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Abstract

We introduce a Cascaded Diffusion Model (Cas-
DM) that improves a Denoising Diffusion Proba-
bilistic Model (DDPM) by effectively incorporat-
ing additional metric functions in training. Met-
ric functions such as the LPIPS loss have been
proven highly effective in consistency models de-
rived from the score matching. However, for the
diffusion counterparts, the methodology and effi-
cacy of adding extra metric functions remain un-
clear. One major challenge is the mismatch be-
tween the noise predicted by a DDPM at each step
and the desired clean image that the metric function
works well on. To address this problem, we pro-
pose Cas-DM, a network architecture that cascades
two network modules to effectively apply metric
functions to the diffusion model training. The first
module, similar to a standard DDPM, learns to pre-
dict the added noise and is unaffected by the met-
ric function. The second cascaded module learns
to predict the clean image, thereby facilitating the
metric function computation. Experiment results
show that the proposed diffusion model backbone
enables the effective use of the LPIPS loss, improv-
ing the image quality (FID, sFID) of diffusion mod-
els on various established benchmarks.

1 Introduction

The Denoising Diffusion Probabilistic Model (DDPM) [Ho
et al., 2020] has emerged as a leading method in visual
content generation, positioned among other approaches such
as Generative Adversarial Networks (GAN) [Goodfellow et
al., 2014], Variational Auto-Encoders (VAE) [Kingma and
Welling, 2013], auto-regressive models [Esser et al., 20211,
and normalization flows [Kingma and Dhariwal, 2018].
DDPM is a score-based model that adopts an iterative Markov
chain in generating images, where the transition of the chain
is the reverse diffusion process to gradually denoise images.
Recently, [Song et al., 2023] propose a novel score-based
generative model called consistency model. One key observa-
tion is that using metric functions such as the Learned Percep-
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Figure 1: We introduce a cascaded diffusion model that effectively
incorporates metric functions in diffusion training. (a) DDPM out-
puts either € or xj, and uses the corresponding loss in training. (b)
Dual Diffusion Model outputs both ¢’ and z(, simultaneously with
a single network 6, where applying metric functions on z( will in-
evitably disturb the prediction of €¢’. (¢) Our Cas-DM cascades the
main module § with an extra network ¢. 6 is frozen for the x(-
related losses and metric functions. The dashed blue line shows the
gradient flow of the metric function. sg denotes stop gradient.

tual Image Patch Similarity (LPIPS) loss [Zhang er al., 2018]
in training can significantly improve the quality of generated
images. The LPIPS loss, with its VGG backbone [Simonyan
and Zisserman, 2014] trained on the ImageNet dataset for
classification, allows the model to capture more accurate and
diverse semantic features, which may be hard to learn through
generative model training alone. However, it remains unclear
whether adding additional metric functions could yield sim-
ilar improvements in diffusion models. In this study, taking
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Cas-DM
w/o LPIPS

Cas-DM
w/ LPIPS

Figure 2: Qualitative comparison of Cas-DM [¢uner] W/ and w/o
LPIPS on CelebAHQ. Green boxes highlight differences in image
details.

LPIPS loss as a prototype, we explore how to effectively in-
corporate metric functions into diffusion models. The pri-
mary challenge lies in the mismatch between the multi-step
denoising process that generates noise predictions, and the
single-step metric function computation that requires a clean
image.

We next zoom in on the DDPM process to better illus-
trate this mismatch challenge. As shown in Figure 1, DDPM
adopts a diffusion process to gradually add noise to a clean
image g, producing a series of noisy images x;,7 € 1, ..., 7.
Then the model is trained to perform a reverse denoising pro-
cess by predicting a less noisy image x;_; from z;. Instead
of directly predicting x;_1, DDPM gives two ways to obtain
x,—1: predicting either the clean image x( or the added Gaus-
sian noise ¢;. The training objective of the DDPM is the mean
squared error (MSE) between the predicted and ground truth
To or €, where a few papers [Nichol and Dhariwal, 2021;
Benny and Wolf, 2022] found the latter (i.e., the € mode) to
be empirically better than predicting xg (i.e., the £y mode).

