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Abstract
With the wide proliferation of Deep Neural Net-
works in high-stake applications, there is a growing
demand for explainability behind their decision-
making process. Concept learning models attempt
to learn high-level ‘concepts’ - abstract entities that
align with human understanding, and thus provide
interpretability to DNN architectures. However,
in this paper, we demonstrate that present SOTA
concept learning approaches suffer from two ma-
jor problems - lack of concept fidelity wherein the
models fail to learn consistent concepts among sim-
ilar classes and limited concept interoperability
wherein the models fail to generalize learned con-
cepts to new domains for the same task. Keeping
these in mind, we propose a novel self-explaining
architecture for concept learning across domains
which - i) incorporates a new concept saliency net-
work for representative concept selection, ii) uti-
lizes contrastive learning to capture representative
domain invariant concepts, and iii) uses a novel
prototype-based concept grounding regularization
to improve concept alignment across domains. We
demonstrate the efficacy of our proposed approach
over current SOTA concept learning approaches on
four widely used real-world datasets. Empirical
results show that our method improves both con-
cept fidelity measured through concept overlap and
concept interoperability measured through domain
adaptation performance. An appendix of the pa-
per with more comprehensive results can also be
viewed at https://arxiv.org/abs/2405.00349.

1 Introduction
Deep Neural Networks (DNNs) have revolutionized a variety
of human endeavors from vision to language domains. In-
creasingly complex architectures provide state-of-the-art per-
formance which, in some cases has surpassed even human-
level performance. Even though these methods have incred-
ible potential in saving valuable man-hours and minimiz-
ing inadvertent human mistakes, their adoption has been met
with rightful skepticism and extreme circumspection in crit-
ical applications like medical diagnosis [Liu et al., 2021;

Aggarwal et al., 2021], credit risk analysis [Szepannek and
Lübke, 2021], etc.

With the recent surge in interest in Artificial General Intel-
ligence (AGI) through DNNs, the broad discussion around
the lack of rationale behind DNN predictions and their
opaque decision-making process has made them notoriously
black-box in nature [Rudin, 2019; Varoquaux and Cheply-
gina, 2022; D’Amour et al., 2020; Weller, 2019]. In ex-
treme cases, this can lead to a lack of alignment between the
designer’s intended behavior and the model’s actual perfor-
mance. For example, a model designed to analyze and pre-
dict creditworthiness might look at features that should not
play a role in the decision such as race or gender [Bracke et
al., 2019]. This, in turn, reduces the trustworthiness and re-
liability of model predictions (even if they are correct) which
defeats the purpose of their usage in critical applications
[Hutchinson and Mitchell, 2019; Raji et al., 2020].

In an ideal world, DNNs would be inherently explainable
by their inductive biases, as it is designed keeping stakehold-
ers in account. However, such an expectation is gradually
relaxed with the increasing complexity of the data which in
itself drives up the complexity of the architectures of DNNs
to fit said data. Several approaches to interpreting DNNs have
been proposed. Some approaches assign relative importance
scores to features deemed important like LIME [Ribeiro et
al., 2016], Integrated Gradients [Sundararajan et al., 2017],
etc. Other approaches rank training samples by their impor-
tance to prediction like influence functions [Koh and Liang,
2017], data shapley [Ghorbani and Zou, 2019], etc.

However, the aforementioned methods only provide a post-
hoc solution and to truly provide interpretability, a more
accesible approach is required. Recently, there have been
multiple concept-based models incorporate concepts during
model training [Kim et al., 2018; Zhou et al., 2018]. It
is believed that explaining model predictions using abstract
human-understandable “concepts” better aligns model’s in-
ternal working with human thought process. Concepts can
be thought of as abstract entities - shared across multiple sam-
ples providing a general model understanding. The general
approach to train such models is to first map inputs to a con-
cept space. Subsequently, alignment with the concepts is per-
formed in the concept space and a separate model is learned
on the concept space to perform the downstream task.

The ideal method to extract concepts from a dataset would
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be to manually curate and define what concepts best align
with the requirements of stakeholders/end-users using exten-
sive domain knowledge. This approach requires manual an-
notation of datasets and forces models to extract and encode
only the pre-defined concepts as Concept Bottleneck Models
[Koh et al., 2020; Zaeem and Komeili, 2021] do. However,
with increasing dataset sizes, it becomes difficult to manually
annotate each data sample, thus limiting the efficiency and
practicality of such approaches [Yuksekgonul et al., 2022].

