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Abstract
Attribution algorithms play an instrumental role in
human interpretation of AI models. The meth-
ods measure the importance of the input features
to the model output decision, which can be dis-
played as an attribution map for image classifiers.
Perturbation tests are the state-of-the-art approach
to evaluate the quality of an attribution map. Un-
fortunately, we observe that perturbation tests fail
to consider attribution magnitude, which translates
into inconsistent quality scores. In this paper,
we propose Magnitude Aligned Scoring (MAS),
a new attribution quality metric that measures the
alignment between the magnitude of the attribu-
tions and the model response. In particular, the
metric accounts for both the relative ordering and
the magnitude of the pixels within an attribution.
In the experimental evaluation, we compare the
MAS metric with existing metrics across a wide
range of models, datasets, attributions, and evalu-
ations. The results demonstrate that the MAS met-
ric is 4× more sensitive to attribution changes, 2×
more consistent, and 1.6× more invariant to base-
line modifications. Our code and the referenced
appendix are publicly available via https://github.
com/chasewalker26/Magnitude-Aligned-Scoring.

1 Introduction
Understanding the decision making of black-box AI models
is necessary for deployment in safety-critical domains. At-
tribution methods are currently the most prevalent form of
explanations [Das and Rad, 2020]. These methods provide
model explanations by assigning an importance value to each
feature of the model input [Simonyan et al., 2014]. A broad
range of attribution algorithms have been developed in the
past few years [Hooker et al., 2019a; Chefer et al., 2021].
However, the ability to quantify the quality of an attribution
map remains an open problem. An accurate attribution metric
has the potential to further advance the field of explainable AI
forward, refining human understanding of AI models.

Attribution quality metrics generally fall into two cate-
gories: evaluation with ground-truth [Borji et al., 2013]
or perturbation metrics without ground-truth [Samek et al.,

2016; Ancona et al., 2018]. Evaluation of attribution meth-
ods with ground-truth can be desirable when human-labeled
data is present. Common methods to develop ground-truth
datasets in the vision domain are the use of segmentation al-
gorithms to create a mask of the image subject, human eye-
tracking heat map data, or manual image masks created by
humans [Kümmerer et al., 2014; Bylinskii et al., 2019]. Per-
turbation metrics aim to quantify the quality of an attribution
map without the use of ground-truths that are often not avail-
able [Samek et al., 2016]. Moreover, human-created masks
do not necessarily represent a model’s decision process.

Perturbation metrics aim to evaluate if the attribution map
is reflective of a model’s decision making [Petsiuk et al.,
2018b]. Specifically, perturbation tests aim to measure if
the attribution map discriminates appropriately between more
and less important features. The tests are performed by mod-
ifying the model or the input test image by the values in the
attribution map [Petsiuk et al., 2018b]. Ideally, the magnitude
of the attribution assigned to each feature should be propor-
tional to the model response. However, we observe that cur-
rent image perturbation metrics do not measure this relation-
ship, they only account for the relative ordering of the input
features, not the magnitudes, leading to inconsistent scores.

In this paper, we propose a new perturbation metric for
evaluating attribution quality without ground-truth called
Magnitude Aligned Scoring (MAS). MAS employs an align-
ment penalty to measure the relationship between attribution
magnitude and the response of the model output to the attribu-
tion. Our main contributions can be summarized as follows:

• We observe that existing quality metrics fail to consider
attribution magnitude and only rely on attribution order,
which leads to inconsistent quantification.

• We propose a quantitative, ground-truth-free perturba-
tion metric, MAS. It provides a principled solution to
the failures of existing methods by utilizing an alignment
penalty to satisfy a new sensitivity property we define.

• Quantitative analysis proves MAS solves the failures
of existing metrics, showing 2.5× improvements across
sensitivity, consistency, and baseline invariance testing.

The paper is arranged as follows: related work is discussed
in Section 2, the MAS metric is motivated in Section 3, the
MAS metric is defined in Section 4, experimental evaluation
is performed in Section 5, and the conclusion is in Section 6.
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2 Related Work
In this section, we discuss the details of attribution meth-
ods, the existing metrics that quantify their accuracy, and how
these metrics can be validated.