The two modes in DDPM provide us with two initial op-
tions for bringing metric functions. Applying metric func-
tions directly to predicted noise € is unreasonable because the
networks for metric functions are trained on RGB images and
produce meaningless signals when applied to noise €. Despite
the promising improvements, this x¢-mode model with met-
ric functions still suffers from the low performance from the
xo-mode baseline, when compared with the e-mode. This nat-
urally motivates the question: can we merge the two modes
and further improve the e-mode performance with the met-
ric function? To achieve this, we need a diffusion model that
can generate o while maintaining the e-mode performance.
The goal is made possible with the Dynamic Dual Diffusion
Model [Benny and Wolf, 2022], where authors expand the
output channel of the DDPM’s network 6 to let it predict ),
€, and a dynamic mixing weight, simultaneously. The experi-
ments show that Dual Diffusion Model outperforms both the
zo- and e-modes of DDPM. However, naively adding the met-
ric function to its xg head will not work. This is because the
additional metric functions on the predicted x(y updates the
shared backbone, which disturbs the € prediction and leads to
degraded performance.

To this end, we propose a new Cascaded Diffusion Model
(Cas-DM), which allows the application of metric functions
to DDPM by addressing the above-mentioned issues. We cas-
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cade two network modules, where the first model 6 takes the
noisy image x; and predicts the added noise. We then derive
an initial estimation of x( based on x; and €4y following equa-
tions of the diffusion process. Next, the second model ¢ takes
the initial z( prediction and the time step ¢ and output the re-
fined prediction of xy as well as the dynamic weight to mix
xo and e predictions in diffusion model sampling. In training,
we apply the metric function to the predicted xg of ¢, which
is used to update the parameters of ¢ and stop the gradient for
6. This ensures the € branch to be intact while the xy branch
is enhanced by the additional metric function.

Experimental results on CIFARIO0 [Krizhevsky et
al., 2009], CelebAHQ [Karras er al., 2017], LSUN-
Church/Bedroom [Yu et al., 2015], and ImageNet [Deng et
al., 2009] show that applying the LPIPS loss on Cas-DM can
effectively improve its performance, leading to the state-of-
the-art image quality (measured by FID [Heusel et al., 2017]
and sFID [Nash er al.,, 2021] on most datasets. Through
a side-by-side visual comparison of Cas-DM with/without
LPIPS using a fixed seed, we also discover that training
diffusion models with the LPIPS loss makes the generated
images have fewer artifacts as shown in Fig. 2. This work
demonstrates that with a careful architecture design, metric
functions such as the LPIPS loss can be used to improve the
performance of diffusion models.

Our contributions are three-fold:

* We explore the methodology and efficacy of introducing
extra metric functions into DDPM, resulting in a frame-
work that can effectively incorporate metric functions
during diffusion training.

* We introduce Cas-DM that addresses the main challenge
in adding metric functions to DDPM by jointly predict-
ing the added noise and the original clean image in each
diffusion training and denoising step.

» Experiment results show that Cas-DM with the LPIPS
loss consistently outperforms the state of the art across
various datasets with different sampling steps.

2 Related Work

Denoising Diffusion Probabilistic Models. Starting from
DDPM introduced by Ho er al., diffusion models [Ho er
al., 2020; Dhariwal and Nichol, 2021; Nichol and Dhari-
wal, 2021; Rombach er al., 2022] have outperformed
GANs [Goodfellow et al., 2014; Karras et al., 2017; Mao
et al., 2017; Brock et al., 2018; Wu et al., 2019; Kar-
ras et al., 2019; Karras et al., 2020], Variational Auto-
Encoders (VAE) [Kingma and Welling, 2013; Van Den Oord
et al., 2017; Vahdat and Kautz, 2020], auto-regressive mod-
els [Van Den Oord et al., 2016b; Van den Oord et al., 2016a;
Salimans et al., 2017; Chen et al., 2018; Razavi et al.,
2019; Esser et al., 2021], and normalization flows [Dinh ez
al., 2014; Dinh et al., 2017; Kingma and Dhariwal, 2018;
Ho et al., 2019] in terms of image quality while having a
pretty stable training process. The diffusion model is in line
with the score-based [Song and Ermon, 2019; Song and Er-
mon, 2020] and Markov-chains-based [Bengio et al., 2014;
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Figure 3: Framework of the proposed Cas-DM. For each time step ¢ from 7" to 1, 6 takes z; and ¢ as the inputs and estimates the added noise
¢, which is then converted into an estimation of the clean image x3j. Next, ¢ outputs the z(, and r; based on zf and ¢, where the former is the
final clean image estimation. r; is then used to mix the y estimations from x{, and €’. Cas-DM uses DDIM to run one backward step based on

