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Abstract
Explanatory Artificial Intelligence plays a vital role
in machine learning, due to its widespread appli-
cation in decision-making scenarios. Counterfac-
tual Explanation (CFE) is a new kind of explana-
tory method that involves asking “what if”, i.e.,
what would have happened if model inputs slightly
change. To answer the question, CFE aims at find-
ing a minimum perturbation in model inputs lead-
ing to a different model decision. Compared with
model-agnostic approaches, model-specific CFE
approaches designed only for specific type of mod-
els usually have better performance in finding opti-
mal counterfactual perturbations, owing to access
to the inner workings of models. To deal with
this dilemma, this work first proposes CMAES-
based Counterfactual Explanations (CMACE): an
effective model-agnostic counterfactual generating
approach based on Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) and a warm start-
ing scheme that provides good initialization of the
counterfactual’s mean and covariance parameters
for CMA-ES taking advantage of prior informa-
tion of training samples. CMACE significantly
outperforms another state-of-art (SOTA) model-
agnostic approach (Bayesian Counterfactual Gen-
erator, BayCon) with various experimental set-
tings. Extensive experiments also demonstrate that
CMACE is superior to a SOTA model-specific ap-
proach (Flexible Optimizable Counterfactual Ex-
planations for Tree Ensembles, FOCUS) that is de-
signed for tree-based models using gradient-based
optimization.

1 Introduction
The development of Machine Learning (ML) has brought
ubiquitous opportunities in science and technology analytics.
However, ML models are black boxes for users in many sce-
narios and lack of interpretability. Except for prediction accu-
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racy, there are increasing demands for model interpretability
in decision-making or risk-sensitive scenarios. Specifically,
General Data Protection Regulation (GDPR) protects funda-
mental rights and freedoms of natural persons to request an
explanation of any decision made by the machine, and thus
further emphasize the significance of Explainable Artificial
Intelligence (XAI). As one of the emerging techniques under
the umbrella of XAI, Counterfactual Explanations (CFE) pro-
vide explanations by exploring potential outcomes that would
have occurred if the inputs are changed. CFE enables users to
understand what needs to change in order to get a predefined
outcome, which makes it an effective tool for examining the
influence of small perturbations on model output.

Since CFE is able to explain how feature perturbations
would affect outcomes, it is particularly valuable to risk-
sensitive scenarios, such as financial credit service and medi-
cal treatment, in which decisions made by models may cause
great impact on human or society. For instance, a rejected
loan applicant may want to know how to alter his/her infor-
mation to meet the regulations. In this case, CFE can provide
effective suggestions and may help the applicant to have the
application accepted.

Therefore, identifying the optimal CFE and providing per-
suasive suggestions for users to make subsequent decisions
are essential. Wachter et al. [Wachter et al., 2017] first for-
mulated CFE as an optimization problem. The optimization
goal of generating a counterfactual is to minimize the distance
between the counterfactuals and the original instance (L1/L2
distance, etc.) while satisfying the constraint that the output
of the classifier model changes to a different result or desired
class. The authors also proposed an alternative formulation
of the minimization problem for generating counterfactuals
in gradient-based differentiable models. In this formulation,
the loss function is defined as a weighted sum of two terms:
one is the distance loss between the counterfactuals and the
original instance, while the other is the distance loss between
the model’s prediction and the desired class.

Subsequent studies [Albini et al., 2020; Cheng et al., 2021;
Kenny and Keane, 2021; Olson et al., 2021; Tsirtsis et al.,
2021; Galhotra et al., 2021; Yang et al., 2021] predomi-
nantly adopted either of the aforementioned problem defini-
tions when generating counterfactuals. While gradient-based
approaches [Cheng et al., 2021; Kenny and Keane, 2021;
Olson et al., 2021; Augustin et al., 2022] are only appli-
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Algorithm 1 CMACE
Input: a trained black-box binary classification model
M(x), training samples X , an instance to be explained x
Output: counterfactual perturbations
ẋ∗

1: initialize: m0, C0 = WarmStarting(x,X)
2: for g = 1 to N do
3: ẋg,1:λ = Sampling(mg−1, Cg−1)
4: Evaluate ℓg,1:λ = ℓ (x, ẋg,1:λ|M)
5: mg = SelectionRecombination(ẋg,1:λ, ℓg,1:λ)
6: Cg = CovarianceMatrixAdaptation(mg , ẋg,1:λ, ℓg,1:λ)