2.1 Attribution Methods
Attribution methods explain black-box models by measuring
the importance of each feature in an input to the model re-
sponse. Attribution methods can be occlusion based [Ribeiro
et al., 2016; Zeiler and Fergus, 2014], gradient based [Si-
monyan et al., 2014], or attention based methods [Hao et
al., 2021] for transformer models. Occlusion based meth-
ods iteratively modify an input image while measuring model
output to determine the most salient regions. Gradient based
methods use backpropagation to measure the model gradients
with respect to the input features. Attention based methods
use transformer attention weights as explanations directly, or
combine them with model gradients [Yuan et al., 2021]. Oc-
clusion based methods are slow and generally undesirable.

The early gradient based techniques utilize model gradi-
ents as is [Simonyan et al., 2014] or multiply them by the
input image [Shrikumar et al., 2016], but these methods suf-
fer from large amounts of saturation noise [Sundararajan et
al., 2017]. Recently, the newly introduced path integration
methods [Miglani et al., 2020] average the gradients from
multiple interpolated images along a path from a baseline to
the input image to reduce this saturation noise. Additional
techniques to reduce noise suppress negative gradients during
the backpropagation step [Springenberg et al., 2015] or mea-
sure gradients from a models’ last convolutional layer and
remove gradients pointing to non-target classes [Selvaraju et
al., 2017]. Attention based methods first started with raw at-
tention as a visualization [Hao et al., 2021] and have since
incorporated accumulation techniques [Yuan et al., 2021;
Chefer et al., 2021] and gradients [Qiang et al., 2022] to cre-
ate stronger attributions. Attribution metrics are necessary to
measure how well an attribution represents a model.

2.2 Attribution Quality Metrics
Attribution quality metrics aim to evaluate how well an attri-
bution represents a model’s decision making process. We fo-
cus on improving perturbation metrics because ground-truths
are generally not available. Within perturbation metrics, there
are methods that perturb [Adebayo et al., 2018] or retrain a
model [Hooker et al., 2019b] and those that perturb the input
and retain the original model [Petsiuk et al., 2018b]. These
model modification metrics either randomize model layers
and measure how much an attribution changes [Adebayo et
al., 2018], or retrain a model with the top attribution pixels
ablated from the train set [Hooker et al., 2019b]. Since these
methods require data intensive and model-specific retraining
or modification, we will focus on image perturbation metrics
for this work [Petsiuk et al., 2018b].

Image perturbation metrics exist as insertion or deletion
tests and use the original image, an attribution, a baseline
(blurred starting image for insertion or black ending image for
deletion), and the model. In insertion (deletion) testing, orig-
inal (black) pixels are iteratively added to the blurred (origi-
nal) input image in order of descending attribution magnitude

until the original (a black) image is reached. The model out-
put is measured for the perturbed image at each iteration with
respect to the original class, resulting in a receiver operating
characteristics (ROC) curve. For insertion (deletion) tests,
this is an increasing (decreasing) curve and the area under the
ROC curve - the AUC - gives the final result, where a higher
(lower) value represents a better attribution. This traditional
ROC curve is visualized in Figure 2(b) for the insertion test.
It is most common for the results of both the insertion and
deletion tests to be presented for the evaluation of an attribu-
tion. In this work we evaluate two methods which follow this
perturbation process.

RISE: Insertion and Deletion. In the RISE paper [Petsiuk
et al., 2018b], the authors use the standard baselines for the
insertion and deletion tests (the blurred input or black image),
and use equally sized pixel groupings during the testing pro-
cess. At each perturbation step, they select the top N pixels
of an N ×N image by descending attribution magnitude and
measure the resulting softmax output to generate an ROC.

PIC: SIC and AIC Insertion. Kapishnikov et al. present
the performance information curve (PIC) insertion metrics:
the softmax information curve (SIC) and accuracy informa-
tion curve (AIC) scores [Kapishnikov et al., 2019]. SIC uses
the softmax output, whereas AIC uses an accuracy measure-
ment of 0 or 1 for an incorrect or correct prediction at each
perturbation step. Instead of a uniform blur baseline, the in-
put image is blurred in discrete, polygonal tiles, with unique
noise distributions. Additionally, pixels are non-linearly per-
turbed in groups of increasing size, and the SIC/AIC ROCs
are normalized to be monotonic non-decreasing curves.

2.3 Desirable Attribution Metric Properties
A trustworthy and reliable attribution quality metric should
adhere to the following desirable properties which are quan-
titatively measurable:

1. Sensitivity: Features important to the model should
have high attribution and unimportant features should
have low attribution [Petsiuk et al., 2018b].

