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Abstract
Deep learning models, despite their remarkable
success in various tasks, have been shown to be
vulnerable to adversarial perturbations. Although
robust learning techniques that consider adversar-
ial risks against worst-case perturbations can ef-
fectively increase a model’s robustness, they may
not always be the most suitable approach. This
is due to the fact that in certain scenarios, pertur-
bations are more likely to occur probabilistically
rather than being intentionally crafted by attackers.
To address this challenge, we propose a novel risk-
averse robust learning method based on entropic
value-at-risk, called PRASS (Probabilistical Risk-
Averse Robust Learning with Stochastic Search).
Our approach leverages principles of stochastic op-
timisation and considers the use of perturbing dis-
tributions rather than solely worst-case adversaries.
By applying adaptive stochastic search to parame-
terised distributions, we further enhance the scala-
bility of PRASS to handle distributional robustness.
Empirical experiments demonstrate that PRASS
outperforms existing state-of-the-art baselines.

1 Introduction
Deep neural networks (DNNs) have seen widespread adop-
tion across a multitude of domains [Zhang et al., 2020b;
Mu et al., 2021]. Their success, however, has been ac-
companied by growing concerns about robustness, espe-
cially in safety-critical environments [Huang et al., 2020;
Huang et al., 2017]. This is due to the vulnerability of neural
networks to adversarial perturbations, where subtle modifi-
cations to benign inputs can significantly mislead the model’s
predictions without significantly affecting human perception.
Considering the wide range of adversarial attacks, a variety
of defense methods have arisen, with adversarial training
[Madry et al., 2018] notably taking the spotlight. However,
existing research primarily focuses on improving adversarial
robustness against the worst-case risks posed by explicit ad-
versaries. Though highly suitable in some instances, these
approaches are not universally applicable.
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Firstly, there can be concerns related to robustness against
naturally occurring corruptions or random input perturba-
tions, as opposed to an explicit adversary. For example, in
autonomous systems, input data may be derived from various
sources, such as onboard sensors, GPS, or interaction or com-
munication with a complex environment. These may contain
noise, be subject to signal degradation, or other variations due
to environmental factors such as weather or electromagnetic
interference. We desire our neural networks in such situations
to accurately process and analyse input data, making safe and
robust decisions in the presence of such random variations. In
this context, a classifier must account for these variations, but
some degree of perturbation or risk will typically be deemed
acceptable. The crux is not about achieving complete immu-
nity from adversarial examples, as that might often be unre-
alistic or even excessive. Rather, there is a balance to be had:
enabling robustness with acceptable risk thresholds, ensuring
optimal performance even in the face of uncertainty.

Secondly, in practice, we are usually concerned with the
overall network robustness, i.e., robustness across the range
of potential inputs, rather than its input-specific robustness.
This has inspired the exploration of robust learning with
adversarial risk as a metric of the model’s worst-case per-
formance on adversarial perturbations. Based on such an
ideal robustness definition, a classifier is deemed satisfactory
only if it can withstand the full gamut of potential perturba-
tions. However, such stringent safety requirements are rarely
achievable and applicable in real-world settings. As [ISO,
2014] posits: “safety risks and dangers are inescapable;
residual risks endure even after risk reduction measures have
been executed”. Furthermore, prior work [Schmidt et al.,
2018; Yin et al., 2019] has demonstrated that these robust
learning approaches exhibit poor generalisation from training
to testing phases, substantiated by both theoretical analyses
and empirical tests on real networks, significantly diminish-
ing their broad-scale applicability.

To address these limitations, we propose a risk-averse ro-
bust learning framework for DNNs, which originates from
relaxing worst-case adversarial risks by introducing Entropic
Value-at-Risk (EVaR) risk and taking perturbation distribu-
tions into account. The risk of a classifier, termed as the
probabilistic robustness, is calculated with a very tight up-
per bound derived from the Chernoff inequality over an input
perturbation distribution. Further expanding on this concept,
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the risk metric evolves into a distributional robustness defi-
nition by employing adaptive stochastic search to iteratively
update the perturbation distribution. It’s crucial to understand
that our framework does not seek to replace adversarial risk
or serve as a means to learn adversarially robust networks; in-
stead, it pioneers a risk-aversion training scheme that capably
mitigates the potential risk of perturbations overall, rendering
it more appropriate and pragmatic in some scenarios.

In summary, our contributions in this work encompass:
(C1) Ours is the first work expanding on risk-sensitive ro-
bust learning framework for DNNs from a distribution per-
spective. Inspired by risk-aware optimisation and stochas-
tic optimisation, we present Probabilistic Risk-Averse Robust
Learning with Stochastic Search (PRASS). Here, the robust-
ness risk is calculated with the tightest upper bound from
the Chernoff inequality. (C2) We provide theoretical and
empirical results showing that the proposed risk metric has
superior generalisation performance to its corresponding ad-
versarial risks, particularly in high-dimensions, with bounds
on the generalisation error respectively scaling as O (log (d))

and
√
d in the size of the network, respectively. (C3) We

propose a tractable algorithm for risk-sensitive robust learn-
ing generalised to the point-wise distribution with stochas-
tic search. We conduct experiments on the MNIST, CIFAR-
10 and CIFAR-100 datasets, and the results validate the ef-
fectiveness of our proposed methods on building risk-averse
models. These models are robust to the majority of pertur-
bations, and achieve superior performance compared to the
alternative state-of-the-art robust learning methods.

