-
cordingly, Y = {0, 1}Mact and E = {0, 1}Mexp , where Mact
and Mexp denote the numbers of actions and explanations,
respectively. We introduce categories as an umbrella term
to encompass both actions and explanations, with a total of
M = (Mact +Mexp) items.

3.2 Framework Overview
As depicted in Figure 2, SGDCL contains four key compo-
nents: two encoders for the input image and categories, a
semantic-guided learning (SGL) module, a dynamic correla-
tion learning (DCL) module, and dual classifier heads. Ini-
tially, the image encoder generates a feature map hi for the
input image xi. Simultaneously, the language encoder trans-
forms all categories in Y and E into semantic representa-
tions since the ground truths are not known in advance. The
SGL module then learns category-specific representations Fi

guided by category semantics. Subsequently, the DCL mod-
ule models the correlation among categories by passing mes-
sages within a graph. This graph is constructed by treating
each category-specific representation as a graph node and
connecting them based on co-occurrence statistics of cate-
gories. A readout function unites updated node representa-
tions and generates a cohesive graph-level embedding gi. Fi-
nally, two classifier heads are utilized: one for actions ŷi and
another for explanations êi. Moreover, a novel correlation-
based loss term Lcor is combined with action loss Lact and
explanation loss Lexp to regularize SGDCL training.

3.3 Model Architecture
Encoders
Drawing inspirations from previous work [Feng et al., 2023],
we use DeepLabv3 [Chen et al., 2017] as our image en-
coder. The feature map for each input image xi is hi =
DeepLabV3(xi): hi ∈ RW×H×D, where W, H, and D are
the width, height, and channel number, respectively.

Since each category cj in Y and E is a textual sen-
tence, we employ the pre-trained Sentence-BERT [Reimers
and Gurevych, 2019] as our language encoder. The cate-
gory semantic information sj ∈ Rd1 is defined as sj =
Sentence-BERT(cj), j ∈ {1, . . . ,M}.

Semantic-Guided Learning
The semantic-guided learning (SGL) module is designed to
extract category-specific representations by selectively at-
tending to semantically related image regions, as informed
by category semantics. For example, left-oriented categories
(e.g., action “Turn Left” and explanation “Solid Line on the
Left”) should focus more on the left region of the image.

Inspired by previous work [Chen et al., 2019a], for each
location (w, h) in the feature map hi, we merge its image
feature hwh

i ∈ RD and sentence embedding sj ∈ Rd1 :

hwh
i,j = tanh(W1h

wh
i ⊙W2sj),

where W1 ∈ Rd2×D and W2 ∈ Rd2×d1 are the trainable pa-
rameter matrices, d2 is the dimension of the joint embedding,
tanh denotes the hyperbolic tangent function, and ⊙ repre-
sents element-wise multiplication. Subsequently, we calcu-
late the cross-attention coefficient α̃wh

i,j for the joint embed-
ding hwh

i,j using a linear layer:

α̃wh
i,j = W3h

wh
i,j ,

where W3 ∈ R1×d2 is a trainable parameter matrix. This
coefficient signifies the importance of location (w, h) in the
i-th image for the j-th category. α̃wh

i,j are then normalized
over all locations using a Softmax function:

αwh
i,j =

exp(α̃wh
i,j )∑W

w′=1

∑H
h′=1 exp(α̃

w′h′
i,j )

,

where exp is the exponential function. Finally, we perform
a weighted sum operation over all locations with normalized
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cross-attention coefficients to generate the category-specific
embedding fi,j ∈ RD for category cj :

fi,j =
W∑

w=1

H∑
h=1

αwh
i,j h

wh
i .

This SGL module effectively directs the network’s atten-
tion to diverse regions of the image, guided by category se-
mantics. It enables distinct category semantic contexts to
yield different representations for the same input image xi.
This operation is repeated for all M categories, resulting in a
category-specific feature matrix Fi ∈ RM×D.

Dynamic Correlation Learning
The dynamic correlation learning (DCL) module exploits a
graph-based approach to model intricate correlations among
category representations. It leverages the inherent co-
occurrence statistics of categories to construct a graph and
adopts a GNN to adaptively learn high-order relationships
among categories.
Graph Construction. A graph is represented by Gi =
{V,Fi,A}. Here, the node set V contains M nodes, each
corresponding to a category. Fi denotes the category-specific
feature matrix from the SGL module. A ∈ RM×M is the ad-
jacency matrix, where Ajk indicates the relevance between
node j and node k. The forthcoming discussion describes the
generation of A, a procedure that is foundational to DCL.