7: Store ℓ∗g = min
{
ℓ∗g−1, ℓ

∗
g,1:λ

}
and corresponding ẋ∗

g

8: if (a satisfying solution is found) then
9: Break

10: end if
11: end for
12: return ẋ∗

cable to differentiable models, there remains a gap in ad-
dressing non-differentiable models such as tree ensembles
and SVMs. Existing gradient descent algorithms fail to ob-
tain counterfactuals for these models. In recent years, nu-
merous studies have attempted to tackle this issue through ei-
ther model-specific approaches tailored for specific types of
models or model-agnostic heuristic approaches. Compared
to model-agnostic methods that are not limited by specific
model types, model-specific CFE approaches generally ex-
hibit superior performance in identifying optimal counterfac-
tual perturbations due to their access to the internal mecha-
nisms of the models.

To address the limitations of both model-specific and
model-agnostic approaches, we propose CMAES-based
Counterfactual Explanations (CMACE): a highly effective
model-agnostic counterfactual explanation approach based
on Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) [Hansen, 2016; Hansen et al.,2019]. To the best of
our knowledge, this is the first counterfactual generation ap-
proach based on CMA-ES—an excellent optimizer special-
ized in solving difficult non-linear, non-convex, and black-
box optimization problems—ensuring optimality of gener-
ated counterfactuals. Additionally, to improve optimiza-
tion performance, we introduce a warm starting scheme that
leverages prior information from training samples to pro-
vide good initialization of mean and covariance parameters
for CMA-ES. Through extensive experimentation involving
four datasets and six models with different distance func-
tions adopted, CMACE demonstrates superiority over state-
of-the-art (SOTA) model-specific approach FOCUS (Flexible
Optimizable Counterfactual Explanations for Tree Ensem-
bles) designed for tree-based models using gradient-based
optimization, as well as outperforms another SOTA model-
agnostic approach BayCon (Bayesian Counterfactual Gener-
ator) based on Bayesian optimization.

2 Related Work
Since the concept of CFE is introduced [Wachter et al.,
2017], numerous studies have emerged [Verma et al., 2022].

For differentiable models, gradients of counterfactuals can
be computed with gradient descent algorithms. While
non-differentiable models require solver-based approaches
[Kanamori et al., 2020; Carreira-Perpinan and Hada, 2021;
Parmentier and Vidal, 2021; Kanamori, et al., 2021] that for-
mulate CFE as a mixed-integer linear optimization (MILO)
problem for additive classifiers. This approach is applicable
only to linear or piece-wise linear models such as tree ensem-
ble and linear models since it requires complete access to in-
ternal model information used in generating counterfactuals.
And thus, these types of models are considered white-box.

Another research area in CFE for non-differentiable mod-
els primarily focuses on model-specific approaches and tree
ensemble models [Wachter et al., 2017; Tolomei et al., 2017;
Lucic et al., 2022]. As these approaches are model-specific,
the resulting counterfactuals are naturally superior to other
methods not tailored for tree ensemble models. Tolomei et al.
[Tolomei et al., 2017] proposed a feature tweaking (FT) al-
gorithm that enumerates alternative paths in each tree to alter
the ensemble decision. While this method provides useful
counterfactual explanations in various applications, it does
not always produce optimal (or even feasible) counterfac-
tual explanations for tree ensembles since perturbing exam-
ples may not necessarily result in counterfactual examples.
Recently, Lucic et al. [Lucic et al., 2022] introduced FO-
CUS as a model-specific CFE approach suitable for tree en-
sembles that achieves state-of-the-art performance in gener-
ating valid and distance-minimized counterfactuals. FOCUS
adopts a tree approximation with differentiable sigmoid func-
tions and can be formulated as a gradient-based minimization
problem with guaranteed validity of generated counterfactu-
als and minimized distances from original instances. Exten-
sive experiments demonstrate that FOCUS outperforms FT
and DACE [Wachter et al., 2017], another MILO solver-based
approach, regarding both validity of counterfactuals and dis-
tances to original instances across all experiment settings.