As a result, many approaches incorporate unsupervised
concept discovery for concept-based prediction models.
One such architecture is Self Explaining Neural Networks
(SENN) proposed in [Alvarez-Melis and Jaakkola, 2018].
The concepts are extracted using a bottleneck architecture,
and appropriate relevance scores to weigh each concept are
computed in tandem using a standard feedforward network.
The concepts and relevance scores are then combined us-
ing a network to perform downstream tasks (e.g. classifica-
tion). Even though such concept-based explanations provide
a clear explanation to understand neural machine intelligence,
concept-based approaches are not without their faults. One
critical problem we observed is that concepts learned across
multiple domains using concept-based models are not consis-
tent among samples from the same class, implying low con-
cept fidelity. In addition, concepts are unable to generalize to
new domains implying a lack of concept-interoperability.

In this paper, we propose a concept-learning framework
with a focus on generalizable concept learning which im-
proves concept interoperability across domains while main-
taining high concept fidelity. Firstly, we propose a salient
concept selection network that enforces representative con-
cept extraction. Secondly, our framework utilizes self-
supervised contrastive learning to learn domain invariant con-
cepts for better interoperability. Lastly, we utilize prototype-
based concept grounding regularization to minimize concept
shifts across domains. Our novel methodology not only im-
proves concept fidelity but also achieves superior concept in-
teroperability, demonstrated through improved domain adap-
tation performance compared to SOTA self-explainable con-
cept learning approaches. Our contributions are - (1) We an-
alyze the current SOTA self-explainable approaches for con-
cept interoperability and concept fidelity when trained across
domains - problems that have not been studied in detail by
recent works. (2) We propose a novel framework that utilizes
a salient concept selection network to extract representative
concepts and a self-supervised contrastive learning paradigm
for enforcing domain-invariance among learned concepts. (3)
We propose a prototype-based concept grounding regularizer
to mitigate the problem of concept shift across domains. (4)
Our evaluation methodology is the first to quantitatively eval-
uate the domain adaptation performance of self-explainable
architectures and comprehensively compare existing SOTA
self-explainable approaches.

2 Related Work
Related work on concept-level explanations. Recent re-
search has focused on designing concept-based deep learning
methods to interpret how deep learning models can use high-

level human-understandable concepts in arriving at decisions
[Ghorbani et al., 2019; Chen et al., 2019; Wu et al., 2020;
Koh et al., 2020; Yeh et al., 2019; Huang et al., 2022;
Sinha et al., 2021; Sinha et al., 2023]. Such concept-based
deep learning models aim to incorporate high-level concepts
into the learning procedure. Concept priors have been utilized
to align model concepts with human-understandable concepts
[Zhou et al., 2018; Murty et al., 2020; Chen et al., 2019]
and bottleneck models were generalized wherein any predic-
tion model architecture can be transformed [Koh et al., 2020;
Zaeem and Komeili, 2021] by integrating an intermediate
layer to represent a human-understandable concept represen-
tation. Similar work on utilizing CBMs for downstream tasks
include [Jeyakumar et al., 2021; Pittino et al., 2021].

Related work on self-supervised learning with images.
Self-supervised learning [Xu et al., 2019; Saito et al., 2020]
via pretext tasks has been demonstrated to learn high-quality
domain invariant representations from images using a variety
of transformations such as rotations [Xu et al., 2019; Gidaris
et al., 2018]. The transformations are usually small enough to
not cause a significant shift in the intended and actual features
in the latent space and are trained using a form of contrastive
loss [Wang and Liu, 2021].

Related work on automatic interpretable concept learn-
ing. Supervised concept learning requires the concepts of
each training sample to be manually annotated, which is im-
possible with a moderately large dataset and the concepts
are restricted to what humans can conceptualize. To al-
leviate such bottlenecks, automatic concept learning is be-
coming increasingly appealing. One dominant architecture
is Self Explaining Neural Networks (SENN) proposed in
[Alvarez-Melis and Jaakkola, 2018]. Several other popular
methods have been proposed which automatically learn con-
cepts are detailed [Kim et al., 2018; Ghorbani et al., 2019;
Yeh et al., 2019; Wu et al., 2020; Goyal et al., 2019].

Comparision with existing work. Our work aims to ad-
dress a challenge existing approaches face, concepts learned
by self-explaining models may not be able to generalize
well across domains, as the learned concepts are mixed with
domain-dependent noise and less robust to light transforma-
tions due to a lack of supervision and regularization. Our pro-
posed approach tackles this largely unsolved problem by de-
signing a novel representative concept extraction framework
and regularizes it using self-supervised contrastive concept
learning and prototype-based grounding.