• Co-occurrence. We calculate the co-occurrence proba-
bilities between categories: Ãjk = Tjk/Tj·, where Tjk

is the count of co-occurrences for categories cj and ck,
and Tj· is the total occurrences of category cj . Ãjk is
the probability of encountering ck given the presence of
cj . This computation is carried out for all category pairs
based on training data without additional annotation.

• Binarization. Directly utilizing Ã as the adjacency ma-
trix may lead to suboptimal results because it imposes
a uniform correlation pattern across all samples, which
may not generalize well. To overcome this, our model
adaptively learns the specific category relationships for
each sample. The function of Ã is twofold: it indi-
cates nodes’ connectivity and acts as a regularization
mechanism (will be detailed in Section 3.4). Since
co-occurrence statistics of categories typically follow
a long-tail distribution, with infrequent co-occurrences
introducing noise, we apply a binarization process to
Ã. Specifically, we set elements below the pre-defined
threshold to 0 and above it to 1, resulting in A. Thresh-
olds are determined separately for action and explana-
tion nodes, denoted by γ1 and γ2, respectively.

In light of the heterogeneity of the graph (nodes stemming
from two different tasks), edge attributes are crucial for accu-
rately characterizing the category interaction patterns within
and across tasks. Consequently, we represent four types of
directed edges using a pair of binary indicators rjk:

rjk =


[0, 0], if cj ∈ Y and ck ∈ Y
[0, 1], if cj ∈ Y and ck ∈ E
[1, 0], if cj ∈ E and ck ∈ Y
[1, 1], if cj ∈ E and ck ∈ E

.

Graph Neural Network. Within our framework, we harness
a Graph Attention Network (GAT) [Veličković et al., 2018] to
dynamically refine sample-specific category correlations and
update node representations.

For node j with input image xi, the attention coefficients
βi,jk relative to the node k from its first-order neighbor set
Nj (inclusive of the node itself) is determined by:

βi,jk =
exp(σ(W6[W4fi,j∥W4fi,k∥W5rjk]))∑

k∈Nj
exp(σ(W6[W4fi,j∥W4fi,k∥W5rjk]))

,

where W4 ∈ Rd3×D, W5 ∈ Rd3×2, and W6 ∈ R1×3d3

are the trainable parameter matrices, d3 is the dimension of
the updated node embedding, σ introduces LeakyReLU non-
linearity, and ∥ denotes the concatenation operation. We up-
date node j’s representation by aggregating neighbor features
weighted by the attention coefficients:

f1i,j = ELU(
∑
k∈Nj

βi,jkW4fi,k),

where ELU represents the Exponential Linear Unit, and f1i,j is
the updated representation after one round of message pass-
ing. By conducting this message passing process L times,
each node is allowed to integrate information from its L-hop
neighborhood, resulting in enriched category representations
{fLi,j}Mj=1 that capture the nuanced interplay among the cat-
egory semantics. Notably, the final graph attention coeffi-
cient βi,jk reflects the dynamic inter-category relationships
between category cj and ck for input xi.
Readout. To gain a holistic understanding of the input image
xi, we use a readout function to generate a graph-level em-
bedding gi. This function concatenates all individual node
representations and forwards them to a linear layer:

gi = W7(||{fLi,j}Mj=1),

where W7 ∈ Rd5×Md4 is the trainable parameter matrix with
d4 and d5 denoting the dimensions of the node embedding
and the graph-level representation, respectively.

Classifier Heads
The final stage of our model deploys two linear layers with
Sigmoid activation to predict actions ŷi and explanations êi:

ŷi = Sigmoid(W8gi),

êi = Sigmoid(W9gi),

where W8 ∈ RMact×d5 and W9 ∈ RMexp×d5 are the trainable
parameter matrices.

3.4 Training Objective
To optimize our network, we adopt a multi-task loss function:

L = Lact + λLexp + ηLcor, (1)

where hyperparameters λ and η control the impact of corre-
sponding loss component. Lact and Lexp are the binary cross
entropy losses for action and explanation prediction, respec-
tively. Moreover, We integrate a correlation-based regularizer

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

599



Lcor informed by the co-occurrence matrix Ã (before bina-
rization) and the final graph attention coefficient βi,jk:

Lcor =

∑N
i=1

∑M
j=1

∑M
k=1(βi,jk − Ãjk)