While model-specific CFE approaches generally signif-
icantly superior performance compared to their model-
agnostic counterparts, the latter are more suitable for real-
world industry applications because they require fewer as-
sumptions or restrictions on underlying models. With in-
creasing demand for model agnosticity in counterfactual ex-
planations, significant progress has been made in model-
agnostic CFE approaches. State-of-the-art studies include:
Multi-objective Counterfactual Explanations (MOC, [Dandl
et al., 2020]), which formulates counterfactual generation as a
multi-objective optimization problem solved with genetic al-
gorithms; Bayesian Counterfactual Generator (BayCon, [Ro-
mashov et al., 2022]), which is based on Bayesian optimiza-
tion [Snoek et al., 2012; Wang et al., 2013; Springenberg et
al., 2016; Lindauer et al., 2022] and guarantees good effec-
tiveness in generating counterfactuals due to its top-ranking
optimization performance in domains of black-box model op-
timization. Bayesian optimization leverages prior informa-
tion on model inputs and outputs to guide the sampling dis-
tribution and search direction of subsequent steps following
Bayes’ theorem. In comparative experiments, BayCon out-
performs other approaches such as MOC in generating high-
quality counterfactual explanations with respect to distance
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Dataset Features Train Samples Test Samples

Heloc 23 7,321 3,138

Wine 11 3,428 1,470

Compas 6 4,320 1,852

Shopping 9 8,631 3,699

Table 1: Datasets for Experiments

from original instances. Therefore, it can be considered a
top-tier model-agnostic approach for counterfactual explana-
tion.

3 Methodology
In this section, we elaborate the methodology of CMACE,
the counterfactual explanation approach based on CMA-ES
and a warm starting initialization scheme for counterfactuals.
CMA-ES is an excellent optimizer that has gained increas-
ingly applications in recent years owing to its effectiveness
for solving difficult non-linear, non-convex and black-box
optimization problems. CMA-ES incorporates the concept
of covariance matrix adaptation into domains of evolution-
ary computations to improve the effectiveness and efficacy of
optimal search process. It carries out the optimization pro-
cedure by sampling from a multivariate Gaussian distribution
(MGD), ranking the sampled points according to their objec-
tive function values, and iteratively updating the mean and
covariance parameters of MGD based on the ranked points.
The main search procedure of CMA-ES can be generalized
as followings.

Firstly, a population of λ search points (individuals) are
sampled from a MGD, specifically, for generation number g
= 0, 1, 2, . . ., the sampling equation of k-th individual is
formulated as

xg+1
k ∼ mg + σgNi (0, C

g) , k = 1, ..., λ (1)
where σg is the step-size (i.e. the “overall scale” or standard
deviation of the distribution), mg is the mean parameters of
MGD and Cg is the covariance matrix of MGD, these pa-
rameters of MGD would be updated iteratively through the
following adaption steps.

Secondly, the mean vector of individuals is updated
through selection and recombination:

mg+1 ←
µ∑

i=1

wix
g+1
i:λ (2)

where xg+1
i:λ is i-th best individual of generation g+1 of sam-

pling (Eq. (1)), and wi=1,...,µ are positive weight coefficients
for recombination (

∑µ
i=1 wi = 1, w1 ≥ w2 ≥ ... ≥ wµ >

0).
Then the step-size σg is updated by adpating a step-size

cumulation path:

σg+1 ← σge

(
cσ
dσ

(
∥pg+1

σ ∥
E∥N(0,I)∥−1

))

pg+1
σ ← (1− cσ) p

g
σ +

√
cσ (2− cσ)

Cg
∑µ

i=1 w
2
i

mg+1 −mg

σg

(3)

where cσ and dσ denote decay rate of evolution path for the
step-size and damping parameter scaling the change magni-
tude for σ.

Lastly, covariance matrix adaptation (CMA) of MGD for
generation g+1 is formulated through updating a covariance-
matrix cumulation path pg+1

c :

Cg+1 ← (1− ccov)C
g +

ccov
µcov

pg+1
c

(
pg+1
c

)T
+

ccov

(
1− 1

µcov

)
×

µ∑
i=1

wi

(
xg+1
i:λ −mg

)
σg


(
xg+1
i:λ −mg

)
σg

T

pg+1
c ← (1− cc) p

g
c +

√
cc (2− cc)∑µ

i=1 w
2
i

mg+1 −mg

σg

(4)
where ccov and µcov denote learning rate for the Cg update
and weighting parameter between rank-one and rank-µ up-
date respectively, and cc denotes learning rate for the rank-
one update.

