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Abstract
Object recognition in open environments, e.g.,
video surveillance, poses significant challenges due
to the inclusion of unknown and multi-granularity
tasks (MGT). However, recent methods exhibit lim-
itations as they struggle to capture subtle differ-
ences between different parts within an object and
adaptively handle MGT. To address this limita-
tion, this paper proposes a Class-semantic Guided
Attention Shift (SegAS) method. SegAS trans-
forms adaptive MGT into dynamic combinations
of invariant discriminant representations across dif-
ferent levels to effectively enhance adaptability
to multi-granularity downstream tasks. Specifi-
cally, SegAS incorporates a hardness-based Atten-
tion Part Filtering Strategy (ApFS) to dynamically
decompose objects into complementary parts based
on the object structure and relevance to the in-
stance. Then, SegAS shifts attention to the optimal
discriminant region of each part under the guidance
of hierarchical class semantics. Finally, a diver-
sity loss is employed to emphasize the importance
and distinction of different partial features. Exten-
sive experiments validate SegAS’ effectiveness in
multi-granularity recognition of three tasks.

1 Introduction
Semantic understanding of images stands as a highly re-
garded problem in computer vision, with the primary objec-
tive of precisely capturing objects’ semantics without relying
on manual annotations. In real-world scenarios, this prob-
lem becomes even more challenging, especially when deal-
ing with recognition tasks that involve multiple and unknown
granularity [Guo et al., 2023; Wang et al., 2020]. Such chal-
lenges are prominent in various fields [Liu et al., 2023] such
as autonomous driving or video surveillance. For example,
the challenges in video surveillance extend beyond instance
recognition and involve fine-grained tasks like identity recog-
nition and occlusion recognition, as shown in Figure 1.

Self-supervised learning methods have garnered significant
attention due to their outstanding generalization capabilities.

∗Corresponding author.

(a) Video surveillance (b) Autonomous driving

Figure 1: Multi-granularity object recognition tasks across two real-
world scenarios: (a) video surveillance and (b) autonomous driving.
(a) From left to right are instance recognition, fine-grained recogni-
tion, and occlusion recognition, respectively. (b) From top to bottom
are occlusion and fine-grained recognition.

Instance-based discriminant methods [Chen et al., 2020c;
Caron et al., 2021] are considered representative in this realm,
focusing on learning consistent representations from different
random augmentations of the same sample. Clustering-based
methods [Guo et al., 2022; Xu et al., 2022] have incorporated
hierarchical clustering to learn multi-granularity representa-
tions by deriving compact image representations that gather
around corresponding granularity cluster centers. Building
upon these foundational designs, recent researches [Choud-
hury et al., 2021; Amir et al., 2021] have explored parsing the
object region to learn fine-grained representation, employing
fixed hyperparameters for clustering internal features of ob-
jects. They have successfully enhanced performance in han-
dling multi-granularity recognition tasks.

However, these previous methods have limitations in fine-
grained discriminability and collaboration when faced with
multi-granularity tasks. The limitation arising from these
methods only relies on the consistency constraint, which con-
tradicts the objective of achieving semantic differentiation
among parts within an object. This contradiction results in
a model that lacks the ability to capture subtle differences
between different parts within the object and to handle tasks
adaptively across granularities. Furthermore, parsing sam-
ples using fixed hyperparameters does not always provide the
most reasonable way, leading to suboptimal learning of fine-
grained representations.
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To address the problems, we propose a methodology that
converts adaptive multiple-granularity representation learn-
ing into the acquisition of discriminative representations in-
variant across various levels. These representations are then
dynamically combined to effectively handle tasks spanning
multiple granularities. This idea is inspired by the recogni-
tion of the nested and complementary relationship between
coarse- and fine-grained representations. Consequently, we
propose the class-Semantic Guided Attention Shift (SegAS)
method. SegAS considers the discriminative potential of dif-
ferent parts within an object by shifting the model’s attention
to different parts. Nonetheless, this approach encounters two
noteworthy challenges. Firstly, the inherent variations in dis-
tribution and semantics among object parts cannot be ignored.
Sole reliance on instance-level semantic constraints risks in-
troducing representation bias. Secondly, focusing on different
parts and learning important information involves trade-offs
with computational resources.