2. Consistency: A metric should be consistent in its cal-
culated ratings. It should consistently rank different at-
tribution methods by their quality over a set of varying
inputs [Tomsett et al., 2020].

3. Baseline Invariance: A metric should be invariant to its
baseline selection, i.e., an insertion test using a random
baseline or blurred baseline should rank a set of attribu-
tions the same way [Tomsett et al., 2020].

Existing image perturbation metrics attempt to satisfy sen-
sitivity by scoring attributions using the relative ordering of
the input features. However, the sensitivity property is rather
vaguely defined, so it is not clear which one of the RISE and
PIC metrics best quantifies the property. Hence, a mix of
the different tests are typically used to evaluate new attribu-
tion algorithms. Additionally, it has been shown that consis-
tency and baseline invariance are not adequately satisfied by
the RISE and PIC methods [Tomsett et al., 2020].
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Figure 1: (a) Adding a constant to the GBP “oystercatcher” attribution does not affect the SIC score. The explanation is that the SIC metric
only accounts for the (unchanged) attribution order and not attribution magnitudes. (b) RISE insertion scores the “warplane” LIG attribution
higher than GBP although GBP provides a sharper version of the LIG attribution with less saturation noise. This is explained by the fact that
there does not exist a penalty for attributions on unimportant features in the existing metrics as attribution magnitude is not considered.

3 Motivating a New Metric
We now study the RISE and PIC metrics to show their fail-
ure of sensitivity resulting from their disregard of attribution
magnitude and motivate the definition of a new sensitivity
property as well as the development of a new metric.

3.1 Attribution Magnitude Is Important
In Section 2.3, the sensitivity property states that input pix-
els that are important (not important) to the model’s deci-
sion should be assigned large (small) magnitude attributions.
Here, small and large refers to the relative distance to zero.
Formally, let Ai and Aj denote the attributions of pixels i and
j, respectively. The quotient Ai/Aj measures the relationship
of the features’ magnitudes, which defines sensitivity.

Given this notation, we analyze the invariance of attri-
bution metrics to multiplying an attribution map by a con-
stant or adding a constant. It is straightforward to understand
that invariance to multiplication is desirable for a metric, as
Ai/Aj is equal to aAi/aAj , where a is a constant. However,
(Ai + a)/(Aj + a) is not equal to Ai/Aj , in general. There-
fore, invariance to a constant offset is undesirable under the
sensitivity property, but existing metrics do not adhere to this.

3.2 Limitations of State of the Art Metrics
Increase by a Constant Is Ignored
In Figure 1(a), we modify guided backpropagation (GBP)
[Springenberg et al., 2015] attributions by adding 5% or
10%×max(GBP) to all attribution pixels as a constant. Since
adding a constant does not change the relative ordering of the
input features, the attribution maps are scored equally by SIC.
This holds for all four reviewed metrics - RISE insertion and
deletion as well as PIC’s SIC and AIC. Thus, it is clear the ex-
isting attribution metrics’ sole reliance on relative attribution
ordering leads to an invariance to a constant offset.

Theorem 1. RISE and PIC Are Invariant to Constant Offset.

Proof. Let an attribution A with values in the range [0, 1]
have a magnitude ordering of OA. If a constant b is added
to A, this yields A′, with range [b, 1+ b] and ordering OA′ =

OA. Since a score is determined solely by the perturbation of
the input image via the order of A, and OA = OA′ , A and A′

will have equal scores. Therefore, the metrics are invariant to
a constant offset.

Attribution Noise Is Not Penalized
We show the attribution maps of a “warplane” image com-
puted using left integrated gradients (LIG) [Miglani et al.,
2020] and GBP in Figure 1(b). Although GBP has a very
sharp, low noise attribution compared to LIG, which has ev-
ident saturation noise [Sundararajan et al., 2017], the RISE
insertion metric scores LIG higher than GBP. Given the at-
tributions are nearly identical except for the noise in LIG, it
is clear that existing metrics do not sufficiently penalize non-
zero attributions on unimportant input features. This is a di-
rect result of not adhering to the sensitivity property.

3.3 Proportional Sensitivity
In this paper, we propose a quantitatively satisfiable property
in replacement of the vaguely defined sensitivity property:

1. Proportional Sensitivity: The magnitude of the attribu-
tion assigned to an input feature should be directly pro-
portional to the change the feature induces in the model
output response.