ddim
I

Salimans er al., 2015] generative models, where the diffu-
sion process can also be theoretically modeled by the dis-
cretization of a continuous SDE [Song et al., 2020b]. Dif-
fusion models have been used to generate multimedia content
such as audio [Oord et al., 2016], image [Brock et al., 2018;
Saharia et al., 2022b; Ramesh et al., 2022], and video [Singer
etal.,2022; Zhou et al.,2022; Ho et al., 2022; An et al., 2023;
Blattmann er al., 2023]. The open-sourced latent diffusion
model [Rombach er al., 2022] sparks numerous image gener-
ation models based on conditions such as text [Saharia et al.,
2022b; Ramesh er al., 2022; Yang et al., 2023], sketch/seg-
mentation maps [Rombach et al., 2022; Fan et al., 2023], and
images in distinct domains [Saharia et al., 2022al.

Improving Diffusion Models. The success of the diffusion
model has drawn increasing interest in improving its algo-
rithmic design. [Nichol and Dhariwal, 2021] improve the log-
likelihood estimation and the generation quality of the DDPM
by introducing a cosine-based noise schedule and letting the
model learn variances of the reverse diffusion process in ad-
dition to the mean value in training. [Rombach et al., 2022]
introduce the latent diffusion model (LDM), which deploys
the diffusion model on the latent space of an auto-encoder to
reduce the computation cost. [Song et al., 2020a] improve the
sampling speed of the diffusion model by proposing an im-
plicit diffusion model called DDIM. In terms of the architec-
ture design, Benny and Wolf propose Dual Diffusion Model,
which learns to predict € and z simultaneously in training,
leading to improved generation quality. For the training ap-
proach, [Jolicoeur-Martineau et al., 2020] explore adopting
the adversarial loss as an extra loss to improve the prediction
of xy. This work studies an orthogonal improvement aspect
of diffusion models — How to use additional metric functions
to improve the generation performance. We draw the inspira-
tion from [Jolicoeur-Martineau er al., 2020] and [Benny and
Wolf, 2022]. While [Jolicoeur-Martineau et al., 2020] found
that the adversarial objective based on a learnable discrimina-
tor is unnecessary for powerful generative models, we found
that metric functions based on a fixed pre-trained network can
achieve improved performance with a proper network archi-
tecture and training approach. The proposed diffusion model
backbone shares the same idea of the dual output as [Benny
and Wolf, 2022] but has different architectures and training
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, getting x+—1. Cas-DM runs the above process for 7" — 1 rounds and gradually generates a clean image starting from a noise sample.

strategies.

3 Preliminary

This section introduces the forward/backward diffusion pro-
cesses and the training losses of DDPM, which will be used
to derive the proposed Cas-DM later. The theory of diffusion
models consists of a forward and a backward process. Given
a clean image x( and a constant 7" to denote the maximum
steps, the forward process gradually adds randomly sampled
noise from a pre-defined distribution to x(, leading to a se-
quence of images x; for time steps ¢ € [1,...,T], where x;
is derived by adding noise to x;_1. DDPM [Ho et al., 2020]
uses the Gaussian noise, resulting in the following transition
equation,

q(ze|ri—r) =N (ﬂct; VA thtfhﬁtI) , (D

where 3; € (0, 1] are pre-defined constants. Eq. 1 can derive
a direct transition from x¢ to xy,

g (@ilz0) == N (3o, 1 —a)I), (@)

where oy ;= 1 — 5; and &y := Hle «;. Via Eq. 2, for any
t € [1,T], one can easily get z; given z and a noise sample

e~N(0,1),

Ty = /O + V 1-— Q€.

Given a fixed ¢, Eq. 3 bridges x( and e.

The backward process gradually recovers xy from the
noisy image x7 € N (z7;0,I), where for each ¢, the tran-
sition from x; to x;_1 is p (x1—1|x¢), which is the ultimate
target to learn of the diffusion model. The backward transi-
tion p is then approximated by

po (Ti—1|@e) == N (24—1; po (24, 1) , g (@4, 1)) . (4)

The training objective is to maximize the variational lower
bound (VLB) of the data likelihood. DDPM simplifies the
training process to be first uniformly sample a ¢ from [1, 7]
and then compute,

3)