2 Related Work
Robust learning is an an emerging research topic with various
attack and defense methods being proposed. We now discuss
at a high level some of the major approaches.
Empirical Adversarial Training. A widespread empirical
defence approach, empirical adversarial training [Wang et al.,
2021; Jin et al., 2022; Zhang et al., 2020a; Gowal et al., 2019;
Balunovic and Vechev, 2020] endeavours to approximate the
solution to a minimax problem, thereby identifying an op-
timal hypothesis f from a hypothesis class, F . The inner
maximisation problem is frequently approximated by em-
pirical adversarial attacks, which include gradient descent-
based methods such as FGSM [Wong et al., 2020] and PGD
[Madry et al., 2018]. The outer minimisation problem, on
the other hand, optimises model parameters using gradient
descent-based optimisers, similar to conventional training
frameworks. Adversarially trained neural networks, despite
demonstrating empirical resilience to adversarial attacks, re-
main susceptible to advanced attack methodologies due to the
lack of verifiable theoretical guarantees [Tjeng et al., 2019].
Certified Adversarial Training. Certified adver-
sarial training focuses on enhancing models’ prov-
able robust accuracy, validated by robustness verifiers
[Balunovic and Vechev, 2020; Croce and Hein, 2020;
Croce et al., 2019; Gowal et al., 2019; Zhang et al., 2020a;
Fan and Li, 2021]. This technique minimises an upper
bound of the loss across all perturbations, as opposed
to training with adversarial examples. Certified bounds

can be derived from the dual optimisation problem,
or via linear relaxation [Balunovic and Vechev, 2020;
Croce and Hein, 2020; Mirman et al., 2018;
Croce et al., 2019; Zhang et al., 2020a], and interval bound
propagation (IBP) [Zhang et al., 2020a; Lyu et al., 2021;
Zhang et al., 2021; Shi et al., 2021]. An emerging branch
of robust defence focuses on probability-based defence
methods, which we now briefly discuss.
Probability-based Defense. A popular implementation of
this technique is randomised-smoothing approaches, as meth-
ods using this are capable of providing probabilistic ro-
bustness guarantees. Several works [Cohen et al., 2019;
Lécuyer et al., 2019; Zhai et al., 2020; Salman et al., 2019;
Awasthi et al., 2020] explore robust training approaches
for robust randomised models. For instance, one can aug-
ment the training dataset with noise [Cohen et al., 2019;
Lécuyer et al., 2019] – an augmentation approach that has
proven effective in practice and is currently one of the most
widely-used training approaches under probabilistic robust-
ness settings. Very recently, Robey et al. 2022 establish a
probabilistically robust learning paradigm capable of balanc-
ing accuracy and robustness by enforcing robustness for the
majority of perturbations, rather than all. Li et al. 2023 pro-
pose tilted empirical risk minimisation (TERM) to use expo-
nential tilting to flexibly tune the tradeoff between average-
loss and worst-loss.

We introduce a risk-averse training framework aimed at
improving the probabilistic robustness under an uncertain
perturbing distribution. Our method differs from current
works that only focus on tail samples, EVaR considers all
samples across the entire distribution, leading to a more com-
prehensive risk assessment (see Sec 4.1); instead of consid-
ering a specific predefined perturbation distribution, e.g. the
uniform or normal distribution, we adopt an adaptive stochas-
tic search to identify worst-case perturbation distributions,
providing a practical and feasible closed-form solution.

3 Preliminaries
Supervised Learning. In classification tasks with K cat-
egories, we consider data sourced from an unknown dis-
tribution D, encompassing feature-label pairs (x, y), where
x ∈ X = Rn are n-dimensional instances, and y ∈ Y =
{1, . . . ,K} are the associated labels. The goal of supervised
learning is to identify an optimal hypothesis f∗ : X → Y
from a class of hypotheses F , typically comprising models
parameterised by θ ∈ Θ. This hypothesis can be obtained by
minimising the expected risk associated with f , as defined:

f∗ = argmin
f∈F

E(x,y)∼D[L(f(x), y)], (1)

where, L : Y × Y → R+ is a loss function. Ordinarily,
as the distribution D is unknown, calculating the objective
in Eq. 1 is infeasible. However, given a training set of N
distinct i.i.d. samples {(x1, y1), . . . , (xN , yN )} drawn from
D, the objective can be approximated using empirical risk,
the average loss over samples:

E(x,y)∼D[L(f(x), y)] ≈
1

N

N∑
i=1

L (f (xi) , yi) . (2)
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Adversarial Training. Adversarial training aims to gener-
ate hypotheses f ∈ F that remain resilient to input pertur-
bations. Specifically, if a hypothesis f correctly classifies an
input x, it should also correctly classify a slightly adjusted
input x̃ = x + δ. Here hypotheses are developed using the
essential supremum of the objective function across the per-
turbation space, reflecting the worst-case scenario:

f∗ = argmin
f∈F

E(x,y)∼D[sup
δ∈∆

L(f(x+ δ), y)], (3)

where ∆ ⊂ Rn denotes a set of “imperceptible” pertur-
bations, e.g., ∆ = {δ ∈ Rn : ∥δ∥∞ ≤ ϵ}. Eq. 1 can be
considered a special case of Eq. 3 when ϵ = 0. This
minimax optimisation is typically approached in two stages:
first, the inner maximisation is approximated to generate
adversarial examples, followed by optimising the neural
networks’ parameters based on these adversarial examples.
For instance, PGD approximately solves the inner max-
imisation involving multiple gradient steps, i.e., δt+1

i =
Π
(
δti + α · sign

(
∇xL

(
fθ
(
xi + δti

)
, yi
)))

, where δti is the
adversarial perturbation at the t-th step, Π(·) is the projection
function, and α is a small step size. In essence, δti always
converges to a local optima influenced by the initialisation
δ0i .