Concurrent to our work, BotCL [Wang, 2023] also pro-
poses to utilize self-supervised learning to learn interpretable
concepts. However, our approach is significantly different in
both training and evaluation. We utilize multiple SOTA trans-
formations to learn distinct concepts. Our evaluation frame-
work comprises concept interoperability by evaluating per-
formance across domains in addition to accuracy. Another
work related to ours [Sawada, 2022b] incorporates unsuper-
vised concepts in the bottleneck layer of CBMs which dif-
fers from our approach as we learn all concepts in a self-
supervised manner, without supervision. Another concurrent
work [Sawada, 2022a] utilizes an autoencoder setup with a
discriminator and weak supervision using an object-detecting
network (Faster RCNN) with limited generalization.
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3 Methodology
In this section, we first provide a detailed description of
our proposed learning pipeline, including (a) the Represen-
tative Concept Extraction (RCE) framework which incorpo-
rates a novel Salient Concept Selection Network in addition
to the Concept and Relevance Networks, (b) Self-Supervised
Contrastive Concept Learning (CCL) which enforces domain
invariance among learned concepts, and (c) a Prototype-
based Concept Grounding (PCG) regularizer that mitigates
the problem of concept-shift among domains. We then pro-
vide details for the end-to-end training procedure with addi-
tional Concept Fidelity regularization which ensures concept
consistency among similar samples.

3.1 Representative Concept Extraction
Figure 1 presents the proposed Representative Concept Ex-
traction framework. For a given input sample x ∈ Rn, the
self-explainable concept learning framework learns a set of K
representative d-dimensional concepts C = {c1, · · · , cK} ∈
Rd and relevance scores associated with the concepts S =
{s1, · · · , sK} ∈ Rd for the downstream task.

Figure 1: The proposed Representative Concept Extraction (RCE)
framework. The networks F and H respectively extract concepts
and associated relevance scores and A aggregates them. Network
G reconstructs original input from the concepts while T selects the
most representative concepts to the prediction.

Concept Network. The Concept Extraction Network con-
sists of an encoder function F, which maps from the input
space to the concept representation space (Rn → Rd). To
preserve the maximum amount of information content in the
concept representation, the entire network is modeled as an
autoencoder with the decoder function G which maps from
the concept representation space to the input space (Rd →
Rn).

Relevance Networks. The Relevance Network function
H is modeled similarly to the function F, which maps from
the input space to the concept representation space (Rn →
Rd). The relevance network outputs a score associated with
each concept - encapsulating each concept’s relevance to the
prediction. Mathematically, the relevance network H (Rn →
Rd) outputs a set of score vectors S = {s1, ..sk} for an input
sample x.

Salient Concept Selection Network. Note that ap-
proaches like [Alvarez-Melis and Jaakkola, 2018] employ

simple sparsity regularizations on the concept space to in-
crease diversity and select representative concepts. However,
we utilize a novel strategy that conditions the concept selec-
tion on the prediction performance. Effectively, utilizing a
shallow network T, which maps from the concept space to
the prediction space (Rd → R) selects only those concepts
that are most responsible or salient for prediction.

Aggregation and Prediction. Subsequently, the concepts
and the relevance scores are aggregated to perform the final
prediction using the aggregation function A which maps from
the concept space to the output prediction space (Rd → R).
Mathematically, the function A aggregates a given concept
vector F(x) and relevance score vector H(x) respectively for
a given sample x. A shallow fully connected network models
the function A. Note that the function A should be as shallow
as possible to maximize interpretability.

The final prediction is computed using a weighted sum
of outputs from the Aggregation Network A and the Salient
Concept Selection Network T. Mathematically,

ŷ = ω1 ∗A(F(x)⊙H(x)) + ω2 ∗T(F(x)) (1)

where ⊙ is the element-wise product of the concept and rele-
vance vectors. This weighted prediction strategy with tunable
parameters ω1 and ω2 exerts greater control over concept se-
lection. Note that higher values of ω2 enforce representative
concept selection.

Training Objective. As the Concept Network is modeled
as an autoencoder, the training objective can be mathemati-
cally given by:

Lrec = L(x,G(F(x))) + λ|F(x)|1 (2)

Note that λ is the strength of L1 norm in Equation 2 - that
regularizes the concept space and prevents degenerate con-
cept learning (such as all concepts being a unit vector). The
reconstruction loss Lrec is composed of L which quantifies
the difference between an input sample x and its reconstruc-
tion G(F(x)).