As the startup of CMA-ES optimizing process requires ini-
tialized by an initial guess of the mean and covariance ma-
trix of MGD, Hamano et al. [Nomura et al., 2021] recently
proposes a warm starting CMA-ES approach (WS-CMA-
ES) for the research field of hyperparameter optimization
(HPO), in which the original CMA-ES may be not superior to
Bayesian optimization [Snoek et al., 2012; Wang et al., 2013;
Loshchilov and Hutter, 2017] when the evaluation budget is
limited and thus has received less attention in the context of
HPO. The work of WS-CMA-ES proves that the warm start-
ing strategy can help improve CMA-ES significantly in terms
of optimization performance of HPO. They utilize the dis-
tribution information of other similar tasks to the target HPO
task to generate the initial mean and covariance parameters of
MGD and hence realize the goal of transferring prior knowl-
edge to CMA-ES. The formula of initial mean vector and co-
variance matrix based on WS-CMA-ES can be summarized
as

m0 =
1

Nγ

Nγ∑
i=1

xi

C0 = α2I +
1

Nγ

Nγ∑
i=1

(
xi −m0

) (
xi −m0

)T (5)

where γ is the top percentage of observation number (i.e. N )
in a similar source task, the selected top observation number
Nγ = ⌊γ ·N⌋, xi is an observation and sorted by f (x1) ⩽
f (x2) ⩽ ... ⩽ f

(
xNγ

)
⩽ ... ⩽ f (xN ), I is the identity

matrix, and α is a prior parameter.
Besides WS-CMA-ES, many studies [Krause et al., 2016;

Hamano et al., 2022; Feurer et al., 2015; Perrone et al., 2018;
Perrone et al., 2019; Ash and Adams, 2019; Chu et al., 2015]
also demonstrated the importance of warm starting for an op-
timizer. Nevertheless, taking into account that the research
emphases between counterfactual explanation and hyperpa-
rameter optimization are different, WS-CMA-ES is not suit-
able for the context of CFE. On the one hand, CFE pays atten-
tion to features while HPO acts on hyperparameters. On the
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Euclidean Manhattan

Dataset Metric Method DT RF AB DT RF AB

dmean FOCUS 0.133 0.186 0.136 0.152 0.284 0.203
Heloc CMACE 0.128 0.154 0.106 0.151 0.241 0.185

%closer CMACE<FOCUS 62.1% 98.6% 88.9% 56.7% 83.5% 57.4%

dmean FOCUS 0.268 0.188 0.188 0.268 0.312 0.360
Wine CMACE 0.268 0.151 0.183 0.268 0.218 0.358

%closer CMACE<FOCUS 55.9% 93.1% 63.3% 49.6% 94.2% 54.4%

dmean FOCUS 0.092 0.079 0.076 0.093 0.085 0.090
Compas CMACE 0.082 0.067 0.070 0.086 0.075 0.079

%closer CMACE<FOCUS 69.9% 88.4% 82.9% 59.4% 77.3% 93.1%

dmean FOCUS 0.142 0.025 0.028 0.128 0.026 0.046
Shopping CMACE 0.118 0.021 0.016 0.119 0.023 0.022

%closer CMACE<FOCUS 64.8% 97.5% 95.7% 55.1% 69.7% 64.3%

Table 2: CMACE vs FOCUS

other hand, CFE focuses on features of each sample for local
explanation and rarely has similar tasks that are accessible,
while HPO devotes to obtain a stable set of hyperparameters
for training models and plenty of samples. To the best of our
knowledge, CMA-ES has never been successfully applied to
the context of CFE, maybe due to related reasons aforemen-
tioned. This work first attempts to develop a counterfactual
explanation framework based on CMA-ES and a warm start-
ing scheme more suitable for the context of CFE.