SegAS introduces prototypes (i.e., the class-wise cluster
centers) to assist in addressing these challenges. SegAS com-
prises three components. Firstly, we propose Dual Siamese
Networks to reconcile the contradiction between instance
consistent and partial differential, to reduce confusion and
mitigate representation bias. Secondly, we present Prototype-
based Consistency Regularization (ProCR) to supervise rep-
resentation learning for discriminative feature acquisition.
This regularization ensures the alignment of the distribution
of instance-prototype relationships while relaxing the con-
straints. Moreover, we calibrate the distribution by consider-
ing the hardness of each sample and its relationship with the
prototype. Finally, we propose a hardness adaptive Attention-
part Filtering Strategy (ApFS) to generate views that possess
independent and complementary features relative to the orig-
inal image. This strategy is equipped with a diversity loss to
emphasize the importance and dissimilarity of different part
representations. This strategy restricts the information input
to the object, forcing the model’s attention to shift to key re-
gions under the supervision of semantic consistency while re-
ducing the computational burden.

The contributions of this paper are concluded as follows:

1. We propose a Class-semantic Guided Attention Shift
(SegAS) method, which uses dual siamese networks
to address adaptability to open-granularity down-
stream tasks. SegAS achieves this by incorporating
an attention-part filtering strategy, which directs the
model’s attention towards the multi-key parts within ob-
jects while minimizing computational costs.

2. We propose a prototype-based consistency regulariza-
tion to eliminate representation bias caused by partial
semantic differences within objects. This regularization
approach encourages the model to learn the optimal dis-
criminant representation by regulating the distribution of
relationships with the prototype set.

3. Experiments demonstrate that SegAS exhibits signifi-
cant improvements in some tasks, such as occluded im-
age recognition, fine-grained classification, and object
localization. Moreover, our method is shown to enhance
the quality of representations through common down-

stream tasks that are used to verify the effectiveness of
self-supervised learning.

2 Related Work
2.1 Self-Supervised Representation Learning
Contrastive learning (CL) is an effective self-supervised rep-
resentation learning (SSL) method. NPID++[Wu et al.,
2018], SimCLR [Chen et al., 2020a] and SimCLR v2 [Chen
et al., 2020b] are successful end-to-end models that provide
simple frameworks for contrastive learning of visual repre-
sentations. With the potential issue of having larger batch
sizes, one solution is to maintain a separate dictionary called
Memory Bank, such as PIRL [Misra and Maaten, 2020].
MoCo [He et al., 2020] and MoCo v2 [Chen et al., 2020c]
are the representatives of the kind of method that uses the
Momentum Encoder to solve the problem. Other methods im-
prove the performance of the model from different perspec-
tives, such as InfoMin [Tian et al., 2020]. Debiased [Chuang
et al., 2020], AdCo[Hu et al., 2021] and InsLoc[Yang et al.,
2021]. Some methods have invariant mapping but do not use
negative samples e.g., BYOL [Grill et al., 2020] and Sim-
Siam [Chen and He, 2021].

Some previous works discover parts by using image recon-
struction [Choudhury et al., 2021], which propose an unsu-
pervised approach to object part discovery and segmentation.
Pre-trained Vision Transformer [Amir et al., 2021] is typi-
cally able to find the parts of the most relevant object in a
semantically consistent manner. PDiscoNet [van der Klis et
al., 2023] needed to leverage the class labels to learn the part
representation. However, these methods are designed to solve
single-grained tasks.