Note that as the network F is responsible for extracting
representative concepts and the H is responsible for calculat-
ing the relevance of the concepts extracted by F, they must be
modeled by networks with similar complexity to avoid over-
fitting and learning of degenerate concepts.

The complete training objective of the Concept Extraction
Framework where L is any prediction loss (such as Cross En-
tropy) is as follows:

LCE = Lrec + L(y, ŷ) (3)

3.2 Self-supervised Contrastive Concept Learning
Even though the RCE framework generates representative
concepts, the concepts extracted are adulterated with domain
noise thus limiting their generalization. In addition, with lim-
ited training data, the concept extraction process is not ro-
bust. Self-supervised learning contrastive training objectives
are the most commonly used paradigm [Thota and Leontidis,
2021] for learning robust visual features in images. We in-
corporate self-supervised contrastive learning to learn domain
invariant concepts, termed CCL.

Contrastive Sampling Procedure. The underlying idea
revolves around utilizing multiple strong transformations of
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Figure 2: Self-supervised contrastive concept learning. Images sam-
pled from a set of positive X+ and negative samples X− associated
with an anchor image x. Green arrows depict direction of maximiz-
ing similarity, red arrows depict direction of minimizing similarity.

Figure 3: Prototype-based concept grounding (PCG). Concept
grounding ensures the concept representations learned from both
source and target domains are grounded to a representative concept
representation prototype (Green).

an input sample xi (anchor) and maximizing the similar-
ity between their representations and minimizing the sim-
ilarity between non-related transformations in the concept
space, as shown in Figure 2. Mathematically, given an im-
age sample xi and the Concept Network F, a set of trans-
formations T = {t1, t2, ...tn}, Contrastive learning be-
gins by imputing a set of positive samples wrt xi X+ =
{t1(xi), t2(xi)...tn(xi)} and negative samples wrt xj X

− =
{t1(xj), t2(xj)...tn(xj)}. Note that the negative samples are
not sampled from transformations of xi but another sample
xj such that i ̸= j. The concept representations wrt the
positive and negative sets given a Concept Network F are
E+ = {e+i = F(xi) ∀xi ∈ X+} and E− = {e−i =
F(xi) ∀xi ∈ X−} respectively.

Self-Supervised Training Objective. The extent of simi-
larity is adjusted using a tunable hyperparameter τ (temper-
ature), which controls the penalty on both positive and nega-
tive samples. Formally, the self-supervised loss Lssl param-
eterized by an anchor image sample’s concept representation
e = F(x)), its associated positive and negative sets’ concept
representations E+ and E− can be formulated as Equation 4.

Lssl = − log(
exp(s(e, e+)/τ)∑|E−| exp(s(e, e−)/τ))

) (4)

where e+ ∈ E+, e− ∈ E− and s is any similarity function.

3.3 Prototype-based Concept Grounding
Ideally, concepts should be invariant entities shared among
samples from similar classes and aligned across domains.

However, due to imbalanced data and domain noise, mod-
els without explicit regularization learn significantly diver-
gent concept representations for similar samples across do-
mains, a phenomenon termed concept-shift. For proper con-
cept alignment, it is important to ensure concept representa-
tions associated with samples of the same class from different
domains are as close as possible. To achieve this, we utilize
a prototype as an anchor, which grounds concept representa-
tions from multiple domains and reduces concept-shift during
training. An illustration of concept grounding is presented in
Figure 3. The blue and yellow data points correspond to con-
cept representations for a class in the source and target do-
mains respectively while the crosses and triangles represent
different types of concepts. Our objective is to ground the
source and target concept representations using a concept rep-
resentation prototype (shown in green). Note that the training
data X in our setting is a set of abundant samples from a
source domain, Xs, and non-abundant samples from a target
domain, Xt, i.e., X = Xs ∪ Xt. Our prototype-based con-
cept grounding method (PCG) utilizes a dynamically updated
bank of concept representation prototypes to enforce concept
alignment during training. The concept bank is constructed
with concept representations of randomly sampled data points
for each class from both source and target domains. Let N be
the set of classes in the task. We sample a set of samples
Ss ⊂ Xs such that Ss = ∪Nc=1Ssc where Ss

c is a set of ran-
domly selected samples belonging to class c from the source
domain. Similarly, set St ⊂ Xt is sampled from the target
domain such that St = ∪Nc=1Stc. The representative concept
prototype corresponding to a class c, Cc, is updated after ev-
ery training step with a weighted sum of the source and target
concept prototypes associated with St and Ss:

Cc ←
µ

|Ss
c |

∑
x∈Ss

c

F(x) +
(1− µ)

|St
c|

∑
x∈St

c

F(x) (5)

where µ is a tunable hyperparameter used to control the extent
of concept shift. Note that the higher the µ, the more concepts
will be grounded to the source domain. The grounding con-
cept code bank C = {Cc, ∀ c ∈ N} is used to supervise the
concept representation learning as follows:

Lgrnd = L(F(x), C) (6)
where L is the same loss function as shown in Formula 2,
which can be implemented as Mean Square Error.