Distributional Adversarial Training. Adversarial distri-
butional training [Dong et al., 2020] has been proposed to
defend against perturbations of the captured distribution sur-
rounding samples. Here, adversarial perturbations around
each input sample xi follow the corresponding distribution
p(δ) within ∆. This method can expressed as a distribution-
based minimax optimisation problem:

f∗ = argmin
f∈F

E(x,y)∼D sup
p(δ)∈P

Ep(δ) [L(f(x+ δ), y)] , (4)

where P = {p : supp(p) ⊆ ∆} denotes a set of distributions
with support within the ∆ neighbourhood of natural exam-
ples.

Probabilistically Robust Learning. The goal of proba-
bilistically Robust Learning is to provide robustness against
the majority of perturbations, with a tolerance for a small pro-
portion of perturbations in regions of negligible volume in the
perturbation space ∆. Consequently, the objective here is to
upper bound the loss function for a proportion 1 − γ of the
mass of the perturbation space ∆, not for all δ ∈ ∆. Thus
the following provides a definition of the associated operator
introduced in [Robey et al., 2022]. This function operates on
the loss random variable L(f(x+ δ), y) and yields the value
r for which the loss does not exceed r for a proportion 1− γ
of the perturbation space.

Definition 1. Let L(f(x + δ), y) denote a random variable
representing the loss of model f for input x perturbed by δ
and true label y. Let ∆ be the perturbation space with a de-
fined measure. Then, the γ-ess sup operator (or γ-essential
supremum) is then formulated as an optimisation problem,
i.e., γ-ess sup = minr∈R Pδ∼∆[L(f(x+δ), y) ≤ r] > 1−γ,
where γ is a small positive value that represents a tolerable
level of probabilistic robustness.

Here, this definition frames γ-ess sup as a tool that quanti-
fies the robustness of model f with respect to the proportion
γ when accounting for losses caused by perturbations. The
objective function for probabilistically robust learning, which
focuses on the misclassification probability across a perturba-
tion distribution, can be expressed as:

min
f∈F

E(x,y)∼D[γ-ess sup
δ∈∆

L(f(x+ δ), y)]. (5)

Adaptive Stochastic Search. The adaptive stochastic
search method, proposed by Zhou and Hu 2014, is de-
signed to solve a general maximisation problem: z∗ ∈
argmax

z∈Z
G(z), where Z ⊆ Rn is a nonempty compact set

in Rn, and G : Z → R is a deterministic real-valued func-
tion. Traditional optimisation methods often falter when the
objective function G(·) exhibits non-convex, discontinuous,
and non-differentiable traits. This method overcomes such
hurdles by stochastically approximating the function. A solu-
tion z is sampled from a probability distribution p(z; η) from
the exponential family, parameterised by η. The reformulated
problem becomes:

η∗ = argmax
η

∫
G(z)p(z; η)dz. (6)

This reformulation, thanks to its probabilistic nature, ex-
hibits properties conducive to optimisation. The algorith-
mic implementation can be further simplified by introduc-
ing a continuous, non-decreasing shape function, S(·) :
R → R+, ensuring the optimal solution remains un-
affected. Thus, the final problem becomes: η∗ =
argη max

∫
S(G(z))p(z; η)dz = argη max Eη[S(G(z))].

To tackle this optimisation problem, candidate solutions,
z, are drawn from p(z; η) within the solution space Z . Af-
terwards, a gradient ascent method can be applied to Eq. 6
to update the parameter η. Depending on the chosen proba-
bility distribution for sampling z, a closed-form solution for
the gradient of the above objective function with respect to
η may be available. (The derivation is included in the Ap-
pendix A.1.)

4 Methodology
This section proposes a novel and generalisable framework:
Probabilistic Risk-averse Robust Learning with Stochastic
Search (PRASS). Its primary goal is to characterise the per-
turbation distribution and train a risk-averse model via miti-
gating the Entropic Value-at-Risk (EVaR) risk over the cap-
tured worst-case perturbation distribution. This particular
risk exhibits convexity, facilitating a straightforward and effi-
cient resolution for risk-averse robust learning. Additionally,
EVaR risk capitalises on the entire samples across sampling
distribution, as opposed to solely relying on tail samples.

4.1 Probabilistic Risk-averse Robust Learning
Optimising the objective function for probabilistically ro-
bust learning as per Eq. 5 is very challenging. This is due
to the γ-essential supremum operator associated with ran-
dom perturbations being non-convex, non-smooth, and highly
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stochastic. Note that the γ-essential supremum is alterna-
tively termed Value-at-Risk (VaR) [Robey et al., 2022], espe-
cially within the risk-aware control domain [Majumdar and
Pavone, 2017; Ahmadi et al., 2022].

Definition 2. Given a random variable r and a function g[·]
yielding a scalar output (i.e., the real scalar value correlated
with the loss function), and considering a risk level γ ∈ [0, 1],
the Value-at-Risk, denoted as V aRγ(g(r)), is the infimum
over ζ ∈ R where g(r) situates beneath ζ with a probabil-
ity not less than 1 − γ. Formally, this can be expressed as
V aRγ(g(r)) = infζ∈R ζ : P [g(r) ≤ ζ] ≥ 1− γ.