2.2 Representation Learning with Masked Images
Masking, as one of the simplest data transformation meth-
ods, is widely used in various data types. Image inpaint-
ing [Pathak et al., 2016] is used as a pretext task in SSL. In
recent years, inspired by the success of masking on the trans-
former in NLP [Devlin et al., 2018], some transformer-based
masking methods [He et al., 2022; Caron et al., 2021] have
achieved success. Because of the high redundancy of images,
masking some patches can greatly reduce the redundant infor-
mation. This approach creates a challenging self-supervised
task that improves the overall understanding of the image and
representation performance. MAE [He et al., 2022] and Sim-
MIM [Xie et al., 2022] use random masking to assist repre-
sentation learning by predicting RGB values of raw pixels by
direct regression performs. MaskFeat [Wei et al., 2022] pro-
poses to regress HOG features of the masked content and it
uses manual features as supervised signals. MST [Li et al.,
2021] and AttMask [Kakogeorgiou et al., 2022] use the at-
tention maps to generate the masking. MSN [Assran et al.,
2022] leverages the idea of mask-denoising while avoiding
pixel and token-level reconstruction with siamese structure.

3 The Proposed Method
This section introduces our proposed method, Class-semantic
Guided Attention Shift (SegAS). SegAS is a self-supervised
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Figure 2: The overall framework of our proposed SegAS. SegAS comprises a feature extractor encoder f and a semantic projection head
h. f̃ and h̃ are updated with an exponential moving average (EMA). Initially, the image x is transformed into three correlated views xk, xq1

and xq2 , via three grained augmentations. xq2 is the supplementary view after filtering out the attention part. They are employed as inputs to
SegAS, producing embeddings zk, zq1 and zq2 . Subsequently, zk is used for clustering to generate the prototype set {c1, c2, · · · , cM}. Lastly,
we compute the similarity between the embeddings and the prototypes separately, deriving the corresponding distribution using SoftMax. For
model training, we employ the loss functions LI ,L1

HproCR,L2
HproCR and Ldiver . ‘//’ indicates stop gradient. Please see more training

details in the Proposed Method section.

approach designed to enhance representation generalization
by learning discriminative representations of objects in mul-
tiple parts. The overall framework of SegAS is illustrated in
Figure 2. The specific process is described in detail below.

3.1 Overview
Given a sample xi, three data augmentation strategies are em-
ployed to produce distinct versions: xk

i , xq1
i , and xq2

i . Among
these, xk

i can only be used as a target. xq1
i and xq2

i are com-
plementary images generated through different strategies.

Initially, xk
i , xq1

i serve as inputs to the model to generate
distinct embeddings zi and zq1i . The model learns how to
represent objects by pulling different augmented versions of
the same instance closer in an embedding space while push-
ing away different instances’ augmentations. The process is
achieved by optimizing a contrastive loss function, such as
InfoNCE, defined as:

LI =

n∑
i=1

− log
exp (zi · zq1i /τ)∑r
j=0 exp

(
zi · zq1j /τ

) , (1)

where zj includes one same instance’ embedding and r
embedding for other instances. τ is a temperature hyper-
parameter. This method learns the instance-discriminant rep-
resentation.

The above approach is based on Instance-discrimination.
However, relying solely on the instance-level semantic con-
straints is prone to introducing representation bias. This is
because the different parts within an object display noticeable
distribution and semantic differences. Moreover, this method
will inevitably induce a class collision problem [Saunshi et
al., 2019; Li et al., 2020]. To address these challenges, we
propose utilizing the distribution relationship between sam-
ples and class prototypes as a comprehensive and depend-
able constraint, rather than solely considering the similarity
between instances. Consequently, we introduce a prototype-
based distribution consistency regularization.

Specifically, the prototype is represented by the average of
a set of sample features that exhibit similar semantic features.
In this context, we denote the prototype set as C = {ci}ki=1,
where each ci represents an individual prototype and k de-
notes the total number of prototypes. For a given target view
xk, its corresponding embedding is zk. We then calculate the
similarities between the feature and prototype, which can be
evaluated using the S(zk, C). S is the metric function and
we utilize cosine similarity. A softmax layer can be applied
to process the calculated similarities:

pki =
exp(S(zk · ci)/τk)∑
i′ exp(S(z

k · ci′)/τk)
, (2)

For the other two perspective images xq1 and xq2 , the dis-
tribution relationship between their embeddings zq1 and zq2

and the prototype set can be expressed as::

p
qj
i =

exp(S(zqj · ci)/τt)∑
i′ exp(S(z

qj · ci′)/τt)
, j ∈ {1, 2} (3)

where τt is a different temperature parameter.
We suggest using prototype-based consistency regulariza-

tion (ProCR) as the loss function. ProCR aims to minimize
the Kullback-Leibler (KL) divergence between the prototypi-
cal assignments in two different views:

Lj
ProCR = Lkl(p

qj
i , pki ), j ∈ {1, 2}. (4)

To address the issue of recognizing multi-granularity in an
open scene, we employ a hierarchical clustering approach.
They serve as the self-supervised signals that enable the
model to learn representations from coarse-grained to fine-
grained, inspired by HCSC [Guo et al., 2022] and HIRL [Xu
et al., 2022]. Hierarchical prototypes are used to guide the
learning of image hierarchical semantics representations, fa-
cilitating the representation of different levels of granularity.
It implements the K-means algorithm in a bottom-up way.
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For a detailed description of the specific process, please refer
to Appendix A.

Given the number of semantic levels is denoted as L, the

prototype structure can be expressed as: C =
{{

cli
}Ml

i=1

}L

l=1
,

where the Ml is the number of prototypes in the l-th hierar-
chy. Based on hierarchical prototypes, the hierarchical ProCR
in the training process can be expressed as:

Lj
HProCR =

1

L

L∑
l=1

n∑
i=1

(Lj
ProCR)

l, j ∈ {1, 2}. (5)

3.2 Distribution Calibration
The relationship between samples and prototypes is reflected
in the relative probabilities assigned to different prototype
classes. We aim to calibrate this relative probability to obtain
a supervisory signal that contains more valid information.

Firstly, excessive prototype assignments for a sample may
result in a dispersed probability distribution and unnecessary
redundancy. It is advisable to decrease the distribution’s en-
tropy to enhance the precision. In simpler terms, by assign-
ing a probability of 0 to easy negative prototypes, the overall
probability distribution becomes more focused and concen-
trated. Specifically, the similarity between the sample and
prototype set is S(zk, C). To estimate the pos/neg prototype,
we use the mean µs of the similarity as a proxy measure.
µs = 1

M

∑M
i=1 max

(
S(zkj , ci)

)
, where M is the number of

prototypes and BU is the batchsize. We consider the similar-
ity score less than µs as negative prototypes and the corre-
sponding distance is set as -1:

Sre(z
k, ci) =

{
−1, if S(zk, ci) < µs,

(zk, ci), otherwise.
(6)

So, the target probability distribution can be rephrased as:

pki =
exp(Sre(z

k · ci)/τk)∑
i′ exp(Sre(zk · ci′)/τk)

, (7)

where τk is the temperature parameter. This distribution
serves to indicate the degree of similarity or match between
the feature and each prototype within the set.

Secondly, relying solely on this soft distribution is not de-
pendable, especially when xk

i contains no or very few objects.
During the random-sized crop process, various types of sam-
ples are generated, including easy foreground samples, hard
foreground samples, and background samples. Treating all
samples equally and applying a soft distribution can result in
errors. To address this issue, we employ the concept of en-
tropy to assess the difficulty of the samples. By utilizing the
aforementioned distribution, we calculate a trade-off factor:

ρki = max
(
pki
)(

1−
−
∑M−1

j=0 p
k(j)
i log pki (j)

logM

)
, (8)

where M is the number of prototypes. When the value of ρi
is below the specified threshold, we simply utilize the one-hot
labels assigned by image clustering. In all other scenarios, we
employ the weighted sum of both approaches,

pki =

{
y if ρi < τ

ρi · pki + (1− ρi) · y otherwise
(9)

3.3 Attention Shifting
SegAS employs an attention-part filter to effectively filter out
the previously most interesting local discriminative regions
and the remaining regions are referred to as xq2 . By applying
the supervision of the ProCR, the model’s attention is shifted
towards the most discriminant region in xq2 , facilitating the
learning of an optimal representation.