Ly := Dxr (q (xt—1]2e, w0) [|po (ze—1]2¢)) 5
which is further simplified to be
1 .
Ly = 252 it (2, 0, t) — g (4, )||7 (6)
Bi
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where
N O o (1 — ay
it (¢, 0, t) = Y= fﬁtfc( + e{ —~ l)xt. (N
1-— (677 1-— Qg
it (zy,z0,t) and pg (x4,t) are the mean values of

q (x¢—1|zt,20) and py (z¢—1|zt), respectively. DDPM pa-
rameterizes g with a neural network 6 that either predicts
x( or €, where two types of network outputs are denoted as
x(, and €, respectively. We can obtain g via Eq. 7 with ).
If the network predicts €/, we first get an indirect ¢ predic-
tion from ¢’ via Eq. 3. Then we can compute py via Eq. 7
with the indirect z( prediction. Ho et al. empirically demon-
strate that ¢’ usually yields better image quality, i.e., lower
FID score [Heusel et al., 2017] than z{,. One may refer to
[Benny and Wolf, 2022] and [Ho et al., 2020] for more de-
tailed mathematical derivation.

4 Method

This section introduces the network architecture of our Cas-
DM as well as its training and sampling processes.

4.1 Cascaded Diffusion Model

As shown in Fig. 3, the backbone of Cas-DM consists of two
cascaded networks, denoted as ¢ and ¢. 6 is used to predict
the added noise €, and ¢ is to predict the clean image . The
architectures of both 6 follow the improved diffusion [Nichol
and Dhariwal, 2021] while ¢ is a network whose input and
output tensors have the same shape. We use the model out-
put from both 6 and ¢ to obtain an estimation of 1y ¢ (¢, 1),
detailed as follows.

In training, 6 takes the noisy image z; and the uniformly
sampled time step ¢ as the input and predict the added noise
€', 6 is equivalent to a vanilla DDPM predicting €. Based on
Eq. 3, ¢’ can lead to an indirect estimation of xq as follows,

jim_ﬁiaa.

Next, based on €, we obtain an estimation of 1 (24, t), which
is denoted as pes (x4, t),

®)

xhy =

( t) . 1 1-— Ot /
Mer \ Tty . \/@xt m \/O[>t€ .
Eq. 9 is derived by replacing ¢ in Eq. 7 with z in Eq. 8.
¢ takes x and ¢ as the input and output xj, as well as a
dynamic value r;, which is used to balance the strength of ¢
and ¢ in computing pg 4 (x,t) later. The application of r; is
directly inspired by dual diffusion [Benny and Wolf, 2022],
where their experiments show that r; can better balance the
effects of two types of predictions and lead to improved per-
formance. We follow this setting and obtain r; by adding an
extra channel to the output layer of ¢. The output of ¢ is
the concatenation of zj, € R¥:W:C and r, € RHE-W:1 along
the channel dimension. We obtain the estimation of g (¢, )
based on x(, as

€))

Vg (1—ay—1)

1—oy

" Va1
pay, (25, 1) = 3 t é bl + 2. (10)
- g
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Figure 4: Training process of Cas-DM. 6 learns to estimate the
added noise € while ¢ is trained to predict the clean image xo. We
apply L§ on 0 and all the gradients of other losses are blocked for
it. For ¢, we use L7°, Li’”ps, and L} losses, where the first two
is to enforce ¢ to recover the clean image from x{, assisted by the
the LPIPS loss. L} is to train the dynamic mixing weight and the
gradient is stopped before p. and Pt - Best viewed on screen by
zoom-in.

¢ is to improve the accuracy of the xy prediction on top of 0’s
output. The final estimation of jug ¢ (¢, 1) is

o6 (Te,t) = 1o+ oy (0, ) + (1 —1¢) - prer (24,8) (1)

Compared with dual diffusion [Benny and Wolf, 2022],
Cas-DM allows the dedicated metric functions to be applied
on the x( branch without influencing the € branch because
we could stop the gradients of metric functions on 6. More
details will be in the next part.

4.2 Training and Sampling

As shown in Fig. 4, we train Cas-DM following the approach
of dual diffusion [Benny and Wolf, 2022] with the following
loss terms,

2
L; = ”6_ 6/H )

2
L{* = flwo — ",

L} = Hﬂt - (Tt [Mzg]sg + (1 =) [ﬂe']sg) H2

The input value of i, j,;, and i are omitted for simplicity.
[]sg denotes stop gradients. We use the LPIPS loss [John-
son et al., 2016] from the pig repository* in training to
demonstrate that extra metric functions can be applied to Cas-
DM for further improvements,

LPPS — LPIPS (T (z0), T (23)) . (13)

Here 7 denotes an image transformation module, which first
interpolates an image to the size of 224 x 224 with the bilinear
interpolation, then linearly normalize its value to the range of
[0, 1]. In back-propagating, we disconnect 6 and ¢ by detach-
ing the whole 6 from the computing graph of ¢, leading to
separate loss functions for 6 and ¢:

Lj = XLj,
LY = NP LT 4 NP LI 4 \wips lpivs (15)

Since the LPIPS loss only works well on real images, we use
LY to let 6 learn to predict ¢ without the disturbance of the

(12)

(14)

“https://github.com/photosynthesis-team/piq
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Model FID| sFID] Model FID] sFID|
CIFAR10 3232 CelebAHQ 64 x 64
* Gated PixelCNN [Van den Oord et al., 2016a] 65.93 - *DDPM [Ho et al., 2020] 43.90 -
*EBM [Song and Kingma, 2021] 38.20 - *DDIM [Song and Ermon, 2020] 6.15 -
*NCSNv2 [Song and Ermon, 2020] 31.75 - *Dual Diffusion [Benny and Wolf, 2022] 4.07 -
*SNGAN-DDLS [Che et al., 2020] 15.42 -
*StyleGAN2 + ADA (v1) [Karras ef al., 20201 3.6 . DDPM (e mode) 6.34 17.16
*DDPM [Ho et al., 2020} 32.65 . DDPM (zo mode) 8.82 e .
“DDIM [Song ef 4., 2020z P . DDPM (2o + LPIPS) 1054 (+1.72) 21.00 (+1.89)
*Improved DDPM [Nichol and Dhariwal, 2021] 4.58 - Duell IDifiiste 547 s
*“Improved DDIM [Nichol and Dhariwal, 2021] 6.29 _ Dual Diffusion + LPIPS 6.86 (+1.39)  16.06 (+0.80)
*Dual Diffusion [Benny and Wolf, 2022] 5.10 - Cas-DM [Govet ] 333 14.87
*Consistency Model (CD) [Benny and Wolf, 2022] 2.93 - Cas-DM [¢unet ] + LPIPS 4.95 (-0.38) 1471 (-0.16)
*Consistency Model (CT) [Benny and Wolf, 2022] 5.83 - Cas-DM [ ¢r;x-res] 5.07 14.77 ~
Cas-DM [r:x-nes] + LPIPS 4.64 (0.43) 1432 (-0.45)
DDPM (e mode) 6.79 4.97
DDPM (zo mode) 17.78 6.69 ImageNet 64 x 64 ‘
DDPM (z¢ + LPIPS) 9.34 (-8.44)  6.94 (+0.25) . .
Dual Diffusion 652 460 with guidance
Dual Diffusion + LPIPS 5.65 (-0.87) 4.89 (+0.29) *BigGAN-deep [Brock et al., 2018] 4.06 3.96
Cas-DM [¢punet | 6.80 5.03 *Improved DDPM [Nichol and Dhariwal, 2021] 2.92 3.79
Cas-DM [¢unet | + LPIPS 640 (-0.40)  4.87 (-0.16) * ADM [Dhariwal and Nichol, 2021] 261 3.77
Cas-DM [¢rix-res] 6.40 4.60 * ADM (dropout) [Dhariwal and Nichol, 2021] 2.07 429
Cas-DM [¢gsr_nes] + LPIPS 6.28 (:0.12) 4.57 (:0.03) ————
L1
LSUN Bedroom 64 x 64 | *Consistency Model (CD) [Benny and Wolf, 2022] | 4.70 -
*Consistency Model (CT) [Benny and Wolf, 2022] | 11.10 -
DDEN(€ mode) 551 27.61 DDPM (e mode) 27.96 18.73
DDEM (zo mode) 1028 32.13 DDPM (o mode) 65.09 23.86
DDPM (z¢ + LPIPS) 13.14 (+2.86) 32.93 (+0.80) DDPM (z + LPIPS) 41.41 (-23.68) 28.20 (+4.34)
Dual Diffus@on 5.49 27.71 Dual Diffusion 38.65 18.38
Dual Diffusion + LPIPS 772 (+2.23) 29.08 (+1.37)  pyal Diffusion + LPIPS 31.84 (-6.81) 21.88 (+3.50)
Cas-DM [$oret ] 5.29 27.80 Cas-DM [$oet ] 28.34 18.46
Cas-DM [¢unee ] + LPIPS 517(0.12)  2745(035)  Cas-DM [¢uxet] + LPIPS 27.54 (-:0.80) 18.06 (-0.40)