To satisfy this property, we propose a new metric that pe-
nalizes the misalignment of an attribution feature’s model re-
sponse and density response. This encourages large magni-
tude attributions to be assigned to the critical input features
while penalizing non-zero attributions assigned to pixels that
are irrelevant to the model. We envision this new metric will
drive the development of new attribution algorithms that pro-
duce sharp, low noise attribution maps.

4 The MAS Metric
In this section, we introduce the magnitude aligned scoring
(MAS) metric. We define the model and density response to
introduce an alignment penalty that satisfies the proportional
sensitivity property. The model response measures a feature’s
proportional contribution to the model output and the density
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Figure 2: This figure outlines the process for computing the model response, density response, and alignment penalty of our new MAS
insertion test given an image and its attribution map. For the input image of a “bee eater” (a) and its IG attribution map (b), we show the
model response (c), density response (d), and alignment penalty of the attribution (e) as the area between the response curves.

response measures a feature’s proportional contribution to the
entire attribution’s magnitude. Figure 2 provides an overview.

4.1 The Model and Density Response
Given an input X of class c, a model F , and an attribution
map A, N attribution features are evaluated over an N step
perturbation test. For a step k, the perturbed image Xk eval-
uates the impact of the first k attribution features in highest
magnitude order. This test follows the RISE process from
Section 2.2. We define the model response (MR) at step k
as:

MRk = softmax(F (Xk))c, (1)

where X0 represents the unperturbed starting image and
MR0 to MRN forms the MR curve. In Figure 2, we show an
input image of a “bee eater” (a), its integrated gradients (IG)
[Sundararajan et al., 2017] attribution map (b), and the model
response (c) from an MAS insertion test. We note that the in-
sertion model response MRins is a monotonically increasing
curve, and MRdel is a monotonically decreasing curve.

Next, we define the density response (DR) at step k as:

DRk =

∑k
i=0 |Ai|
|A|

(2)

where the |.| operation measures the total magnitude of the
attributions in a given feature, A0 represents 0 selected fea-
tures, and DR0 to DRN forms a full density response curve.
The density response of the “bee eater” IG attribution is seen
in Figure 2(d) and represents, at each step, what percent-
age of the total attribution magnitude has been selected via
the perturbation process. We note that the insertion model
response DRins is a monotonically increasing curve, and
DRdel = 1−DRins is a monotonically decreasing curve.

Now we define the alignment penalty (AP ) which mea-
sures the absolute value of the difference between the model
and density response for an attribution map. The general

alignment penalty at step k is defined as:

APk = |MRk −DRk|, (3)

where AP0 to APN measures the alignment penalty across
the full insertion or deletion MR and DR curves. In Figure
2(e), the insertion alignment penalty is illustrated as the area
between the MR and DR curves.

4.2 Magnitude Aligned Scoring (MAS)
Given an attribution map A with N features, MAS can be
utilized as insertion or deletion. The insertion and deletion
tests are defined by the AUC of the MR and AP curves:

MASins =
1

N

N∑
i=0

MRins
i − 1

N

N∑
i=0

AP ins
i (4)

and

MASdel =
1

N

N∑
i=0

MRdel
i +

1

N

N∑
i=0

AP del
i . (5)

Intuitively, lowering (increasing) the insertion (deletion)
score is the effective application of the alignment penalty be-
cause a higher (lower) insertion (deletion) score represents a
higher quality attribution.

To calculate the MR, we perform the linear perturbation
process from RISE explained in Section 2.2 and we perform
monotonic normalization of the MR to [0, 1] to ensure AP =
0 is achievable as DR is on the range [0, 1]. The penalized
MASins or MASdel ROC is then clipped to the range [0, 1]
and normalized to [0, 1]. Therefore, the AUC of the resulting
MASins and MASdel scores is on the range [0, 1] where higher
is better for MASins and lower for MASdel.