Unfortunately, the tractability of VaR is hampered by sev-
eral constraints, such as the non-coherent risk measure and
non-convex function. Thus, VaR is frequently replaced with
Conditional Value-at-Risk (CVaR), which calculates the ex-
pected value of those losses that lie in a tail region where the
threshold V aRγ is exceeded.

Definition 3. The Conditional-Values-at-Risk with a risk
level γ ∈ (0, 1], denoted as CV aRγ(g(r)), is the expected
value of f within the tail distribution that equals or sur-
passes the threshold V aRγ , i.e., CV aRγ(g(r)) = E[g(r) |
g(r) ≥ V aRγ(g(r))] = infζ∈R

{
ζ +

E[g(r)−ζ]+
1−γ

}
, where

[·] = max{0, ·}.

The inf operator inside the CV aRγ(g(r)) is convex w.r.t.
ζ; this property ensures that the optimisation problem to es-
timate CVaR can be efficiently solved, since [·] is increasing
and convex [Rockafellar et al., 2000]. Despite its computa-
tional advantage and valuable insights into the extreme events
(in the tail of loss distribution), it does so at the expense of
overlooking the remainder of the loss distribution. Thus we
employ Entropic Value-at-Risk (EVaR) that is the tightest up-
per bound derived from the Chernoff inequality for the VaR.

Definition 4. The Entropic Values-at-Risk with risk level
γ ∈ (0, 1] denoted as EV aRγ(g(r)) is defined as the infi-
mum over ζ > 0 of the Chernoff bound for g(r) w.r.t. random

variable r, i.e., EV aRγ(g(r)) = infζ>0
1
ζ ln

(
E[eζg(r)]

γ

)
.

While EVaR serves as the tightest upper bound derived
from the Chernoff inequality for the γ-essential supremum,
it also incorporates the entirety of the loss distribution, not
just the tail. The definition of EVaR uses the exponential mo-
ment of the entire loss function weighted by a scalar ζ. This
implies that every sample from the loss distribution has a role
in shaping the EVaR value, thereby ensuring a more compre-
hensive view of the risks embedded in the distribution.

Proposition 1. The EVaR is an upper bound for the
γ-ess sup and CVaR with the same risk γ, that is,
γ-ess sup g(r) ≤ CV aR1−γ(g(r)) ≤ EV aR1−γ(g(r)),
with equality when γ = 0 or γ = 1. Moreover, E[g(r)] ≤
EV aR1−γ(g(r)) ≤ ess sup(g(r)), where EV aR0(g(r)) =
E[g(r)] and limγ→0 EV aR1−γ(g(r)) = ess sup(g(r)).

The relationship between the three risk measures is illus-
trated in Fig. 1. As Proposition 1 shows, EVaR risk is a
more risk-averse risk metric than both γ-ess sup and CVaR,
and can enhance the overall robustness of the models with a

Figure 1: An illustration of three risk measures - γ-essential
supremum, Conditional Value-at-Risk, and Entropic-Value-at-
Risk. Per their definitions in Section 4.1, γ-ess sup g(r) ≤
CV aR1−γ(g(r)) ≤ EV aR1−γ(g(r)) as shown above.

balance between capturing average and worst-case scenarios.
While γ-ess sup and CVaR hone in exclusively on the tail
distribution—essentially the extreme scenarios—EVaR inte-
grates the full breadth of the loss distribution, facilitating a
more rounded understanding of risks.

Thus, our proposed risk-averse robust learning paradigm
is to optimise the upper bound (i.e., EVaR) of the objective
in Eq. 5 to fortify models against probabilistic uncertainties.
Mathematically, the new paradigm replaces the inner optimi-
sation in Eq. 4 with EVaR, the objective function is:

min
f ∈ F

E(x,y)∼D [EV aR1−γ (L(f(x+ δ), y); δ ∈ ∆)] ,

s.t. EV aRγ(g(r)) = inf
ζ>0

1

ζ
ln
(
E
[
eζg(r)

]
/ γ
)
,

(7)
where γ is user-predefined risk-averse parameter.

Similar to adversarial training, the proposed learning
paradigm constitutes a composite optimisation problem, i.e.,
an inner minimisation over ζ to compute EVaR and an outer
minimisation to update the hypothesis parameters. However,
different to the inner maximisation in adversarial training, the
inner minimisation in this case is convex w.r.t. ζ regardless of
other variables, including the parameters of the hypothesis.
Consequently, this property allows the gradient of the inner
objective to be obtained in a closed form.

4.2 Theoretical Generalisation Analysis
The inferior generalisation properties of adversarial training
in high-dimensional spaces fundamentally constrain its ap-
plicability: independent of the solvability of the optimisation
procedure during training, it lacks guarantees (or even a like-
lihood) that the risk-sensitive classifier will exhibit robustness
at test-time. We now demonstrate that our risk metric is not
subject to this limitation. As shown by Shalev-Shwartz and
Ben-David 2014, the generalisation error of a learning algo-
rithm can be probabilistically upper-bounded using statistical
learning theory, employing concepts of complexity on the ad-
missible set of hypotheses and loss function. Here we intro-
duce the empirical Rademacher complexity below for a hy-
pothesis class.
Definition 5. The empirical Rademacher complexity for a
hypothesis class F : X → Y and sample set S =
{x1, . . . ,xN} is

RadS(F) :=
1

N
Eσ

[
sup
f∈F

N∑
n=1

σnf (xn)

]
, (8)
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where σ1, . . . , σN are independent Rademacher random vari-
ables, with the value -1 or +1, each with probability 1/2. In-
tuitively, it measures the complexity of the class by determin-
ing how many different ways functions f ∈ F can classify
the sample S.