Attention-part Filter Strategy. We design an Attention-
part Filter Strategy(ApFS) to generate new augmentation of
images, which is crucial for siamese representation learning.
Firstly, we compute the heatmap Ac by aggregating the fea-
tures of the last convolutional layer across the channel dimen-
sion and normalizing it to [0, 1]. Secondly, we apply a sig-
moid function to filter out the most interesting region. Math-
ematically, this can be expressed as follows:

T (Ac) = 1− 1

1 + exp (−ω (Ac − σ))
, (10)

where σ is the threshold whose elements all equal to σ. ω is
the scale parameter ensuring T (Ac)i,j approximately equals
to 0 when Ac

i,j is larger than σ, or to 1 otherwise.
The operator T (Ac) is used on input x to generate an aug-

mented view xA. xA = T (Ac) ⊙ x, where ⊙ represents the
element-wise multiplication. Additionally, SegAS incorpo-
rates Random Filtering to generate augmented samples xq2 ,
ensuring the sampling is equiprobable.

Hardness Adaptive ApFS. The simulator described above
produces an enhanced training sample. However, there are
limitations to equally enhancing all samples, especially those
that are difficult to train or in the early stages of training. The
variation in sample learning difficulty arising from cropping,
coupled with the inherent complexity differences among in-
dividual samples. Moreover, the initial training step also ne-
cessitates the need for easy samples. Therefore, we tend to
strongly enhance the easy-to-learn samples in the mini-batch
to improve the performance of the model. We first estimate a
confidence score, ρi, which indicates the level of confidence
the current model has in its prediction for the i−th instance,

ρp1

i = max (pp1

i )

(
1− −

∑M−1
j=0 p

p1
i (j) log p

p1
i (j)

logM

)
, (11)

where we use the weighted average of the normalized pre-
diction entropy on pp1

i to estimate the confidence score. We
employ ρi as a triggering probability to randomly apply the
sample and obtain a candidate enhancement.

Diverse and Importance Learning. SegAS uses different
augmentations to learn complementary features of the same
instances. They learn the discriminant representations of each
part under semantic consistent supervision. However, there
are differences between these representations and their con-
tributions to overall discriminability. Therefore, we introduce
the diversity loss to measure the contribution of different part
representations. The diversity loss is given by:

Ldiver =
n∑

i=1

max {0, pq2i (c)− pq1i (c) +m}+zq1i ·zq2i , (12)
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where pq1i (c) and pq2i (c) denotes the prediction probability on
the most relevant prototype c. m is the threshold. Intuitively,
this loss leads to the first learning of discriminatory repre-
sentations being closer to the relevant prototype than filtered
representations. It measures the contribution of different rep-
resentations to discriminant quality. The second part of the
loss is to avoid overlapping between different representations.

We train the self-supervised representation learning model
with the following total loss:

Ltotal = LI + αL1
HProCR + βL2

HProCR + λLdiver, (13)
where α, β and λ are the coefficient to balance these loss. In
the experiment, α = β.

4 Experiment
We evaluated the performance of SegAS in various experi-
ments, including occlusion recognition, object detection, and
fine-grained recognition. Specifically, we performed these
experiments on ImageNet-100 [Russakovsky et al., 2015],
Pascal VOC [Everingham et al., 2010], Place 205 [Zhou et
al., 2014], COCO [Lin et al., 2014] datasets, and CUB-200-
2011 [Welinder et al., 2010]. For all experiments, the re-
ported results represent the average performance over five
runs. In addition, we also conducted ablation experiments
on the ImageNet-100 dataset to verify the effectiveness of the
proposed components. In this manuscript, we used MoCo v2
as a baseline method to make a fair comparison.

4.1 Implementation Details
For data augmentation, the weak augmentation only con-
sists of random crops and horizontal flips. The contrastive
augmentation involves random resized crops, color distortion
(strength=0.5), flipping, and Gaussian blur.

In the training process, the backbone used the ResNet-
50 [He et al., 2016]. The model was trained using SGD [Rob-
bins and Monro, 1951] optimizer with a weight decay of
1 × 10−4 and momentum of 0.9. The temperature parame-
ter τ was always set to 0.2. The total epoch was set as 200. In
ImageNet-1k, the number of semantic levels was defined as
L = 3 and (M1,M2,M3) = (30000, 10000, 1000), details
are in appendix B.