Table 1: Performance comparison of Cas-DM variants and the baseline models on CIFAR10, CelebAHQ, LSUN Bedroom, and ImageNet.
The best and second best results are marked with bold and underline, respectively. Cas-DM [¢unet ] and Cas-DM [¢rix-res] denote using
UNet and a fixed-resolution CNN as the backbone of the ¢ module in Cas-DM, respectively. Models marked with x are borrowed from [Ho
et al., 20201, [Benny and Wolf, 2022], [Dhariwal and Nichol, 2021], and [Song et al., 20231, which are for reference and not directly
comparable with other models due to the different diffusion model implementation, training and sampling settings, dataset preparation, and

FID evaluation settings.

gradient from ¢ and the metric functions, leading to a stable
g estimation, pi, as the basis. On top of it, ¢ learns to
predict g, resulting in another estimation p.. The LPIPS
loss can improve the accuracy of u.s, leading to an overall
better pp estimation through Eq. 11.

We use DDIM [Song et al., 2020a] for sampling. Follow-
ing dual diffusion [Benny and Wolf, 2022], we obtain the
estimation via the DDIM’s p computing equation from ¢’ and
xp, respectively,

2 Ty — \/@t.’ﬂf)

ddim = / —
’ = \/Ot_1Ty+ 1—047—0"7, 16
/’on t—140 t—1 t m ( )
, — VI = a.
ufﬁzm:u—&-\/l—dt,l—af-e’. 17)
VX

Then the final estimation of the p4"™ for DDIM sampling is

the interpolation of u‘;i”m and p 4™ based on .
0

5 Experiments

5.1 Implementation Details

Diffusion Model. We implement Cas-DM based on the of-
ficial code™ of improved diffusion [Nichol and Dhariwal,

"https://github.com/openai/improved-diffusion
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Model CIFAR10 CelebAHQ "N  ImageNet
edroom
DDPM (2o mode) | 17.78 8.82 10.28 65.09
+ LPIPS -8.44 +1.72 1286 -24.68
Dual Diffusion 6.52 5.47 5.49 38.65
+ LPIPS -0.87 +1.39 +2.23 -6.81
Cas-DM [oxet | 6.80 533 5.29 28.34
+LPIPS -0.40 -0.38 -0.12 -0.80

Table 2: FID variation comparison after applying the LPIPS loss.
The FID values of DDPM and Dual Diffusion Model fluctuate after
applying the LPIPS loss. Cas-DM [¢une: ] achieves consistent im-
provement across all the compared datasets.

2021]. 0 is the default U-Net architecture with 128 channels,
3 ResNet blocks per layer, and the learn sigma flag disabled.
For hyper-parameters of diffusion models, we use 4000 diffu-
sion steps with the cosine noise scheduler in all experiments,
where the KL loss is not used.

Metric Function. We use the LPIPS loss as a prototype
metric function following consistency model [Song er al.,
2023], where we replace all MaxPooling layers of the LPIPS
backbone with AveragePooling operations.
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(c) LSUN Bedroom samples. FID=5.17

(d) ImageNet samples. FID=27.54

Figure 5: Unconditional samples from Cas-DM [¢uye: ] trained with the LPIPS loss on the experimented datasets.

Model \ FID| sFID|
CelebAHQ 64 x 64

Dual Diffusion* 11.41 19.91

Dual Diffusion* + LPIPS 8.49 (-2.92) 20.10 (+0.19)
Dual Diffusion’ 5.90 15.71

Dual Diffusion’ + LPIPS 7.62 (+1.71) 16.55 (+0.84)
Cas-DM [¢uwet ] 533 14.87
Cas-DM [¢unet ] + LPIPS 4.95 (-0.38) 14.71 (-0.16)
LSUN Bedroom 64 x 64

Dual Diffusion* 9.71 31.64

Dual Diffusion* + LPIPS 13.80 (+4.09) 34.46 (+2.82)
Dual Diffusion’ 6.79 28.84

Dual Diffusion’ + LPIPS 9.64 (+2.85) 30.23 (+1.39)
Cas-DM [¢uet ] 6.63 29.11
Cas-DM [¢unet | + LPIPS 6.34 (-0.29) 28.71 (-0.40)

Table 3: Performance Comparison of Cas-DM [¢uye: | and the vari-
ants of Dual Diffusion Models. All the reported scores are based
on the best checkpoints of 100k iterations. * denotes doubling the
channel of all UNet layers and ' represents cascading two UNets.