Subsequently, given a neural network hypothesis class F
and loss function class LF ≜ {(x, y) → L(x, y, f) : f ∈
F}, we can bound the generalisation error of a classifier using
the following theorem [Mohri et al., 2018]:

Lemma 1. Suppose ∀x, y, f : L(x, y, f) ∈ [0, c]. For m ∈
{1, . . . ,M}. Additionally, assume further that the samples
S = {(x1, y1), . . . , (xN , yN )} are i.i.d. from a distribution
D. Then for any δ ∈ (0, 1), with probability no less than 1−δ
the following holds for all f ∈ F :

E(x,y)∼D[L(f(x), y)]− EPN
[L(f(x), y)]

≤ 2cRadS (LF ) + 3c
√

log(2/δ)/(2N), (9)

where EPN
[L(f(x), y)] = 1

N

∑N
i=1 L (f (xi) , yi)

This bound is probabilistic, data-dependent and uniform
over all functions in the hypothesis class, f ∈ F , mean-
ing it holds for all such functions, including those trained
on the dataset S. Informally, the empirical risk on the train-
ing dataset will be “close” to the true risk (i.e., the difference
bounded by the term on the right hand side) with high proba-
bility (in the formal sense).

To take advantage of this bound, we need to be able to
compute RadS(LF ). The empirical Rademacher complexity
(see Eq. 8) of the hypothesis class RadS(F) can be upper
bounded [Bartlett et al., 2017; Yin et al., 2019] by an expres-
sion O (log (dmax)) that depends on the logarithm of dmax

(i.e., the maximum number of nodes in a single layer). Thus
we simply need to relate RadS(LF ) to RadS(F).

Lemma 2 (Talagrand’s contraction principal). Let g be an
L-Lipschitz continuous function, and F is a function class.
Then, Rad((g ◦ F)) ≤ L · Rad(F).

Considering the natural risk, if L(f(x), y) is Γ-Lipschitz
in the first argument, we can use Lemma 2. The lemma gives
that RadS (LF ) ≤ ΓRadS (F). Thus, substituting this in-
equality into Eq. 9, we have:

E(x,y)∼D[L(f(x), y)]−
1

N

N∑
i=1

L (f (xi) , yi)

≤ 2cΓRadS (F) + 3c
√
log(2/δ)/(2N),

such that our generalisation error bound scales as
O (log (dmax)) (as RadS(F) is O (log (dmax))).

We now introduce an analogous result for our probabilistic
risk in Theorem 1, and the detailed proof can be founded in
Appendix B. In this case, the empirical risk we will use is the
Monte Carlo estimate since this is what we actually compute.

Theorem 1. Suppose ∀x, y, f : L(x, y, f) ∈ [0, c]. For m ∈
{1, . . . ,M}, define S′

m =
{(

x′
1,m, y1

)
, . . . ,

(
x′
N,m, yN

)}
,

such that it contains the m-th perturbed point x′ = x+δ from
each of the N original inputs. Then for any δ ∈ (0, 1), with

probability at least 1− δ the following holds for all f ∈ F :

rD (f)−RN,M (f) ≤ 2eζ(c+Γ)

ζ
RadS′ (F)

+ 3ecζ
√

log(1/δ)/(2N),

where

rD (f) ≜ E(x,y)∼D [EV aR1−γ (L(f(x+ δ), y); δ ∈ ∆)] ,

RN,M (f) ≜
1

N

N∑
i=1

1

ζ
ln

(
1

γM

M∑
m=1

[
eζL(f(x′

i,m),yi)
])

,

RadS′(F) ≜
1

M

M∑
m=1

RadS′
m(F).

We can see, the generalisation error is upper bounded by
an expression that varies as O (log (dmax)). In contrast, for
the adversarial risk, defined as supδ∈∆ L(f(x + δ), y), its
empirical Rademacher complexity is lower bounded by an
expression containing explicit dependence on

√
din, where

din is the dimension of the input layer of network [Yin et al.,
2019]. While this lower bound does not allow us to directly
bound the generalisation error using Eq. 9 or compare it with
the upper bound of the complexity of the EVaR objective, it
does suggest that in high dimensions the adversarial generali-
sation error can be much greater than the natural and the pro-
posed EVaR risk gaps. This indicates it will typically be diffi-
cult to train networks that are adversarially robust at test time
for high-dimensional datasets. Our experiments will show
that with networks trained with the proposed objective it may
be easier to get narrower train-test gaps for high-dimensional
datasets compared with an adversarial objective.

4.3 Generalising to Distributional Robustness via
Stochastic Search

To achieve more risk sensitivity, we compute the EVaR risk
based on the worst-case scenarios for perturbation distribu-
tions. To this end, we enable it to generalise to distribution
robustness with adaption. These perturbations are not static;
they are constantly adjusted before any model updates occur
in the backward pass. The uncertainty variable (η in Eq. 6)
can be adapted using a rule such as gradient descent w.r.t. the
inner-loop objective function for a fixed number of steps.