We present how the MAS insertion test accounts for attri-
bution magnitude in Figure 3 by revisiting the LIG and GBP
attributions of the “warplane” seen in Figure 1(b). From left
to right, we show the input (a), an attribution, its MR, DR,
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Figure 3: The calculation of the MAS insertion scores for (b) LIG and (c) GBP attributions of a “warplane” (a). Each graph shows the MR,
DR, and AP . It can be seen LIG has a model response with a higher AUC than GBP (since magnitude is not a factor), but receives a much
larger alignment penalty when noise is considered, resulting in a lower score than GBP, as expected. The alignment penalty therefore corrects
the non-penalization of attribution noise by the existing methods.

and AP graph, and its MAS score calculation beneath. In
Figure 3(b) we see LIG has a large model response of 0.992
which is greater than GBP’s model response of 0.975 in Fig-
ure 3(c) (since magnitude is not a factor without the alignment
penalty). However, due to the noise in the LIG attribution, it
has a large alignment penalty of 0.183 compared to 0.067 for
GBP. When the AP is subtracted from the MR of each attri-
bution, the final scores are 0.809 and 0.908 for LIG and GBP,
respectively. The proper penalization of noise in the LIG at-
tribution results in a lower score than GBP, as expected.
Insertion and Deletion Difference. In the existing litera-
ture, insertion and deletion tests are often performed in uni-
son, but considered separately as they measure different qual-
ities of an attribution. The insertion test measures the value of
high magnitude attributions to classification by adding them
to an image, while the deletion test measures the value of high
magnitude attributions to misclassification by removing them
from an image. However, we propose a combination of the
scores should also be considered to balance the bias of each
test. We propose considering the difference of the scores:

MASdiff = MASins − MASdel. (6)

The subtraction of these two tests creates the new “differ-
ence” score while preserving their opposing nature: higher
insertion scores and lower deletion scores are desired. If one
score measures very well and one very poorly, the small dif-
ference will indicate the disagreement between the tests (one
test is biased). If both scores are respectively strong, the large
difference will indicate an overall high scoring attribution.

4.3 MAS Is Sensitive to a Constant Offset
Theorem 2. MAS is sensitive to a constant offset.

Proof. The MAS score of an attribution A is defined as:

MAS(A) = MR− |MR−DR|, (7)

where MR is equivalent to the score of the RISE metrics.
Following Proof (3.2), if MAS(A) and MAS(A′) are eval-
uated, the MR terms of each function will be equivalent.

So we write MAS = f(DR). Now, consider A ∈ [0, 1]
and A′ ∈ [b, 1 + b]. By Eq (2), DR(A) ̸= DR(A′), thus
MAS(A) ̸= MAS(A′), proving MAS is sensitive to a con-
stant offset, satisfying proportional sensitivity.

5 Evaluation
We perform evaluation of the proposed MAS metrics against
the currently accepted PIC [Kapishnikov et al., 2019] and
RISE [Petsiuk et al., 2018b] perturbation metrics for a total
of eight metrics under evaluation: AIC, SIC, RISE insertion,
RISE deletion, RISE difference, MAS insertion, MAS dele-
tion, and MAS difference. We recognize difference was not
employed in the original RISE framework, but we use it for
fair comparison against our proposed MAS difference metric.

All evaluations are performed with PyTorch [Paszke et al.,
2019], using ResNet 101 (R101) [He et al., 2016] and ViT-
Base 16 (VIT16) [Dosovitskiy et al., 2020]. The evaluations
are executed on an internal cluster with NVIDIA A40 GPUs.
We employ the Imagenet [Russakovsky et al., 2015] and RE-
SISC45 [Cheng et al., 2017] datasets across our experiments.
We use the respective repositories of the PIC [Kapishnikov et
al., 2021a] and RISE [Petsiuk et al., 2018a] metrics.

5.1 Metric Attribution Sensitivity Test
As presented in Figure 1(a) and (b), the RISE and PIC metrics
do not recognize a constant offset or properly penalize attri-
bution noise because they do not consider attribution magni-
tude, and therefore are not sensitive as outlined in Section 2.3.
We now quantitatively verify MAS’ sensitivity.