In this work, we focus mainly on a trained black-box binary
classification model M(x), x is the feature of a datapoint in-
stance or individual, y = M(x) are the model classification
probability, yb is the decision boundary threshold for binary
classification (default value is 0.5), that means, if y > yb then
the model classification category for x is the positive class,
otherwise the negative class. Let us give a real-life example,
an applicant attempt to apply for a bank loan and is suddenly
informed that the loan application has not been approved, at
which time what the applicant most wants to know is how he
can make minimal changes to gain access to the loan. CFE
is capable of helping the individual make minimal changes
to original features so as to pass through the desirable side
of the decision boundary, in other words, find a shortest path
from the negative class region to cross the decision boundary
into the positive class region for the loan example. In math-
ematical language, it is the best condition that the classifica-
tion probability y of the counterfactual is close enough to the
decision boundary yb, as well as the model classification cat-
egory of the counterfactual instance belongs to the desirable
class, which fairly conforms to the objective of minimizing
the distance between the counterfactual and original instance.

Based on the above ideas, our warm starting strategy fo-
cuses on taking advantage of prior information of training
samples to produce a good initialization for CMA-ES, while
testing instances are used for generating counterfactuals. We
first select counterfactual samples corresponding to the desir-
able class out of training samples, which can be deemed as

a prior ensemble of counterfactuals. And then we want to
deduce the posterior distribution of counterfactuals when the
decision boundary yb is regarded as a prior observation in-
formation in order that the classification probability y for the
posterior expectation of counterfactuals is the closest to the
decision boundary. In other words, as the prior information
of decision boundary is introduced to generate the posterior
mean and covariance parameters of counterfactuals’ MGD,
the posterior MGD is expected to be in close proximity to
the decision boundary. Besides, the mean vector of MGD
would belong to the desirable class due to selected samples
are all belonging to counterfactuals. The main principle of
CMACE’s warm starting is elaborated in the following.

First, according to Bayes’ theorem, the posterior probabil-
ity density function (PDF) of a datapoint instance x condi-
tioned on the model classification probability y is written as

p (x|y) = p (y|x) p (x)
p (y)

(6)

where p (y) =
∫
p (y|x) p (x) dx. With Eq. (6), the posterior

expectation of any function f of x, f (x), can be expressed as

f (x) =

∫
f (x) p (x|y) dx =

∫
f (x) p (y|x) p (x) dx

p (y)
(7)

Assume the prior ensemble of counterfactual samples xi

(i = 1, ..., n) are independent and identically distributed
(i.i.d.), the prior PDF of x can be formulated as p (x) ≈
1
n

∑
δ (x− xi), where δ is Dirac delta function. Then a

Monte Carlo approximation of the posterior expectation 7 can
be formulated as

f (x) =
n∑

i=1

p (y|xi)∑
j p (y|xj)

f (xi) (8)

Eq. (8) can be regarded as a weighted mean, where each
instance of the prior ensemble is assigned a specific weight
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incorporating the observational information, which can be de-
fined as Bayesian weight. The Bayesian weight of each en-
semble member is directly determined by its likelihood and
can be denoted as

wi =
p (y|xi)∑
j p (y|xj)

(9)

For Gaussian observation errors, the multivariate Gaussian
distribution can be expressed as

p (y|x) ∝ e−
(y−yb)

2

2σ2 (10)

Accordingly, with Eq. (9) and Eq. (10), the Bayesian
weights can be elaborated as

wi =
e−

(yi−yb)
2

2σ2∑
j e

− (yj−yb)
2

2σ2

(11)

where yi is the model classification probability for the i-th
instance xi of the prior ensemble of counterfactuals. In this
work, the counterfactual perturbation is denoted by ẋ = x−x,
where x is a datapoint instance to be explained, and x is the
corresponding counterfactual instance. Therefore, with Eq.
(8) and Eq. (11), the posterior mean vector ẋ0 and covariance
matrix Ċ0 of counterfactual perturbations, i.e., the outputs of
the warm starting scheme, can be formulated as

ẋ0 =
n∑

i=1

wi (xi − x)

Ċ0 =
n∑

i=1

wi

(
xi − x− ẋ0

) (
xi − x− ẋ0

)T (12)

Now we present the loss function definition of CMACE as

ℓ (x, x|M) = ∥x−x∥+1 [⌊M (x)⌉ = ⌊M (x)⌉]·dmax (13)