Concept Fidelity Regularization. Concept fidelity at-
tempts to enforce the similarity of concepts through a simi-
larity measure s(·, ·) of data instances from the same class in
the same domain. Formally,

Lfid = s(F(xi),F(xj)) for yi = yj (7)

3.4 End-to-end Composite Training
Overall, the training objective can be formalized as a
weighted sum of CCL and PCG objectives:

LCL = Lssl + λ1 ∗ Lgrnd + λ2 ∗ Lfid (8)
where λ1 and λ2 are tunable hyperparameters controlling the
strength of contrastive learning and prototype grounding reg-
ularization. The end-to-end training objective can be repre-
sented as:

LCE + β ∗ LCL (9)
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The tunable hyperparameter β controls the effect of general-
ization and robustness on the RCE framework. Note that a
higher value of β makes the concept learning procedure brit-
tle and unable to adapt to target domains. However, a very
low value of β makes the concept learning procedure overfit
on the source domain, implying a tradeoff between concept
generalization and performance.

4 Experiments

Method Explainable Prototypes Interoperability Fidelity
S+T ✗ ✗ ✗ ✗

SENN ✔ ✔ ✗ ✗
DiSENN ✔ ✔ ✔ ✗
BotCL ✔ ✔ ✗ ✔

UnsupCBM ✔ ✗ ✗ ✗
Ours ✔ ✔ ✔ ✔

Table 1: A summary of salient features of our method as com-
pared to the baselines considered. The column ‘Explainable’ shows
whether the method is inherently explainable without any post-hoc
methodologies. Column ‘Prototypes’ depicts if a method can ex-
plain predictions by selecting prototypes from the train set, ‘Inter-
operability’ shows if learned concepts maintain consistency across
domains and ‘Fidelity’ depicts if the method maintains intra-class
consistency among learned concepts.

4.1 Datasets and Networks
We consider four widely used task settings commonly utilized
for domain adaptation. The task in each of the following set-
tings is classification.
• Digits: This setting utilizes MNIST and USPS [LeCun et

al., 1998; Hull, 1994] with Hand-written images of digits
and Street View House Number Dataset (SVHN) [Netzer et
al., 2011] with cropped house number photos.

• VisDA-2017 [Peng et al., 2017]: contains 12 classes of ve-
hicles sampled from Real (R) and 3D domains.

• DomainNet [Venkateswara et al., 2017]: contains 126
classes of objects (clocks, bags, etc.) sampled from 4 do-
mains - Real (R), Clipart (C), Painting (P), and Sketch (S).

• Office-Home [Peng et al., 2019]: Office-Home contains
65 classes of office objects like calculators, staplers, etc.
sampled from 4 different domains - Art (A), Clipart (C),
Product (P), and Real (R).
Network Choice: For Digits, we utilize a modified ver-

sion of LeNet [LeCun et al., 1998] which consists of 3 con-
volutional layers for digit classification with ReLU activation
functions and a dropout probability of 0.1 during training. For
all other datasets we utilize a ResNet34 architecture similar to
[Yu and Lin, 2023] and initialize it with pre-trained weights
from Imagenet1k. For details, refer Appendix.

Baselines. We start by comparing against standard non-
explainable NN architectures - the S+T setting as described in
[Yu and Lin, 2023]. Next, we compare our proposed method
against 5 different self-explaining approaches. As none of
the approaches specifically evaluate concept generalization in
the form of domain adaptation, we replicate all approaches.
SENN and DiSENN utilize a robustness loss calculated on
the Jacobians of the relevance networks with DiSENN utiliz-
ing a VAE as the concept extractor. BotCL [Wang, 2023]

XT1 T2

Anchor T2+ T2-T1+T1-

Figure 4: Schematic overview of proposed SimCLR transformations
for OfficeHome dataset from the Product(P) domain. Note that green
arrows depict maximizing similarity while red arrows depict mini-
mizing similarity in concept space. Transformation sets T1+ and
T2+ comprise images transformed from chair while T1− and T2−
consist of images transformed from non-chair classes.

also proposes to utilize contrastive loss but uses it for posi-
tion grounding. Similar to BotCL, Ante-hoc concept learning
[Sarkar et al., 2022] uses contrastive loss on datasets with
known concepts, hence we do not explicitly compare against
it. Lastly, UnsupervisedCBM [Sawada, 2022b] uses a mix-
ture of known and unknown concepts and requires a small
set of known concepts. For our purpose, we provide the one-
hot class labels as known concepts in addition to unknown.
A visual summary of the salient features of each baseline is
depicted in Table 1.