4.2 Representation Performance under Occlusion
To assess the performance of SegAS on occluded objects, we
employed different masking strategies on images from the
ImageNet-100 dataset to simulate different occlusions and
compare the results against the baseline method.
Evaluation Setup. During the evaluation process, the pa-
rameters of the feature extractor were kept fixed, and an FC
layer was trained as the classifier. The classifier was trained
using SGD, with a total of 60 epochs, an initial learning rate
of 5.0, and a step learning rate schedule that drops at epochs
30, 40, and 50.

Random Occlusion
During the evaluation process using the filtering strategy,
MoCo v2 was selected as the baseline method. All meth-
ods were pre-training on ImageNet-100. The comparison re-
sults are presented in Table 1, and SegAS achieved a perfor-
mance of 82.33% on occluded images. Notably, compared

Method Epochs Accuracy

complete occlusion

MoCo V2 200 78.0 70.76
w/o ApFS 200 82.23 78.94
SegAS 200 83.94 83.21

Table 1: Performance comparison on the occluded image. We
report Top-1 accuracy on ImageNet-100 with random occlusion.
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Figure 3: Effect of varying filtering threshold (τ ).

to previous methods that did not incorporate filtering, our
method demonstrated little change in performance after oc-
clusion. These results suggest that the incorporation of a fil-
tering strategy and alignment of feature distribution can lead
to the learning of additional information.

Attention Occlusion
To further verify the effectiveness of SegAS, we assessed its
capability to learn discriminant representations under distur-
bances to the local region of interest. Based on the feature
map, we masked the region of interest using a pre-determined
threshold value. The parameter settings for this experiment
align with those used in the random mask experiment. In
this experiment, we evaluated the impact of the local mask on
our method by varying the threshold and local area masked.
We set the threshold within the range [0.4 − 1] and used the
HCSC method as the baseline for comparison. This exper-
iment adopted the pre-trained model on ImageNet-1K, with
the model parameters of HCSC taken from the original paper.

The results shown in Figure 3 reveal that when the thresh-
old was set to a large value, and the local area masked was
small, our method exhibited less performance reduction com-
pared to the baseline method. This suggests that the local
mask has little impact on the performance of our method un-
der such conditions. However, when the threshold was set to a
value less than or equal to 0.4, it became challenging to iden-
tify the object. This is because most of the area is masked,
blocking all discriminative regions.

4.3 Transfer Learning
Fine-grained Classification
We evaluated SegAS on the CUB-200-2011 dataset, specif-
ically for the task of fine-grained classification. The model
was pre-trained on ImageNet-1K, and the parameters of the
feature extractor were kept fixed during fine-tuning. We fine-
tuned the model with the training set and evaluated the per-

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

591



Method
CUB-200-2011 ImageNet-100

Top-1 GT-Known Top-1 Top-1 GT-Known Top-1
Clas Acc Loc Clas Acc Loc

MoCo V2 19.1 52.2 12.36 74.64 61.46 47.74
PCL V2 20.73 64.0 15.86 78.26 57.78 46.92
HCSC 20.28 62.69 15.53 84.40 60.6 53
SegAS 29.70 67.1 23.92 84.52 65.72 57.3

Table 2: Quantitative evaluation results (%) on CUB-200-2011 and
ImageNet-100.

Method
Object Classification Object Detection

VOC07 Place205 VOC07+12 COCO
mAP Top1 Acc AP50 AP

NPID++ 64.6 38.7 - -
SimCLR 86.4 - - -
MoCo V1 79.2 48.9 81.1 -
MoCo V2 84.0 50.1 82.4 40.6
PCL V2 85.4 50.3 78.5 41.0
AdCo 92.0 51.1 82.6 41.2
BYOL - - 81.0 40.3
InsLoc - - 82.9 41.4
HCSC 92.8 52.2 82.5 41.4
SegAS 93.1 53.0 82.93 42.1

Table 3: Performance comparison on Transfer Learning.

formance with the testing set, using the Top-1 class accuracy
as the performance metric.

In Table 2, we present a detailed comparison of the re-
sults on the CUB-200-2011 dataset, including methods such
as MoCo V2, PCL V2, and HCSC. All three methods are
based on the MoCo V2 framework. Our method achieved a
classification performance of 29.70%, which is 9.42% higher
than the previous best performance of HCSC at 20.28%. This
indicates that more discriminant regions generate more robust
and generalized representations in different tasks.