For the ease of CMACE’s searching procedure, Eq. (13) can
be easily converted into the equivalent loss as

ℓ (x, ẋ|M) = ∥ẋ∥+ 1 [⌊M (x)⌉ = ⌊M (x+ ẋ)⌉] · dmax

(14)
where ∥∥ is a sort of distance definition, e.g. L1 norm or
L2 norm, ⌊⌉ is the rounding symbol, dmax is the max dis-
tance of counterfactual training samples. Accordingly, the
optimal counterfactual perturbation can be obtained by mini-
mizing Eq. (14):

ẋ∗ = argmin
ẋ

ℓ (x, ẋ|M) (15)

With Eq. (12), in order to incorporate prior information
of training samples, CMACE adopts ẋ0 and Ċ0 as the ini-
tial mean and covariance parameters of MGD for Eq. (1).
Detailed information about CMACE is given in Algorithm 1.
Our code is available at https://github.com/liuxia2023/cmace.

4 Experiments
In this section, we compare CMACE against two baselines:
FOCUS and BayCon, both of which are SOTA counterfactual
generating approaches in their respective scopes (i.e. model-
specific and model-agnostic).

4.1 Experiment 1: CMACE vs. FOCUS
FOCUS has been proven to be better than other SOTA model-
specific approaches (DACE and FT) using a series of ex-
periments in terms of validity of CFs found and distance to
original instances. As we attempt to carry out a much more
fair comparison between CMACE and this model-specific ap-
proach, we completely adopt the identical four datasets and
three tree-based models as the paper of FOCUS with re-
spect to Euclidean distance (L2 norm) and Manhattan dis-
tance (L1 norm), whose training data, testing data and model
files are available at https://github.com/a-lucic/focus. The
four datasets used are Heloc (FICO xML Challenge Heloc
Dataset), Wine (UCI Wine Quality Data Set), Compass (Kag-
gle Compass Dataset) and Shopping (UCI Shopping Dataset),
whose detailed information is outlined in Table 1 that cate-
gorical features have been removed and values of remaining
features are all normalized to the range [0, 1]. The tree-based
models used are Decision Tree (DT), Random Forest (RF),
and Adaptive Boosting (AB). Besides, we adopt mean dis-
tance dmean as a primary evaluation metric, measuring the
mean distance between all instances of testing data and cor-
responding counterfactuals generated. We also use another
metric, i.e., the percentage of CMACE’s counterfactual in-
stances that are closer to original instances than CFs of the
baseline approach. Both of which are the same evaluation
metrics as the work of FOCUS. Therefore, we can compare
the experimental results of CMACE with FOCUS’s public re-
sults directly. Other aspects of evaluation metrics are not our
focus and have not been taken into account in this paper.

The experimental results for evaluation is presented in Ta-
ble 2. In terms of mean distance dmean, CMACE surpasses
FOCUS in 22 experimental settings containing all experimen-
tal settings of three datasets (Heloc, Compas and Shopping)
and two models (RF and AB), while in the remaining 2 set-
tings (Wine dateset and DT model) the mean distances of
two approaches are equal. In addition, a majority of coun-
terfactual examples generated by CMACE are closer to origi-
nal instances than CFs found by FOCUS, particularly for ex-
perimental settings using more complex tree-based models,
i.e. Random Forest and Adaptive Boosting. These exper-
iment results displays that CMACE improves both metrics
of counterfactual explanations in most cases. We also find
both CMACE and FOCUS generate valid counterfactuals for
all instances of all experimental settings, which indicates that
CMACE is equivalent to FOCUS in terms of validity for find-
ing counterfactual explanations.

Meanwhile, we discover that CMACE tend to perturb
fewer features than FOCUS in most experimental settings us-
ing the Manhattan distance, accordingly contributing to bet-
ter performance of mean distance to original instances, which
maybe due to that L1 norm distance in CMACE’s loss func-
tions is inclined to intensify the L1 regularization effect and
promote the sparsity of feature perturbations to a greater ex-
tent. For Euclidean distance, the amount of perturbed features
by CMACE is close to that of FOCUS on the whole, while
amplitudes of perturbations with respect to less important fea-
tures are smaller than FOCUS, in most situations resulting
in smaller mean distance of CFs generated by CMACE than
those of FOCUS.
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Figure 1: Manhattan distance minimization by CMACE

Overall, experimental results above show that CMACE is
highly effective in finding counterfactual explanations, and
even superior to FOCUS which by contrast is specially de-
signed for tree-based models.