Assuming that p(x; δ) is the continuous probability den-
sity around the input data x, and its support is contained in
∆, then we rewrite the risk-averse robust learning framework
(Eq. 7) in the form of distributional robustness by minimising
the Entropic-VaR of the loss function L(·) subject to pertur-
bation δ following uncertain perturbation distributions as:

min
f∈F

E(x,y)∼D

[
sup

p(δ)∈P
EV aR1−γ (L(f(x+ δ), y); δ)

]

s.t. EV aRγ(L; δ) = inf
ζ>0

1

ζ
ln

(
Ep(δ)

[
eζL(δ)

]
/ γ

)
.

(10)

Equivalently,

min
f∈F

E(x,y)∼D

[
inf
ζ>0

1

ζ
ln

(
sup

p(δ)∈P

Ep(δ)

[
eζL(f(x+δ),y)

]
1− γ

)]
.

(11)
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Intuitively, we propose using an adaptive stochastic search
to address the inherent stochastic nature of perturbations. The
EVaR containing perturbation δ in the inner loop is computed
with respect to uncertainty distributions, and G(z) can be of
any functional form, i.e., loss function of a neural network.
We then define a sampling distribution for these perturbations
using the exponential family of densities defined below.
Definition 6. A family {p(z; η) : η ∈ Θ} is an exponential
family of densities if it satisfies:

p(z; η) = h(z) exp
(
η⊤T (z)− ϕ(η)

)
, (12)

where T (z) = [T1(z), T2(z), . . . , Td(z)]
⊤ is the vector of

sufficient statistics, ϕ(η) = ln
{∫

exp
(
η⊤T (z)

)
dz
}

is a nor-
malisation factor that ensures p(z; η) to be a pdf. Θ = {η :
|ϕ(η)| < ∞} is the natural parameter space with a nonempty
interior and η = [η1, η2, . . . , ηd]

⊤ is the vector of natural pa-
rameters.

The inner loop in Eq. 11 is performed by maximising
EV aR1−γ(L(f(x+δ), y); δ) with p(δ) = p(δ, η) ∈ P with
respect to the natural parameters:

η∗ = argmax
η∈Θ

EV aR1−γ(L(f(x+ δ), y); δ),

= argmax
η∈Θ

inf
ζ>0

1

ζ
ln
(
Ep(δ,η)

[
eζL(f(x+δ),y)

]
/(1− γ)

)
,

∝ argmax
η∈Θ

Ep(δ,η)

[
eζL(f(x+δ),y)

]
.

(13)
With adaptive stochastic search, a shape function is always
introduced S : R → R+ which allows for different weighing
schemes of the cost levels, leading to different optimisation
behaviours [Ollivier et al., 2017]. Then, the problem is trans-
formed into:

η∗ = argmax
η∈Θ

Ep(δ,η)

[
S
(
eζL(f(x+δ),y)

)]
= argmax

η∈Θ
J (η),

(14)
where S(x) is non-decreasing in x and bounded from above
and below for bounded x (see Appendix C.1). Finally, we
can obtain a scale-free gradient in a closed form (see Ap-
pendix A.2):

∇ηJ (η) =
Ep(δ,η)

[
S
(
eζL(f(x+δ),y)

)
(T (δ)−∇ηϕ (η))

]
Ep(δ,η)

[
S
(
eζL(f(x+δ),y)

)] .

(15)
With the analytical expression of the gradient we are ready

to use a gradient-based approach to update the parameter η
on an epoch basis during the training process. In practice,
we approximate the inner expectation w.r.t. updated perturba-
tion distribution in Eq. 15 with M Monte Carlo (MC) sam-
ples, and perform K steps of gradient ascent on δ to solve
the inner problem. After obtaining the optimal parameters of
the perturbation distribution, we use the adversarial distribu-
tion to update model parameters θ through risk-averse robust
learning. While any probability function of the exponential
family will work, in this study we sample perturbations from
a Gaussian distribution. The full algorithm is summarised in
Algorithm 1 in Appendix C.

Data Algorithm
Evaluation Metric (%)

Nat. Acc. Adv. Acc. Aug. Acc. Prob. Acc.
γ = 0.01

Prob. Acc.
γ = 0.1

M
N

IS
T

ERM 99.88/98.91 0.24/0.32 98.17/97.10 96.37/96.74 98.65/98.30
FGSM 97.39/97.05 0.11/0.13 97.49/97.49 96.42/95.90 96.79/96.39
PGD 99.33/98.35 96.38/93.5 99.27/98.28 98.20/97.42 98.33/98.07
PRASS(0.01) 99.98/99.28 8.37/7.88 99.97/99.27 98.89/98.37 99.99/98.23
PRASS(0.1) 99.99/99.43 3.98/3.70 99.98/ 99.35 99.24/98.21 99.99/98.41

C
IF

A
R

-1
0 ERM 96.48/91.58 0.11/0.03 95.81/90.11 87.01/78.66 92.36/85.73

FGSM 89.08/81.26 3.93/0.09 88.92/80.76 87.61/79.61 88.21/80.22
PGD 95.03/80.31 75.23/44.49 94.93/80.28 94.11/78.32 94.48/79.24
PRASS(0.01) 99.31/91.99 6.31/5.09 99.16/91.55 98.46/87.01 97.23/89.07
PRASS(0.1) 99.20/92.21 5.23/4.27 99.14/91.36 97.08/86.65 98.04/90.51

C
IF

A
R

-1
00

ERM 96.96/65.52 0.01/0.01 88.35/59.09 80.14/50.11 74.72/45.30
FGSM 90.61/49.19 3.99/0.42 89.03/58.68 76.01/45.67 80.65/49.85
PGD 96.26/51.75 66.35/17.04 96.22/51.53 95.28/49.88 95.73/50.32
PRASS(0.01) 98.44/69.48 6.11/4.32 98.31/69.10 96.12/64.51 96.94/59.71
PRASS(0.1) 98.58/70.06 3.15/2.69 98.44/69.95 95.45/65.12 97.16/60.24

Table 1: Train/test set evaluations of different networks on MNIST
and CIFAR. The best test set performance for each evaluation metric
is highlighted in Bold. Values in bracket denote γ values.