Using the ImageNet and RESISC45 datasets with the R101
and VIT16 models, we generate gradient (grad) [Simonyan et
al., 2014], LIG, and GBP attributions for 1000 images from
both datasets. We choose these attribution methods for their
different levels of noise. We then perform one of two modifi-
cations to the generated attributions. We either add a constant
that is 5, 10, 25, or 50% of the maximum attribution value as
explained for Figure 1(a) or we add noise from the range 0 to
0.05, 1, 2, or 3% of the maximum attribution value.
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Noise Type Constant Offset Noised
Dataset ImageNet RESISC 45 ImageNet RESISC 45
Model R101 VIT16 R101 VIT16 R101 VIT16 R101 VIT16
PIC: SIC [Kapishnikov et al., 2019] (↑) 0.00 0.00 0.00 0.00 2.63 0.89 0.46 0.74
PIC: AIC [Kapishnikov et al., 2019] (↑) 0.00 0.00 0.00 0.00 2.80 0.88 0.74 0.55

RISE Ins [Petsiuk et al., 2018b] (↑) 0.00 0.00 0.00 0.00 14.17 3.43 1.51 3.77
RISE Del [Petsiuk et al., 2018b] (↑) 0.00 0.00 0.00 0.00 4.99 3.88 2.39 1.55
RISE Diff [Petsiuk et al., 2018b] (↑) 0.00 0.00 0.00 0.00 8.94 2.28 1.80 2.68

MAS Ins (ours) (↑) 20.41 20.21 25.08 27.51 14.65 9.84 11.60 18.16
MAS Del (ours)(↑) 23.39 21.10 25.43 27.10 12.18 4.00 12.92 14.02
MAS Diff (ours) (↑) 22.02 20.67 25.25 27.31 13.32 6.86 12.25 16.12

Table 1: We evaluate the sensitivity of each metric. The values measure how sensitive each metric is to attribution modification (a constant
offset of all values or a noised version of the attribution), where higher is better. Across all tests, MAS has greatly improved sensitivity.

Dataset ImageNet RESISC 45
Model R101 VIT16 R101 VIT16
PIC: SIC [Kapishnikov et al., 2019] (↑) 0.323 0.262 0.025 0.268
PIC: AIC [Kapishnikov et al., 2019] (↑) 0.185 0.263 0.017 0.382

RISE Ins [Petsiuk et al., 2018b] (↑) 0.479 0.128 0.015 0.056
RISE Del [Petsiuk et al., 2018b] (↑) 0.378 0.330 0.181 0.117
RISE Diff [Petsiuk et al., 2018b] (↑) 0.657 0.448 0.071 0.162

MAS Ins (ours) (↑) 0.634 0.491 0.158 0.259
MAS Del (ours) (↑) 0.678 0.669 0.497 0.500
MAS Diff (ours) (↑) 0.715 0.650 0.237 0.387

Table 2: We evaluate the ability of each metric to be consistent in its ordering of a set of attributions over a set of images. A more consistent
metric is more trustworthy. We measure this consistency with the IRR metric, where a higher value is better.

We then average, over the images, the ROCs computed by
each of the eight metrics for all attributions and their modifi-
cations. We then measure the absolute distance of the mod-
ified attribution ROCs from the original ROC. We evaluate
a metric’s sensitivity by the ratio of the distance metric to
the original attribution’s AUC. A sensitive metric will have a
non-zero ratio value, where higher indicates more sensitivity.

In Table 1, we see only MAS is sensitive to a constant off-
set and MAS outperforms PIC and RISE in all noised sensi-
tivity tests. MAS is overall more sensitive to changes in an
attribution as it considers attribution magnitude via the align-
ment penalty. In Section A.1, we present the ROC curves
from the table that show MAS reduces the score of the mod-
ified (worse) attributions, whereas PIC and RISE do not con-
sistently increase or decrease the score if the score changes.

5.2 Metric Ranking Consistency Test
To evaluate the consistency of how a metric rates a group of
attributions, we perform two metric sanity checks [Tomsett
et al., 2020]: inter-rater reliability (IRR) and internal consis-
tency reliability (ICR). IRR measures how well a metric sorts
a set of attributions over a set of images. A perfectly con-
sistent metric is expected to provide the same ordering of an
attribution set over all images. Krippendorff’s α is used to
measure the IRR of a metric [Krippendorff, 2004], where a

higher α in the range [0, 1] represents a more consistent met-
ric. We provide the ICR results in Appendix A.2.