Training. Training is conducted on 8 V100 GPUs with
32GB GPU RAM, where the batch size for each GPU is 16,
leading to 128 accumulated batch size. We set learning rate
to le~* with no learning rate decay. When computing loss
functions, \¢, A%, and \* are set to 1.0 while \'*P$ is set to
0.1. We train the model for 400k iterations and perform sam-
pling and evaluation with the gap of 20k and 100k when the
iteration is less than and higher than 100k, respectively. For
each model, we report the best result among all the evaluated
checkpoints.

Sampling. When sampling, we use the DDIM sampler and
re-space the diffusion step to 100. For each checkpoint, we
sample 50k images for CIFAR10 and 10k images for other
datasets and compute the evaluation metrics with respect to
the training dataset.

5.2 Experiment Settings

Datasets. We conduct experiments on the CIFAR10, Cele-
bAHQ, LSUN Bedroom, and ImageNet datasets. We train the
model with image size 32 x 32 on CIFAR10 and 64 x 64 on
the others.

Metrics. We compare models with Fréchet Inception Dis-
tance (FID) and sFID. FID and sFID evaluate the distribu-
tional similarity between the generated and training images.
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FID is based on the poo1_3 feature of Inception V3 [Szegedy
et al., 2016], while sFID uses mi xed_6/conv feature maps.
sFID is more sensitive to spatial variability [Nash er al.,
2021].

Baselines. We compare Cas-DM with a few baselines.

DDPM (e mode). We train DDPM by letting the U-Net
predict the added noise €, which is then used to generate
images with the DDIM sampler.

DDPM (zy mode). It is similar to DDPM (e mode),
where the U-Net predicts the clean image x.

DDPM (z¢) + LPIPS. We add the LPIPS loss in the
training of the DDPM (x(y mode). This model is to verify
whether adding metric functions can improve the perfor-
mance of DDPM.

Dual Diffusion. We re-implement the Dual Diffusion
Model based on the official code of the improved diffu-
sion and then train the model with the same setting as
other baselines.

Dual Diffusion + LPIPS. We train the re-implemented
Dual Diffusion Model by adding the LPIPS loss to its xg
prediction. This model is to verify whether adding met-
ric functions can improve the performance of the Dual
Diffusion Model.

We compare the proposed Cas-DM with the above base-
lines by conducting two experiments.

e Cas-DM [¢uynet] & Cas-DM [¢p; x-res]- We train Cas-
DM with the same settings as other baselines. We con-
sider two variants of Cas-DM, which use UNet and a
fixed-resolution CNN as ¢’s backbones, respectively.
This experiment is to demonstrate the performance of
the vanilla Cas-DM without adding any metric function.

Cas-DM [¢ynet] & Cas-DM [¢rix-res] + LPIPS. We
add the LPIPS loss to the z{, head of Cas-DM to ver-
ify whether the new diffusion model architecture enables
the successful application of the LPIPS loss.

5.3 Main Results

Qualitative Comparison. We conducted a one-by-one vi-
sual comparison of Cas-DM with/without LPIPS on Cele-
bAHQ with fixed seed. As shown in Fig. 2, using metric
functions (LPIPS) in diffusion model training makes the gen-
erated images have fewer artifacts. For example, in the first
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Model | CIFAR10 CelebAHQ
Cas-DM [¢yyet ] 6.80 5.33
Cas-DM [¢yyet ] + LPIPS (VGG) 6.40 4.95
Cas-DM [¢yner ] + ResNet 6.64 5.67
Cas-DM [¢yyetr | + Inception 6.94 5.52
Cas-DM [¢yyet ] + Swin 6.98 5.55

Table 4: FID comparison between pre-trained backbones of the met-
ric functions.

Model ‘CIFARIO CelebAHQ
Cas-DM [¢rix-res] Input: 2§ 6.40 5.07
Cas-DM [¢rix-res] Input: cancat (zf, €') 7.08 5.78

Table 5: FID comparison between ¢’s input settings.

and fourth columns, using LPIPS corrected the artifacts in
generation eye glasses (col 1/4), hair (col 2), and face (col 3).
Fig. 5 shows more results generated by Cas-DM [¢yyet ] with
LPIPS (the same model in Table 1) using random seed.

Quantitative Comparison. We compare the unconditional
image generation performance of Cas-DM [¢yyet ] with base-
lines in Table 1. We additional list the results in existing
papers for reference, which are not comparable since they
use different training and sampling settings. For CelebAHQ,
LSUN Bedroom, and ImageNet, Cas-DM + LPIPS achieves
the best FID and sFID scores among all the compared meth-
ods. This indicates that the architecture of Cas-DM is valu-
able compared with DDPM and Dual Diffusion Model since
it produces better results than others on many datasets. More
importantly, the improved performance achieves by Cas-DM
(both two variants on ¢ backbone) + LPIPS indicates that
adding metric functions such as LPIPS is a meaningful strat-
egy to improve the performance of diffusion models, where
Cas-DM shows a feasible diffusion model architecture design
that can make it work.