4.2 Experiment 2: CMACE vs. BayCon
From a viewpoint of scalability, CMACE is model-agnostic
as well as BayCon, the CFE approach based on Bayesian
Optimization, so we also want to evaluate the overall per-
formance of finding counterfactuals of non tree-based mod-
els and perform some contrast experiments between CMACE
and BayCon involving another three models (LR, MLP,
SVM) trained on the same four datasets in terms of a differ-
ent distance function (Gower distance) exclusively used by
BayCon. All the models are trained on training data whose
hyperparameters are carefully tuned for better classification
performance. Unlike the work of BayCon only generate CFs
for a few of input instances, our experiments demand that all
instances of testing data need to be used to generate counter-
factuals by CMACE and BayCon, in which the metrics can be
computed with high statistical significance. Besides adopt-
ing the evaluation metrics of Experiment 1, we also assess
whether both approaches can find counterfactual instances
successfully for all input instances of four test datasets or not,
because this is the most fundamental metric in terms of valid-
ity.

The experimental results are presented in Table 3. We ob-
serve that BayCon can not find counterfactuals for a few in-
stances, while CMACE can generate counterfactuals for all
instances of testing data successfully, owing to the warm star-
ing scheme of CMACE that initial mean vectors are all be-
longing to counterfactuals. In terms of dmean, we notice that
CMACE surpass BayCon significantly in almost all the ex-
perimental settings. In addition, the percentages of CMACE’s
counterfactuals that are closer to original instances than Bay-
Con are all greater than 85% (a great majority of percentages

exceed 90% and about a half approach 100%) except for the
percentage (56%) with regard to the SVM model and the He-
loc dataset. Generally, the performance of CMACE is more
superior than that of BayCon in terms of metrics above.

4.3 Experiment 3: Local Explanations by CMACE
We also perform an extensive analysis of CMACE on a loan
example of the Heloc dataset, which includes each individ-
ual’s risk performance, credit score, load balance, history
trade behavior, et al. We randomly select an individual in-
stance with 23 credit risk features (all normalized), whose
predictions are all negative (loan default) by six models (DT,
RF, AB, LR, MLP, SVM) used in this work. In realistic
situations, usually the counterfactual explanations are more
actionable on condition that amount of features changed is
smaller. So we consider the L1 norm as the distance func-
tion to compute the counterfactuals, on account of its regu-
larization effect for perturbation sparsity. The minimization
process of CMACE with different models is displayed in Fig-
ure 1, which shows that the convergence rate for searching
optimal counterfactuals is fast, and the minimal distances of
CFs to the original feature instance with different models are
different. Figure 2 presents six results of counterfactual per-
turbations corresponding to different models, representative
of six different ways to change personal risk features in order
to get the loan.

From Figure 2, we observe that CFs of all the tree-
based models (DT, RF, AB) suggest that increasing
ExternalRiskEstimate contributes to reduce the forecast-
ing default probabilities and get approval by these models
despite the increase amplitude is different, which indicates
that the tree-based models treat ExternalRiskEstimate
as the most important feature of this individual. The def-
initions of 23 features are available in the data dictionary.
ExternalRiskEstimate belongs to a kind of credit score,
so the counterfactual results conform to the feature definition
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Dataset Metric Method LR MLP SVM