Object Location
We evaluated the performance of SegAS for object localiza-
tion tasks on two datasets: CUB-200-2011 and ImageNet-
100. We also kept the parameters of the feature extractor
fixed during the fine-tuning process. For ImageNet-100, we
fine-tuned the model using the training set and evaluated the
performance on the validation set. The settings were the same
as the above experiment for CUB-200-2011. We used several
metrics to assess the performance. The top-1 class is used
to metric the performance for classification. The ground-
truth class (GT-known Loc) and Top-1 Loc to metric the per-
formance for unsupervised object detection. GT-known Loc
measures the location accuracy by determining the correct-
ness based on the intersection over union (IoU) between the
ground truth bounding box and the estimated box for the
ground truth class. It is considered correct when the IoU is
50% or higher. Top-1 Loc is considered correct when both
GT-known Loc and Top-1 Class are determined to be correct.

We conducted a comprehensive comparison of the pro-
posed SegAS method with several recent contrastive learn-

(a)

(b)

(c)

(d)

(e)

Figure 4: Comparison of localization results from the vanilla method
and our method on CUB-200-2011 datasets. Red boxes denote the
ground truth bounding boxes and green boxes denote the predicted
bounding boxes. From the 1st to the 5th row: (a) Original images,
(b) MoCo v2, (c) PCL v2, (d) HCSC, and (e) SegAS.

ing techniques. The quantitative evaluation results are pre-
sented in Table 2. The results demonstrate that SegAS ex-
hibits strong performance in both classification and object
localization tasks on both the ImageNet-100 and the more
challenging CUB-200-2011 datasets. In terms of classifica-
tion accuracy, SegAS achieves an accuracy of 84.52% on the
ImageNet-100, which is a slight improvement of 0.12% com-
pared to the previous method. Notably, SegAS outperforms
the highest-performing method in terms of localization accu-
racy by 4.26%.

Furthermore, SegAS also has a localization accuracy of
67.1% on CUB-200-2011. This demonstrates the effective-
ness of our method in accurately localizing objects within
fine-grained datasets. the experimental results indicate that
our method not only focuses on the optimal regions of an ob-
ject but also considers other representative areas.
Visualization. We visualize the results of the class acti-
vation map (CAM) [Zhou et al., 2016] and localization on
CUB-200-2011, as shown in Figure 4. Red boxes represent
the ground-truth bounding boxes, while green boxes repre-
sent the predicted boxes. SegAS performs remarkably well
in comparison to existing methods. It closely approximates
the ground-truth, even when there is interference nearby, en-
abling accurate localization of the object. These visualiza-
tions provide evidence that SegAS possesses the ability to
identify the multiple discriminative regions within the object.

Object Detection
We learned representations on the ImageNet-1k and fixed
the parameter of the feature extractor. We evaluated transfer
learning performance across 3 natural image datasets (Place
205 [Zhou et al., 2014], PASCAL VOC [Everingham et al.,
2010] and COCO [Lin et al., 2014]) in linear classification
and object detection. The fine-tuning paradigms on these two
types of tasks completely follow those in MoCo, details are
in Appendix C.

Table 3 provides a comparison of our method with other
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Method Accurary(%)

w/o mask w/ mask

BaseLine(LI ) 78.0 70.76

w/o filtering
+LHprotoNCE 80.28 73.57
+L1

HProCR 82.23 78.94

w/ filtering
+L1

HprotoNCE + L2
HprotoNCE 81.50 80.26

+L1
HProCR + L2

HProCR 83.52 82.34
+L1

HProCR + L2
HProCR + Ldiver 83.94 82.97

Table 4: Ablation study of each proposed component.

contrastive methods in transfer learning. For linear classifi-
cation, our method achieved a higher 93.1% mAp on PAS-
CAL VOC and 53.0% Top-1 accuracy on Place205 with
200 epochs of pre-training, outperforming the state-of-the-
art HCSC model (92.8% and 52.2%). For the object detec-
tion task, SegAS improved significantly to 82.93% and 42.1%
on PASCAL VOC and COCO datasets, respectively, com-
pared to the previous best performance. These results demon-
strate that our method outperforms other models pre-trained
on ImageNet-1K and has better generalization ability for dif-
ferent downstream tasks.