We measure the IRR of the eight metrics using three attri-
butions over 5000 images from the ImageNet and RESISC45
datasets. For the R101 model, we select the grad, LIG, and
GBP attributions due to their large visual differences (see Fig-
ure 4). For the VIT16 model, we select the following attri-
bution group: a random mask, LIG, and transition attention
[Yuan et al., 2021] or raw attention [Hao et al., 2021] for Im-
ageNet and RESISC45, respectively, due to their large visual
differences. These were chosen as visually similar attribu-
tions are likely to be scored equivalently, making consistent
ranking unlikely for any metric. The IRR test results are in

Figure 4: The attributions, sorted low to high by score, chosen for
ImageNet using R101. Note the differences in pixel distribution and
density of the attribution maps. In MAS testing, grad consistently
scores worse than LIG, which consistently scores worse than GBP.
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Baseline Random Dataset Mean
Dataset ImageNet RESISC 45 ImageNet RESISC 45
Model R101 VIT16 R101 VIT16 R101 VIT16 R101 VIT16
RISE Ins [Petsiuk et al., 2018b] (↑) 0.495 0.331 0.056 0.177 0.505 0.312 0.052 0.174
RISE Del [Petsiuk et al., 2018b] (↑) 0.369 0.235 0.131 0.052 0.368 0.247 0.157 0.045
RISE Diff [Petsiuk et al., 2018b] (↑) 0.600 0.537 0.131 0.267 0.610 0.550 0.149 0.265

MAS Ins (ours) (↑) 0.554 0.463 0.160 0.287 0.554 0.463 0.166 0.283
MAS Del (ours) (↑) 0.680 0.631 0.466 0.496 0.680 0.631 0.490 0.477
MAS Diff (ours) (↑) 0.660 0.606 0.296 0.430 0.674 0.606 0.319 0.419

Table 3: We measure how invariant a metric’s consistency is under baseline modification. It is ideal for a metric to be implementation invariant
such that it provides more accurate results. We measure the invariance with the ICR metric where higher values are better.

Table 2 where MAS shows a significantly higher consistency
than the RISE and PIC metrics, outperforming them in 11/12
tests. We illustrate the consistency improvements of MAS
with Figure 5 and figures in Appendix A.2.

5.3 Metric Baseline Invariance Test
As explained in Section 2.3, it is desirable for a quality metric
to consistently evaluate attributions regardless of its baseline.
ICR measures how well two different metrics agree on attri-
bution rankings via Spearman’s ρ ∈ [0, 1], where a higher
value represents stronger agreement. We evaluate the agree-
ment of the six RISE and MAS quality metrics with their
modified baseline versions. We exclude PIC due to inacces-
sibility of modification. We use either random values drawn
from a uniform distribution or the dataset mean value as the
new baseline [Tomsett et al., 2020]. The default baseline for
insertion is a blurred image and for deletion, a black image.
We use the same image, model, and attribution choices from
the previous section for evaluation. The results in Table 3
show that MAS is more invariant to baseline modification
than RISE in 24/24 tests, as desired. A visual explanation
of this test is provided with a figure in Appendix A.3.

5.4 Qualitative Analysis of MAS
To qualitatively verify MAS against PIC and RISE, we pro-
vide ten examples in Appendix A.4 and one in Figure 5.
We score seven attributions: IG, LIG, GBP, GradCAM and
guided GradCAM [Selvaraju et al., 2017], guided IG (GIG)
[Kapishnikov et al., 2021b], and adversarial gradient integra-
tion (AGI) [Pan et al., 2021] using the eight tests discussed in
this paper. This figure evaluates the properties of sensitivity
and consistency. Observing the location of noisy attributions
in the orderings, MAS shows greatly improved sensitivity by
placing noisy attributions at the worst ranks across all three
metrics, whereas RISE and PIC fail to do so. The figure also
shows that the RISE and PIC tests do not sort consistently
compared to MAS which is consistent in ranks 1 - 4 and 7.

6 Conclusion
We discover that current state-of-the-art attribution quality
metrics fail to consider attribution magnitude which leads
to poor quantification as they fail invariance properties.

Through the introduction of the alignment penalty to ac-
count for the relationship between attribution magnitude and
model response, we define the MAS framework which prop-
erly evaluates attributions. We show quantitatively that the
MAS metrics, unlike the existing state-of-the-art metrics, sat-
isfy the three desired properties of attribution quality metrics:
sensitivity, consistency, and invariance to baseline selection.
This greatly improves the ability of a user to select a desired,
high-performance attribution method. We believe MAS will
be used to develop high-quality attribution methods. In fu-
ture work, we intend to use the alignment penalty to refine
existing attributions by removing unimportant features.

Figure 5: A visualization of the metric attribution sorting compari-
son (IRR) from Section 5.2. It is clear that MAS sorts most consis-
tently with improved sensitivity (low noise attributions first).
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