dmean BayCon 0.349 0.424 0.494
CMACE 0.113 0.246 0.422

Heloc %closer CMACE<BayCon 99.7% 85.7% 56.0%

# CFs BayCon 3,138 3,138 3,137
generated CMACE 3,138 3,138 3,138

dmean BayCon 0.276 0.274 0.314
CMACE 0.200 0.204 0.219

Wine %closer CMACE<BayCon 100% 89.9% 91.9%

# CFs BayCon 1,467 1,470 1,453
generated CMACE 1,470 1,470 1,470

dmean BayCon 0.151 0.132 0.126
CMACE 0.123 0.110 0.106

Compas %closer CMACE<BayCon 100% 96.7% 98.9%

# CFs BayCon 1,843 1,851 1,846
generated CMACE 1,852 1,852 1,852

dmean BayCon 0.266 0.079 0.114
CMACE 0.064 0.010 0.068

Shopping %closer CMACE<BayCon 100% 99.9% 99.9%

# CFs BayCon 3,683 3,696 3,653
generated CMACE 3,699 3,699 3,699

Table 3: CMACE vs BayCon

that a higher score corresponds to a lower probability for
loan default. Besides increasing ExternalRiskEstimate,
the RF explanation also suggest concurrently decreas-
ing another feature (NetFractionRevolvingBurden),
which is in accord with the case in the work of FOCUS.
Since NetFractionRevolvingBurden is the revolving
balance divided by credit limit, the decreasing suggestion
satisfies the causal common knowledge. In the remain-
ing non tree-based models, the SVM explanation also
suggest increasing the credit score feature by a mod-
erate amplitude, while NumSatisfactoryTrades is
recommended to be increased with a greatest amplitude
and NetFractionRevolvingBurden is to be decreased
slightly. NumSatisfactoryTrades is the number of
satisfactory credit trades, which is regarded as the most
sensitive feature by the SVM explanation. A larger
NumSatisfactoryTrades means that the default proba-
bility of an individual is lower. As types of LR and MLP
are different from those of tree-based models, features
perturbed by the corresponding CFs are also different, both
of which suggest decreasing NumInqLast6M , the number
of inquiries by the lenders in the past six months. The
larger number of inquiries represents that the individual
attempted to submit loan applications to more financing
institutions such as banks, which usually indicates a higher
probability of loan default. While the simple LR model
perturbs only one feature, the MLP explanation also suggest
synchronously increasing NumSatisfactoryTrades

and PercentTradesNeverDelq, and slightly
decreasing MSinceMostRecentTradeOpen.
PercentTradesNeverDelq is the percentage of trades
that have never been delinquent, that is to say, the
larger the percentage, the better the individual. And
MSinceMostRecentTradeOpen means the number of
months that the credit account has never been opened, which
determine an individual’s credit worthiness. In general, the
perturbed features are on the whole actionable, except for
the credit score feature belonging to a sort of black-box
feature. Even so, increasing an individual’s credit score is
also feasible, which needs to know how the credit score is
modelled and is out of scope of this work. In summary, we
discover that the counterfactuals generated by CMACE basi-
cally conform to the causal relation between the applicant’
feature change and the probability of potential loan.

5 Discussion and Conclusion
We propose a highly effective model-agnostic counterfactual
explanation approach, CMACE, which dedicates to deal with
the trade-off dilemma between better performance of model-
specific approaches and better scalability of model-agnostic
approaches. Extensive experimental results demonstrate
that besides scalable to various types of models, CMACE
can not only significantly outperform SOTA model-agnostic
approaches, but also outperform SOTA model-specific ap-
proaches, in terms of fundamental metrics such as mean
distance. Furthermore, while pursuing higher performance,
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Figure 2: Counterfactual explanations by CMACE

CMACE can generate counterfactuals with high sparsity, that
is an important consideration for practical applications, be-
cause it is easier to understand shorter explanations [Miller,
2019; Naumann and Ntoutsi, 2021] and take corresponding
actions. Moreover, CMACE can also generate counterfactu-
als in accord with the causal common sense, that is also a
desirable property for counterfactual explanations.

Lastly, we discuss the limitations of our approach. We
note that CMACE may be not applicable to super high di-
mension problems of generating counterfactuals, especially
for the complex situation that the dimension of features ex-
ceeds the order of 103. Generally, the amount of effective
features for tabular data is rarely greater than 102, so curse
of dimensionality is not a problem. However, when counter-
factual explanation is applied to image data with innumerable
pixels, the corresponding search space is so large that our ap-
proach may not find optimal counterfactual perturbations. To
our knowledge, only gradient-based approaches can handle
this kind of problem. Our next work plan is to explore the
problem of counterfactuals generating for image data by com-
bining both advantages of gradient-based approaches and our
approach.
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Matthias Feurer, André Biedenkapp, Difan Deng, Carolin Ben-
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