Metric Function Effectiveness. Table 2 compares the per-
formance of diffusion models with and without the LPIPS
loss. We list the FID increase or drop after the usage of the
LPIPS loss on DDPM in xy mode, Dual Diffusion Model,
and Cas-DM [¢yyer]. DDPM (g model) and Dual Dif-
fusion Model achieve improved performance (reduced FID
score) after applying the LPIPS loss on CIFAR10 and Im-
ageNet. However, the results are inconsistent on the other
two datasets. The proposed Cas-DM [¢yye:] achieves con-
sistently improved performance among all the compared
datasets. This indicates that the architectural design of Cas-
DM enables the effective application of the LPIPS loss on
diffusion model training.

Cas-DM v.s. Dual Diffusion Variants. To demonstrate that
the better performance of Cas-DM against Dual Diffusion
Models [Benny and Wolf, 2022] comes from the novel ar-
chitecture design rather than more trainable parameters, we
conducted experiments by scaling up Dual Diffusion Mod-
els to the same parameter size as our Cas-DM and compar-
ing their performance on CelebAHQ and LSUN Bedroom
datasets. We consider two scaling-up approaches: 1) Dou-
bling the channel of all UNet layers (marked with *) and 2)
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\ CIFAR10 \ CelebAHQ
Model [Step 10 Step 100 [Step 10 Step 100
DDPM (e mode) 16.57 6.79 2176 6.34
Cas-DM [yt | 14.91 6.80 28.67 532

Cas-DM [¢uner | + LPIPS|13.75 (-1.16) 6.40 (-0.40)(27.36 (-1.31) 4.95 (-0.37)

Table 6: FID comparison between different sampling steps.

cascading two UNets (marked with ) as Cas-DM does. As
shown in Tab. 3, either enlarging channels or using two UNets
cannot improve the performance of Dual Diffusion Models.
Moreover, the LPIPS metric function does not work on most
Dual Diffusion Model variants, demonstrating the Cas-DM’s
effectiveness in enabling metric functions. More results on
other datasets will be added to the revised paper.

5.4 Ablation Study

We conduct an ablation study on metric function’s backbones,
the input settings of network ¢ in Cas-DM, and the DDIM
sampling steps.

Metric Function Backbones. Our experimental results
have demonstrated that the LPIPS loss can improve the per-
formance of diffusion models. Table 4 compares the LPIPS
loss with other metric function backbones. We use the
ResNet [He et al., 2016], Inception v3 [Szegedy et al., 2016],
and Swin Transformer [Liu ef al., 2021] pre-trained on the
ImageNet dataset. Similar to the LPIPS loss, we first extract
their features on images at different layers, which is then used
to compute the mean square error between corresponding fea-
ture maps. We find that ResNet can improve the performance
on CIFAR10 while others do not work. We conjecture that
the VGG network [Simonyan and Zisserman, 2014] used by
the LPIPS loss does not use residual connections, which may
make the extracted features contain more semantic informa-
tion. Similar observations have also been made by [Karras
et al., 2020]. We leave the discovery of more powerful met-
ric functions and other strategies for improving the diffusion
model training as future work.

Input Types of ¢. With the motivation that ¢’ can influence
the appearance of xj according to Eq. 8, we also attempt to
take the concatenation of zj and €’ as the input to train ¢,
which we find does not work well in terms of FID.

Sampling Steps. Table 6 compares the FID of DDPM in
the e mode and Cas-DM [¢yye: ] with/without the LPIPS loss
on sampling steps 10 and 100. Cas-DM works equally well
on small and large sampling steps in terms of enabling the
successful application of the LPIPS loss. Note that on differ-
ent datasets, a comparably larger performance gain may be
achieved by either smaller or larger sampling steps.

6 Conclusion

In this paper, we study using metric functions to improve the
performance of image diffusion models. To this end, we pro-
pose Cas-DM, which uses two cascaded networks to predict
the added noise and the clean image, respectively. This archi-
tecture design addresses the issue of the dual diffusion model
where the LPIPS affects the noise prediction.Experimental re-
sults on several datasets show that Cas-DM assisted with the
LPIPS loss achieves the state-of-the-art results.
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