2

M2N
,

where N denotes the number of training samples.
Discussion. Our approach effectively utilizes the informa-
tion about category co-occurrence by distinguishing between
(i) the coarse-grained binary matrix A, which we input into
the GAT to depict node connectivity, and (ii) the fine-grained
matrix Ã, which we leverage within the correlation-based
loss Lcor. Unlike previous methods that directly utilize the
fine-grained co-occurrence probabilities Ã as the adjacency
matrix, our approach allows for sample-specific node inter-
actions by dynamically determining the graph attention co-
efficients across input images. This adaptability is important
for generalization as the correlations between categories vary
depending on the context. For instance, the explanation for
“Stop” in one image might be “Obstacle: Car,” while for
another image, it could be “Red Traffic Light.” To prevent
the potential loss of informational granularity, we incorporate
fine-grained information as a regularizer in our loss function.
Note that Lcor encourages the average learned graph atten-
tion coefficients of all samples to align with the co-occurrence
probabilities. This dual strategy of simultaneously capturing
global and individual patterns is critical in performance im-
provement, as demonstrated in the following section.

4 Experiments
This section extensively evaluates SGDCL against seven
state-of-the-art baselines and a large vision-language model
on two popular benchmarks. Besides quantitative evalua-
tion, we provide qualitative results to elucidate the reasons
for SGDCL’s effectiveness. Then, a detailed ablation study
is conducted to assess the contribution of individual compo-
nents within SGDCL. Lastly, we evaluate the impact of cru-
cial hyperparameters on SGDCL’s performance.

4.1 Experimental Setups
Datasets. We conduct experiments on two commonly used
datasets: BDD-OIA [Xu et al., 2020] and PSI [Chen et
al., 2021a]. BDD-OIA, derived from BDD100K [Yu et al.,
2020], contains 22,924 video frames, each annotated with 4
action decisions and 21 human-defined explanations. PSI in-
cludes 11,902 keyframes, each annotated with 3 actions and
29 explanations. We divide both datasets into 70% training,
10% validation, and 20% testing samples.
Evaluation Metrics. Since both action and explanation pre-
diction tasks are multi-label classification problems for BDD-
OIA, we use two variants of the standard F1 score metric, i.e.,
overall F1 (oF1) and marco-F1 (mF1), for quantitative evalu-
ation. The oF1 averages the F1 score across the testing set:

Act oF1 =
1

|Q|

|Q|∑
i=1

F1(yi, ŷi), (2)

Exp oF1 =
1

|Q|

|Q|∑
i=1

F1(ei, êi),

where Q is the number of testing samples. Act oF1 and
Exp oF1 represent oF1 scores for action and explanation
prediction, respectively. Given the imbalanced nature of the
BDD-OIA dataset, we also calculate the mF1:

Act mF1 =
1

Mact

Mact∑
j=1

F1j , (3)

Exp mF1 =
1

Mexp

Mexp∑
j=1

F1j ,

where F1j is the F1 score for the j-th category.
For the PSI dataset, explanation prediction remains a multi-

label classification problem. Thus, we use Exp oF1 and
Exp mF1 as evaluation metrics. Since action prediction is
a single-label classification task, we use the overall accu-
racy Act oAcc and class-wise average accuracy Act mAcc
as evaluation metrics. These two metrics are defined by sub-
stituting the F1 score in Eq. (2) and Eq. (3) with accuracy.
Baselines. To validate the effectiveness of our method, we
compare it against the following competitive baselines:

• ResNet [He et al., 2016], which is pre-trained and then
fine-tuned on both datasets.

• CBM [Koh et al., 2020], which exploits the concept bot-
tleneck model to predict actions and explanations.

• OIA [Xu et al., 2020], which leverages Faster R-
CNN [Ren et al., 2015] and a global context module to
determine action-inducing objects.

• NLE-DM [Feng et al., 2023], which makes predictions
based on the scene segmentation module.

• ABIM [Zhang et al., 2022], which captures the inter-
relationship among traffic-related objects using a dual-
module algorithm to predict actions and explanations.

• InAction [Jing et al., 2022], which models both explicit
human annotation and implicit visual semantics for im-
proved prediction performance.

• F-Transformer [Dong et al., 2023], which adopts a fully
transformer-based structure to perform global attention.

• GPT-4V [OpenAI, 2023], which is one of the latest
visual-language models. For a fair comparison, we in-
put images with optional categories.