5 Experiments
Experiment Setup. We conduct an extensive evaluation
of the risk-averse robust learning method on three datasets:
MNIST, CIFAR-10 and CIFAR-100. For MNIST, we adopt
a ReLU network architecture with two convolutional lay-
ers, while for CIFAR-10 and CIFAR-100, we utilise an 18-
layer residual network architecture. Moreover, the uncer-
tainty set under consideration is a perturbation set, defined
as ∆ =

{
δ ∈ Rd : ∥δ∥∞ ≤ ϵ

}
, situated within a Gaussian

distribution set p(δ) ∈ P . We set ϵ = 0.3 for MNIST and
ϵ = 8/255 for CIFAR-10 and CIFAR-100. Full details are
provided in Appendix C. All the experiments are executed
on a system with a 32-Core AMD EPYC 7452 CPU and an
NVIDIA A100 40GB GPU.

Evaluation Metrics. To evaluate the performance of the al-
gorithms, we record the natural accuracy on the test set and
the empirical robust accuracies of each algorithm. The lat-
ter is quantified on perturbed samples for each dataset, as-
sessed via two distinct ways: (i) Empirical Augmented Accu-
racy: For each data point, we randomly draw 200 perturba-
tions around inputs, subsequently recording the average accu-
racy over these perturbed samples, denoted as “Aug. Acc.”.
(ii) Empirical Probabilistic Accuracy: To assess the models’
probabilistic accuracy, we compute the empirical probabilis-
tic accuracy, signifying the proportion of samples that are
empirically probabilistically robust with a tolerance level γ.
The mathematical expression is defined as Prob. Acc.(γ) =
1[Pδ∼∆[f (x+ δ) ̸= y] < γ] [Robey et al., 2022] and, no-
tably, the same number of perturbations are utilised to calcu-
late the empirical probabilistic accuracy, denoted as “Prob.
Acc.(γ)”.

5.1 Empirical Generalisation Error
As discussed, training neural networks to achieve high test-
time adversarial accuracy on high-dimensional datasets is
challenging. However, as implied by our analysis in Sec-
tion 4.2, the generalisation gap for our EVaR based method
should be closer to that obtained when using empirical risk.
To empirically investigate this, we use four different methods
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Algorithm
Test Acc. (%) Prob. Acc. (%) Cert. Acc. (%)

Nat. Adv. Aug. γ=0.2 γ=0.1 γ=0.05 γ=0.2 γ=0.1 γ=0.05

ERM 98.91 0.32 97.10 98.83 98.30 97.31 91.53 90.42 87.06
FGSM 97.05 0.13 97.49 96.86 96.39 96.03 92.64 91.93 90.78
PGD 98.35 93.50 98.28 98.15 98.07 97.86 93.67 90.41 88.01
TRADES 99.04 94.29 99.04 98.70 98.56 98.24 97.74 97.51 97.19
DALE 99.18 99.14 93.82 98.90 98.71 98.50 98.67 98.50 98.26
TERM 98.96 11.26 98.57 97.95 97.26 96.50 97.87 97.13 96.29
PRoL(γ=0.01) 99.18 3.87 98.34 99.08 98.77 98.46 98.35 98.00 97.25
PRoL(γ=0.1) 98.90 4.15 98.86 98.48 98.16 97.91 98.07 97.74 96.87

PRASS(γ=0.01) 99.28 7.88 99.27 99.12 98.23 98.95 99.05 98.17 98.37
PRASS(γ=0.1) 99.43 3.70 99.35 99.13 98.91 98.76 99.03 98.78 98.40

Table 2: MNIST - PRASS vs. baselines in terms of empirical /
certified robust accuracy with a confidence level of 1− 10−10.

to train networks: standard training (i.e., ERM as defined in
Eq. 2), adversarial training techniques (i.e., FGSM and PGD
with 7 gradient steps) and the proposed training approaches
(i.e., PRASS) with tolerance levels γ = 0.01 and γ = 0.1. In
accordance with these methods, we evaluate the performance
of the networks using natural accuracy, the previously men-
tioned probabilistic robust accuracy, and adversarial accuracy
by using a 20-step PGD adversary.

The results are presented in Table 1. These findings cor-
roborate our theoretical analysis in Section 4.2: 1) For the
low-dimensional MNIST dataset, all training methodologies
exhibit exceptional generalisation performance, with train-
test generalisation gaps being quite small, around 3% for
all evaluation metrics, i.e., clean accuracy, adversarial accu-
racy, and probabilistic accuracy. 2) For the high-dimensional
CIFAR-10 dataset, ERM and PRASS show fairly small gen-
eralisation gaps, about 8%. Conversely, adversarial training
approaches, particularly on the PGD-trained network, show
a markedly larger gap, nearing 30%. 3) For CIFAR-100,
which is even more challenging due to more classes, the gen-
eralisation gap increases across methods. Still, PRASS out-
performs the PGD-trained network by a significant margin
(around 20%). This underscores a clear limitation of adver-
sarial training compared to our proposed risk-averse training.