4.2 Hyperparameter Settings
RCE Framework: We utilize the Mean Square Error as the
reconstruction loss and set sparsity regularizer λ to 1e-5 for
all datasets. The weights ω1 = ω2 = 0.5 are utilized for digit,
while they are set at ω1 = 0.8 and ω2 = 0.2 for object tasks.

Learning: We utilize the lightly1 library for implementing
SimCLR transformations [Chen, 2020]. We set the temper-
ature parameter (τ ) to 0.5 by default [Xu et al., 2019] for
all datasets. The hyperparameters for each transformation
are defaults utilized from SimCLR. The training objective is
Contrastive Cross Entropy (NTXent) [Chen, 2020]. Figure 4
depicts an example of various transformations along with the
adjudged positive and negative transformations. For the train-
ing procedure, we utilize the SGD optimizer with momentum
set to 0.9 and a cosine decay scheduler with an initial learn-
ing rate set to 0.01. We train each dataset for 10000 iterations
with early stopping. The regularization parameters of λ1 and
λ2 are set to 0.1 respectively. For Digits, β is set to 1 while it
is set to 0.5 for objects. For further details, refer to Appendix.

4.3 Evaluation Metrics
We consider the following evaluation metrics to evaluate each
component of the concept discovery framework.
• Generalization: We start by quantitatively evaluating the

quality of concepts learned by measuring how well the
learned concepts can generalize to new domains. To

1https://github.com/lightly-ai/lightly
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A→ C A→ P A→ R C→ A C→ P C→ R P→ A P→ C P→ R R→ A R→ C R→ P
S+T 54.0 73.1 74.2 57.6 72.3 68.3 63.5 53.8 73.1 67.8 55.7 80.8

SENN 52.5 73.1 74.2 57.6 72.3 68.3 59.5 53.8 73.1 66.3 55.7 80.8
DiSENN 48.5 69.2 70.1 52.5 69.1 66.1 58.8 51.2 70.3 64.9 52.3 77.0
BotCL 53.1 72.8 74.0 58.2 70.4 67.9 58.4 52.1 72.6 65.3 56.3 78.2

UnsupCBM 54.0 73.1 74.2 57.6 72.3 68.3 63.5 53.8 73.1 67.8 55.7 80.8
RCE 52.5 73.1 74.2 57.6 72.3 68.3 63.5 53.8 73.1 67.8 55.7 80.8

RCE+PCG 55.2 73.1 74.0 57.9 71.2 68.1 58.1 53.6 73.2 66.9 56.1 80.3
RCE+PCG+CCL 58.7 73.7 75.0 58.0 71.9 68.9 62.1 55.4 74.8 67.2 60.2 81.3

Table 2: Domain generalization performance for the Office-Home Dataset with domains Art (A), Clipart (C), Product (P) and Real (R).

DomainNet VisDA
R→ C R→ P P→ C C→ S S→ P R→ S P→ R R→ 3D 3D→ R

S+T 60.0 62.2 59.4 55.0 59.5 50.1 73.9 79.8 49.4
SENN 59.2 60.1 57.2 53.8 56.1 49.0 72.4 79.6 49.2

DiSENN 57.3 58.1 55.3 51.2 55.1 47.4 71.0 78.1 48.1
BotCL 60.0 60.1 57.2 53.8 56.1 49.0 72.4 80.2 49.8

UnsupCBM 60.0 62.2 59.4 55.0 59.5 50.1 73.9 80.3 49.9
RCE 59.2 60.1 57.2 53.8 56.1 49.0 72.4 79.6 49.2

RCE+PCG 60.8 59.9 59.9 54.6 58.9 51.6 73.6 81.3 49.5
RCE+PCG+CCL 61.2 60.5 62.9 55.0 59.1 52.1 74.2 82.4 53.4

Table 3: Domain generalization performance for the [Left] DomainNet dataset with domains Real (R), Clipart (C), Picture (P), and Sketch
(S) and [Right] VisDA dataset with domains Real (R) and 3-Dimensional visualizations (3D).