Implementation Details. We pre-train the image encoder
(DeepLabV3) using a part of the BDD100K dataset [Yu et
al., 2020] and then fine-tune it on both datasets. We utilize
a stochastic gradient descent (SGD) optimizer with an initial
learning rate of 0.001, a momentum of 0.9, a weight decay
of 1 × 10−4, and a batch size of 2. The hyperparameters λ
and η in Eq. (1) are set to 1.5 and 0.2, respectively. For the
image encoder, the output dimensions are set as W = 32,
H = 18, and D = 25. The output dimension d1 is 768 for the
language encoder. In the SGL module, the joint embedding
dimension d2 is 8. For graph construction, we set γ1 = 0.45
and γ2 = 0.07. In GAT, the number of message passing it-
erations L, the hidden state dimension d3, the output node
dimension d4, and graph-level representation dimension d5
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Dataset BDD-OIA [Xu et al., 2020] PSI [Chen et al., 2021a]
Act oF1 Act mF1 Exp oF1 Exp mF1 Act oAcc Act mAcc Exp oF1 Exp mF1

ResNet 0.601 0.392 0.331 0.180 0.635 0.617 0.178 0.119
CBM 0.661 0.610 0.412 0.292 0.651 0.626 0.192 0.127
OIA 0.734 0.718 0.422 0.208 0.643 0.593 0.189 0.110

NLE-DM 0.733 0.723 0.517 0.312 0.747 0.732 0.274 0.209
ABIM 0.722 0.701 0.537 0.335 0.712 0.699 0.278 0.191

InAction 0.714 0.694 0.565 0.347 0.734 0.722 0.285 0.223
F-Transformer 0.735 0.703 0.538 0.353 0.743 0.736 0.303 0.268

GPT-4V 0.537 0.436 0.284 0.191 0.618 0.577 0.143 0.127
SGDCL 0.753 0.733 0.582 0.386 0.770 0.764 0.347 0.309

Table 1: The comparison of action and explanation prediction performance. The best results are bold, and the runner-up ones are underlined.

are set to 2, 8, 16, and 64, respectively. Additionally, we em-
ploy multi-head attention to stabilize the learning process of
graph attention with 8 attention heads. For reproducibility,
the source code is publicly available1.

4.2 Experiment Results
Quantitative Results. From Table 1, which presents the ac-
tion and explanation prediction performance, we have the fol-
lowing observations: (i) SGDCL consistently outperforms all
baselines by a significant margin. Compared with the best-
performing baselines, SGDCL achieves performance im-
provements of 2.5% to 9.3% and 3.1% to 15.3% on the BDD-
OIA and PSI, respectively. This proves SGDCL’s efficacy
over existing state-of-the-art models since it learns category-
specific representations by a cross-attention mechanism and
models their dynamic interactions via a graph attention mod-
ule with appropriate regularization. (ii) CBM performs better
than ResNet by learning high-level concepts alongside image
features. NLE-DM surpasses OIA, highlighting the benefits
of using a scene segmentation module to encode images. In-
Action and ABIM achieve better explanation prediction re-
sults by modeling object relationships. F-Transformer, en-
coding global scene information, often performs best among
baselines. While GPT-4V demonstrates impressive scene un-
derstanding and reasoning capabilities [Wen et al., 2023], it
manifests limitations in recalling all possible actions and ex-
planations. Even when “Turning Left” and “Turning Right”
are viable actions, GPT-4V tends to be overly cautious by fa-
voring “Stop” [Cui et al., 2023].

Qualitative Results. To showcase the superiority of
SGDCL, we present qualitative results in Figure 3. In the first
example, OIA overlooks the expected explanations: “Solid
Line on the Left” and “Solid Line on the Right.” This omis-
sion leads to incorrect action predictions: “Turn Left” and
“Turn Right,” which are hazardous and violate traffic rules.
This mistake stems from OIA’s object detector failing to rec-
ognize the lane line. In comparison, SGDCL identifies the
interplay among pertinent nodes: the 4th node (“Follow Traf-
fic”), the 21st node (“Solid Line on the Left”), and the 24th
node (“Solid Line on the Right”), making correct action de-
cision (only “Go Straight”) and recalling all explanations.

1https://github.com/ChengtaiCao/SGDCL

To demonstrate how our cross-attention mechanism selec-
tively concentrates on semantically relevant areas, we visual-
ize the cross-attention coefficient αwh

i,j in Figure 4. We dif-
ferentiate the attention driven by categories associated with
left and right, highlighting areas with high values. The visu-
alizations indicate that coefficients guided by left-related cat-
egories focus on critical information in the left region. Con-
versely, coefficients informed by right-related categories at-
tend to vital information on the right.