4.4 Ablation Study
In this section, more experiments are presented to evaluate
the effectiveness of our proposed module on ImageNet-100.
Effectiveness of Prototype-based Consistency Regulariza-
tion. To enhance representation performance, SegAS pro-
poses ProCR instead of directly bringing the sample closer to
the prototype. This strategy has been implemented in two dis-
tinct phases. The results presented in Table 4, the LHprotoNCE
is a loss function optimized to directly assign a fixed proto-
type to the sample, the same as in HCSC. The ablation study
demonstrated that the representation of SegAS has signifi-
cant improvements in both masked and un-masked images
during the first phase using ProCR, achieving 82.23% and
78.94%, respectively, compared to use LHprotoNCE. More-
over, introducing the attention-part filtering strategy further
enhanced the discriminative capability of the representation.
Specifically, the distributed alignment method resulted in
83.52% and 82.34% improvements in both unoccluded and
occluded images. The experimental findings suggest that
SegAS enables the identification of multiple discriminant re-
gions within objects based on prior learning, leading to an
overall enhancement of the discriminative representation, re-
gardless of the level of occlusion in the images.
Evaluation on Different Filtering Strategies. We con-
ducted an ablation study on various filtering strategies that
are crucial in SegAS. The results, as illustrated in Figure 5a,
demonstrate that the highest linear evaluation accuracy is
achieved when both random and ApFS strategies are em-
ployed simultaneously on ImageNet-100. Notably, using
only the attention filtering strategy yields better accuracy
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Figure 5: Ablation study. (a) different filtering strategies. ‘A’ rep-
resents Attention-part Filtering, and ‘R’ is Random. (b) hyper-
parameter. The blue bar: α = 0.5, green bar:α = 1.

compared to using only the random filtering strategy. These
experimental results indicate that the ApFS can assist the
model in selecting the optimal discriminant alternative re-
gion, which aligns well with our initial motivation.

Evaluation on Varied Hyper-parameters. In this study,
we investigate the impact of adjusting the hyperparameters α,
β, and λ in Equation (13). Firstly, we explore the effects of
fixing λ = 0.1 to and tuning α from 0.5 to 1. Additionally, we
set β = γ ∗ α in our experiment, as shown in Figure 5b. Our
findings reveal that our method achieves optimal performance
when α = 0.5, β = 0.5, and λ = 0.1 on the ImageNet-100
dataset. Secondly, we fix α and β at 0.5 and analyze the re-
sults when λ is either 0 or 0.1. In the final row of Table 4, it
is demonstrated that the performance of the system increased
by 83.94% at λ = 0.1. This finding provides evidence of the
effectiveness of Ldiver in improving performance.

Evaluation of Efficiency. To verify the efficiency of
our proposed method, we conducted experiments on four
NVIDIA-GeForce-RTX 3090. On the ImageNet100 dataset,
SegAS trained 200 epochs 0.5 days longer than MoCo v2. Al-
though slightly longer than MoCo v2, this is offset by notable
gains in efficiency and performance.

5 Conclusion and Future Work

In this paper, we propose SegAS, a novel self-supervised
learning method, that aims to learn the discriminative rep-
resentation of different parts of objects through dynamic at-
tention shifting. SegAS incorporates prototype-based con-
sistency regularization to facilitate semantically consistent
alignment of models. Furthermore, SegAS employs a hard-
ness adaptive attention-part filtering strategy to generate a
supplementary view and then re-guides the model’s attention
shift to other discriminant regions via consistency regulariza-
tion constraints. Extensive experimental evaluations demon-
strate that the learned representation of SegAS exhibits strong
discriminability and generalization capabilities across vari-
ous downstream tasks. In future endeavors, SegAS can be
adapted to leverage the transformer architecture, enabling the
handling of multi-grained tasks in open scenarios with mini-
mal overhead.
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