M→ U M→ S U→M U→ S S→M S→ U
S+T 0.54 0.16 0.74 0.13 0.92 0.65

SENN 0.43 0.11 0.73 0.09 0.92 0.64
DiSENN 0.43 0.11 0.73 0.09 0.92 0.64
BotCL 0.58 0.14 0.17 0.12 0.38 0.51

UnsupCBM 0.54 0.16 0.74 0.13 0.92 0.65
RCE 0.43 0.11 0.73 0.09 0.92 0.64

RCE+PCG 0.58 0.23 0.79 0.19 0.94 0.71
RCE+PCG+CCL 0.60 0.23 0.81 0.20 0.95 0.71

Table 4: Domain generalization performance for the Digit datasets
with domains MNIST (M), USPS (U) and SVHN (S). In addition,
the results of multiple source adaptation are in the Appendix.

achieve this, we compare our proposed method against the
aforementioned baselines on domain adaptation settings.

• Concept Fidelity: To evaluate consistency in the learned
concepts, we compute the intersection over union of the
concept sets associated with for two data points xi and xj

from same class as defined in Equation 10:

Fidelity score = |Cxi ∩ Cxj | / |Cxi ∪ Cxj | (10)

4.4 Genenralization Results
Tables 2, 3, and 4 report the domain adaptation results on the
OfficeHome, DomainNet, VisDA and the Digit datasets, re-
spectively. The notation X→Y represents models trained on
X as the source domain (with abundant data) and Y as the
target domain (with limited data) and evaluated on the test set
of domain Y . The best statistically significant accuracy is re-
ported in bold. The last three rows in all the tables list the per-
formance of the RCE framework, RCE trained with regular-
ization (RCE+PCG), and RCE trained with both regulariza-
tion and contrastive learning paradigm (RCE+PCG+CCL).

Comparision with baselines. The first row in each table
lists the performance of a standard Neural Network trained
using the setting described in [Yu and Lin, 2023] (S+T). As
a standard NN is not inherently explainable, we consider this
setting as a baseline to understand the upper bound of the
performance-explainability tradeoff.

The second and third rows in each table lists the perfor-
mance of SENN and DiSENN respectively. SENN performs
worse than S+T setting in almost all settings, except in a
handful of settings where the performance matches S+T. This
is expected, as SENN is formulated as an overparameterized
version of a standard NN with regularization. Recall that
DiSENN replaces the autoencoder in SENN with a VAE, and
as such is not generalizable to bigger datasets without do-
main engineering. DiSENN performs the worst among all
approaches for all datasets due to poor VAE generalization.

Recall that UnsupervisedCBM is an improved version of
SENN architecture with a discriminator in addition to the ag-
gregation function. In most cases, it performs slightly better
than SENN and is at par with S+T. However, in particular
cases in OfficeHome data (R→A) and DomainNet (S→P),
UnsupCBM performs the best. We attribute this result to two
factors: first, the Art (A) and Sketch (S) domains are signif-
icantly different from Real (R) and Picture (P) domains due
to both of the former being hand-drawn while the latter being
photographed as mentioned in [Yu and Lin, 2023]. Second,
the use of a discriminator as proposed in UnsupervisedCBM
helps enforce domain invariance in those particular cases.

BotCL explicitly attempts to improve concept fidelity and
applies contrastive learning to discover concepts. However,
the contrastive loss formulation is rather basic and they never
focuses on domain invariance. BotCL’s performance is sim-
ilar to S+T for the most part except in OfficeHome data
(C→A), where it just outperforms all other approaches. One
possible reason is that Clipart domain is significantly less
noisy, and hence basic transformations in BotCL work well.

As the last row demonstrates, our proposed framework
RCE+PCG+CCL outperforms all baselines on a vast major-
ity of the settings across all four datasets and is comparable
to SOTA baselines in the other settings.

Ablation studies. We also report the performance corre-
sponding to various components of our proposed approach.
We observe that the performance of RCE is almost identical
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to SENN, which is expected as there is very weak regulariza-
tion in both cases. In almost all cases, adding prototype-based
grounding regularization (RCE+PCG) improves performance
over RCE while models trained with both PCG regularization
and contrastive learning (RCE+PCG+CCL) outperform all
approaches on a vast majority of settings across all datasets.
Note that the setting RCE+CCL is not reported, as it defeats
the fundamental motivation of maintaining concept fidelity.

Effect of number of concepts and dimensions. We ob-
serve that there are no significant differences in performance
over varying number of concepts or dimensions. For all re-
sults reported, the number of concepts is set as number of
classes and are unidimensional. Refer Appendix.