5.2 Effectiveness of PRASS
Baselines & Evaluation Metrics. To validate the efficacy
of PRASS, we consider baselines including ERM, TRADES
[Zhang et al., 2019], DALE [Robey et al., 2021], TERM [Li
et al., 2023] and PRL [Robey et al., 2022]. Besides the afore-
mentioned metric, we also adopt a certified probabilistically
robust accuracy with a tolerance level γ and confidence level
δ = 10−10, computed with PRoA [Zhang et al., 2022], de-
noted as “Cert. Acc.”. Note that we consider probabilistically
robust accuracy, i.e., Cert. Acc.(γ) and Prob. Acc.(γ), as the
key metrics for assessing the level of probabilistic robustness
that models trained with various algorithms can achieve. The
highest and second highest performances are highlighted in
Bold and Underlined. The most critical metric is emphasised
in blue.

As shown in Tables 2, 3 & 4, PRASS shows significant
improvements in risk reduction for random perturbations.
For both empirical and certifiable probabilistic metrics, our
method consistently showcases the best test-set performance

Algorithm
Test Acc. (%) Prob. Acc. (%) Cert. Acc. (%)

Nat. Adv. Aug. γ=0.2 γ=0.1 γ=0.05 γ=0.2 γ=0.1 γ=0.05

ERM 91.58 0.03 90.11 86.09 85.73 82.34 83.64 80.83 76.84
FGSM 81.26 0.09 80.76 81.04 80.22 79.81 74.83 73.77 71.93
PGD 80.32 44.49 80.28 79.60 79.24 78.97 74.82 73.51 72.08
TRADES 74.77 45.58 74.62 73.77 73.53 73.16 70.37 69.38 68.03
DALE 82.03 39.67 81.92 81.36 81.09 80.75 75.26 73.02 72.53
TERM 89.46 0.01 86.32 83.05 80.94 79.06 77.83 73.76 70.25
PRoL(γ=0.01) 88.47 1.07 87.13 84.23 81.18 78.67 81.33 76.82 74.69
PRoL(γ=0.1) 90.00 0.02 90.05 86.34 84.12 82.07 84.08 81.10 79.28

PRASS(γ=0.01) 91.99 5.09 91.55 90.98 89.95 89.07 91.33 88.17 87.90
PRASS(γ=0.1) 92.21 4.27 91.36 91.37 90.51 88.52 89.38 88.42 85.48

Table 3: CIFAR-10 - PRASS vs. baselines in terms of empirical /
certified robust accuracy with a confidence level of 1− 10−10.

Algorithm
Test Acc. (%) Prob. Acc. (%) Cert. Acc. (%)

Nat. Adv. Aug. γ=0.2 γ=0.1 γ=0.05 γ=0.2 γ=0.1 γ=0.05

ERM 65.52 0.01 59.09 53.19 50.11 45.30 42.67 38.90 33.94
FGSM 49.19 3.99 58.68 52.96 49.85 47.32 47.66 46.36 44.44
PGD 51.75 17.04 51.53 50.69 50.32 50.05 49.80 49.23 48.36
TRADES 48.87 22.94 48.79 48.12 47.75 47.35 47.15 46.74 45.92
DALE 52.94 22.58 52.82 52.07 51.66 51.33 50.66 50.08 48.86
TERM 48.29 3.05 48.02 44.87 43.11 41.41 41.44 38.60 35.06
PRoL(γ=0.01) 66.78 2.1 66.54 62.95 60.97 59.29 51.13 49.44 45.83
PRoL(γ=0.1) 67.13 0.01 67.47 63.53 61.50 59.78 53.09 50.43 46.79

PRASS(γ=0.01) 69.48 4.32 69.10 66.23 64.51 62.97 57.31 54.50 51.04
PRASS(γ=0.1) 70.06 2.69 69.95 67.08 65.12 63.35 58.80 56.35 52.80

Table 4: CIFAR-100 - PRASS vs. baselines in terms of empirical /
certified robust accuracy with a confidence level of 1− 10−10.

across all risk levels. This improvement is most conspicu-
ous on CIFAR-10 and CIFAR-100, the higher-dimensional
datasets, and, to some degree, it aligns with our generalisation
result. Another noteworthy observation is that our PRASS
method does not suffer the same limitation as adversarial
training does; in fact, PRASS’s natural accuracy surpasses
that of ERM by a margin of around 1% and 50%, respectively
on these data. As expected, PRASS does not perform well on
adversarial accuracy, given that its focus lies on risk aversion
as opposed to explicit adversaries. Finally, we observe that all
adversarial training approaches do not contribute positively
to improving probabilistic robustness, despite achieving con-
sistently commendable test-set adversarial performance. This
indicates that adversarial risk is neither a relevant nor optimal
objective for addressing risk reversion.

6 Conclusion
In this paper, motivated by scenarios where models’ threats
are not adversarially generated but arise probabilistically,
we introduced a new framework called risk-aversion robust
learning. Instead of focusing on the worst-case robustness, in
this framework, robustness is enforced with high probability
over perturbations by updating the perturbation distribution
and minimising the upper bound of the γ-essential supremum
across updated distributions. Our exploration of the practical
and theoretical aspects of this framework led to a new algo-
rithm that achieves superior generalisation performance com-
pared to adversarial training and effectively enforces proba-
bilistic robustness in practice.
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