Ablation Study. To ascertain the contribution of each com-
ponent in SGDCL, we conduct a comprehensive ablation
study. The critical components under scrutiny are semantic-
guided learning (SGL), dynamic correlation learning (DCL),
and correlation-based loss (CL). We also consider different
network architectures and readout functions in DCL. The
variants of SGDCL are as follows:

• SGDCL w/o SGL directly concatenates representations
from the image encoder (hi) and language encoder (sj)
and forwards these to the DCL module.

• SGDCL w/o DCL directly makes predictions based on
the category-specific embedding fi,j .

• SGDCL w/o CL discards the last term in Eq. (1).

• SGDCL w/o EA drops the binary edge attribution rjk.

• SGDCL-GCN employs GCN [Kipf and Welling, 2017]
as the graph neural network with Ã as a constant adja-
cency matrix. Correspondingly, the last term in Eq (1) is
always 0 and omitted.

• SGDCL w/o Readout directly makes predictions based
on node-level embedding fLi,j .

• SGDCL-Mean and SGDCL-Max generate graph-level
embedding gi by applying mean and max pooling on
node-level representations, respectively.

The results on the BDD-OIA dataset are shown in Table 2.
We observe that both SGL and DCL modules significantly
enhance model performance, confirming our motivation for
learning category-specific representations and modeling their
relationships. Performance degradation without CL veri-
fies its importance in training by leveraging fine-grained co-
occurrence information as a global regularizer. Modeling cat-
egory correlation without edge attributions leads to decreased
results, indicating that considering the diversity of node and
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118
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0.47 0.39

Follow Traffic
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Solid Line on the Right

Green Traffic Light
Follow Traffic

Solid Line on the Left
Solid Line on the Right

4

2421

Green Traffic Light
0.27

0.25

Node 4: Follow Traffic; Node 21: Solid Line on the Left; Node 24: Solid Line on the Right; Node 1: Stop; Node 8: Obstacle: Person; Node 11: Red Traffic Light  
Green: True Positive     Red: False Positive  Red: False Negative     : Action Follow Traffic : Explanation

Figure 3: Qualitative comparison of action and explanation predictions between OIA and SGDCL. Detected objects in OIA are delineated
with bounding boxes. The regions of significant attention and the informative generated sub-graph in SGDCL are presented.

Left-related attention map Right-related attention map

Figure 4: Visualizations of semantic-guided learning. The regions
with high cross-attention coefficient αwh

i,j are highlighted.

Variant Act oF1 Exp oF1
SGDCL w/o SGL 0.723 0.528
SGDCL w/o DCL 0.727 0.533
SGDCL w/o CL 0.734 0.566
SGDCL w/o EA 0.728 0.536
SGDCL-GCN 0.726 0.515

SGDCL w/o Readout 0.716 0.419
SGDCL-Mean 0.736 0.448
SGDCL-Max 0.745 0.562

SGDCL 0.753 0.582

Table 2: Ablation study of SGDCL.

edge types is critical for better performance. Replacing GAT
with GCN and using Ã as a fixed interactive pattern lead to
inferior performance, highlighting the importance of dynam-
ically learning sample-specific interplay. The worst perfor-
mance without the readout function indicates that depending
solely on node-level representations falls short of comprehen-
sive scene understanding. The inferior results obtained with
mean and max pooling point to their inadequacy in provid-
ing a rich graph-level representation, which aligns with the
observation in a previous work [Xu et al., 2019].
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Figure 5: Hyperparameter study of SGDCL.

Hyperparameter Sensitivity. Figure 5 presents the sensi-
tivity analysis results for two critical hyperparameters: λ and
η in Eq. (1). For λ, which balances two main tasks, we vary it
within the set {0.8, 1.0, 1.2, 1.5, 2.0}. For η, responsible for
regulating the strength of the auxiliary task, we select values
from the set {0.1, 0.2, 0.3, 0.5}. We observe that SGDCL’s
performance is insensitive to these two hyperparameters, and
this robustness is another advantage of SGDCL.

5 Conclusion
This work introduces SGDCL, a novel approach for explain-
able autonomous driving. SGDCL addresses critical short-
comings of existing methods via a semantic-guided learning
module and a dynamic correlation learning module to learn
category-specific features and model their interplay. Fur-
thermore, we propose a novel loss item that leverages fine-
grained co-occurrence statistics to regularize model train-
ing. Our comprehensive evaluation of two benchmarks
demonstrates its effectiveness, surpassing seven state-of-the-
art baselines and a large vision-language model. SGDCL
improves prediction performance by a large margin and of-
fers interpretable attention scores, enhancing the explainabil-
ity and transparency of autonomous driving systems.
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