4.5 Concept Fidelity
As RCE framework is explicitly regularized with a concept
fidelity regularizer and grounded using prototypes, we would
expect high fidelity scores. Table 5 lists the fidelity scores
for the aforementioned baselines and our proposed method.
Fidelity scores are averaged for each domain when taken as
target (e.g. for domain (A) in DomainNet, the score is av-
erage of C→A, P→A and R→A). As expected, our method
and BotCL, both with specific fidelity regularization outper-
form all other baseline approaches. Our method outperforms
BotCL on most settings, except when the target domains are
Art in DomainNet and Clipart in OfficHome due to siginifi-
cant domain dissonance.

Digit DomainNet OfficeHome
M U S A C P R C P R S

SENN 0.81 0.74 0.61 0.21 0.24 0.26 0.30 0.31 0.27 0.29 0.30
DSENN 0.79 0.71 0.63 0.14 0,22 0.21 0.27 0.29 0.23 0.29 0.32
BotCL 0.93 0.94 0.89 0.49 0.55 0.51 0.58 0.73 0.66 0.61 0.64

U-CBM 0.79 0.74 0.63 0.21 0.24 0.26 0.30 0.31 0.27 0.29 0.30
RCE 0.86 0.80 0.73 0.39 0.50 0.45 0.42 0.54 0.49 0.50 0.49
R+P 0.94 0.94 0.89 0.47 0.56 0.51 0.59 0.70 0.67 0.61 0.63

R+P+C 0.94 0.94 0.89 0.47 0.55 0.52 0.59 0.71 0.68 0.63 0.64

Table 5: Average Intra-class Concept Fidelity scores for each do-
main for all settings where the domain is target. The columns show
the domains in each dataset. For the complete table, refer Appendix.

4.6 Qualitative Visualization
Domain Alignment. We consider the extent to which the
models trained using both concept grounding and contrastive
learning maintain concept consistency not only within the
source domain but also across the target domain as well. To
understand what discriminative information is captured by a
particular concept, Figure 5 shows the most important pro-
totypes selected from the training set of both the source and
target domains corresponding to five randomly selected con-
cepts. We observe that prototypes explaining each concept
are visually similar. For more results, refer Appendix.

Explanation using prototypes. For a given input sam-
ple, we also plot the prototypes associated to the highest acti-
vated concept, i.e., the important concept. Figure 6 shows the
prototypes associated with the concepts most responsible for
prediction (highest relevance scores). As can be seen, the pro-
totypes possess distinct features, for eg., they capture round
face of alarm clock. More results are reported in Appendix.

Concept #3

Concept #5 

Concept #6

Concept #9

Concept #10

Concept #18

Concept #29 

Concept #44

Concept #49

Concept #57

Figure 5: Top-5 most important prototypes for chosen concepts on
models trained using our methodology on the VisDA [TOP] and Of-
ficeHome [BOTTOM] dataset for the 3D → Real and Art (A) →
Real (R) domains respectively. As can be seen, in the VisDA dataset
Concept #6 captures samples with wings - namely airplanes while in
OfficeHome, Concept #44 captures training samples with rounded
faces in both domains - including alarm clocks, rotary telephones,
etc. Similarly, Concept #29 captures flat screens - TVs/monitors.

“Alarm 
Clock”

“Bed”

Input Sample

Input Sample

Top-5 Prototypes for most important concept #23 

Top-5 Prototypes for most important concept #59 

Figure 6: Top-5 most important prototypes associated with the high-
est activated concept. Prototypes associated with ‘Alarm Clock’ are
distinctly circular objects while those associated with bed class are
mostly flat.

5 Conclusion
In this paper, we discuss a fairly less-studied problem of con-
cept interoperability which involves learning domain invari-
ant concepts that can be generalized to similar tasks across
domains. Next, we introduce a novel Representative Con-
cept Extraction framework that improves on present self-
explaining neural architectures by incorporating a Salient
Concept Selection Network. We propose a Self-Supervised
Contrastive Learning-based training paradigm to learn do-
main invariant concepts and subsequently propose a Concept
Prototype-based regularization to minimize concept shift and
maintain high fidelity. Empirical results on domain adap-
tation performance and fidelity scores show the efficacy of
our approach in learning generalizable concepts and improv-
ing concept interoperability. Additionally, qualitative analy-
sis demonstrates that our methodology learns domain-aligned
concepts and can explain samples from both domains equally
well. We hope our research helps the community utilize self-
explaining models in domain alignment in the future.
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