SwiftThief: Enhancing Query Efficiency of Model Stealing by Contrastive Learning

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

Jeonghyun Lee, Sungmin Han, Sangkyun Lee*

School of Cybersecurity, Korea University
{nomar0107, sungmin_15, sangkyun } @korea.ac.kr

Abstract

Model-stealing attacks are emerging as a severe
threat to Al-based services because an adversary
can create models that duplicate the functionality
of the black-box AI models inside the services with
regular query-based access. To avoid detection or
query costs, the model-stealing adversary must con-
sider minimizing the number of queries to obtain
an accurate clone model. To achieve this goal, we
propose SwiftThief, a novel model-stealing frame-
work that utilizes both queried and unqueried data
to reduce query complexity. In particular, Swift-
Thief uses contrastive learning, a recent technique
for representation learning. We formulate a new ob-
jective function for model stealing consisting of self-
supervised (for abundant unqueried inputs from pub-
lic datasets) and soft-supervised (for queried inputs)
contrastive losses, jointly optimized with an output
matching loss (for queried inputs). In addition, we
suggest a new sampling strategy to prioritize rarely
queried classes to improve attack performance. Our
experiments proved that SwiftThief could signifi-
cantly enhance the efficiency of model-stealing at-
tacks compared to the existing methods, achieving
similar attack performance using only half of the
query budgets of the competing approaches. Also,
SwiftThief showed high competence even when a
defense was activated for the victims.

1 Introduction

An increasing number of Al models are commercialized and
provided as cloud-based services [Ribeiro er al., 2015], with
the remarkable success of deep neural networks. Al mod-
els in such services are valuable intellectual properties for
developers since training and model optimization typically re-
quire significant research and implementation costs. Such Al
models may seem well-protected since they are black boxes;
their details are inaccessible from the outside world. However,
recent studies have revealed that an adversary can create a
clone model that mimics the functionality of the black-box Al

*Corresponding author

422

model (the victim) by collecting the victim model’s responses
to adversarial queries.

Such model stealing attacks have been improved in sev-
eral directions since the early works [Tramer et al., 2016;
Papernot et al., 2016], to use public datasets instead of
assuming that the adversary can access the victim’s train-
ing data [Orekondy et al., 2019], to use active sampling
to reduce the number of required queries [Pal er al., 2020]
and to use adversarial examples [Yu et al., 2020] or gen-
erative models [Gong et al., 2021; Kariyappa et al., 2021;
Truong et al., 2021] to synthesize attack queries. Despite the
similarity to the knowledge distillation [Hinton et al., 2014],
model stealing is more challenging since the adversary cannot
access the victim’s training data in general. Furthermore, the
number of queries must be minimized to avoid detection. Still,
existing attack methods require large numbers of queries for
successful model extraction.

This paper presents SwiftThief, a novel attack framework
that significantly improves query efficiency by taking into
account two overlooked subjects in model-stealing attacks:

Utilization of Unqueried Data. A model-stealing attacker
often has many unqueried data points relative to the number
of queried ones when the attack is in its early stages. Un-
fortunately, most existing attack methods do not effectively
use unqueried inputs during an attack, except for a few recent
works using semi-supervised learning [Jagielski ef al., 2020;
Xiao et al., 2022] or self-supervised learning [Zhao er al.,
2023]. To address the issue, SwiftThief uses both supervised
and self-supervised contrastive learning to learn useful feature
representations that are highly transferable [Islam er al., 2021;
Liu et al., 2022al, hopefully to victims’ tasks, from queried
and unqueried attack vectors.

Class Imbalance in Attack Queries. Although class im-
balance of training data is often a critical issue in learning
problems, not enough attention has been paid to the subject
in the context of model stealing. In particular, as shown in
Figure 1, we found that even ActiveThief [Pal er al., 2020],
one of the recent attacks adopting active learning techniques,
faces severe class imbalance in queried inputs, which deterio-
rates clone models’ performance on rarely queried classes. To
alleviate the problem, SwiftThief introduces prioritization of
rarely queried classes in sampling, selecting inputs preferen-
tially so that query outputs will have a high probability on rare

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4K

1.0
mmm Frequent Class
mmm Rare Class
0.8
%] 3K Ja—lJ
9 ©
= x 0.6
£ 2 5
& =
:‘;(0.4
1K
0 0.0 l [| l l I |

6195078243
Class Index

61950787243
Class Index

Figure 1: Class imbalance in ActiveThief (queries are from ImageNet,
victim task is MNIST). Class-wise sample counts and error rates of
clone models are shown.

classes based on the density estimation of classes in the clone
model’s feature space.
Our paper has the following contributions:

* We propose SwiftThief, a novel model-stealing ap-
proach utilizing both unqueried and queried data via
self-supervised and newly designed soft-supervised con-
trastive loss, which can fully utilize the probability infor-
mation from queried data.

L]

To address the issue of class imbalance in queried data,
we introduce a weighted regularizer acting more strongly
on rare classes and an enhanced query sampling strat-
egy prioritizing candidates similar to queried rare-class
samples in the clone model’s representation space.

SwiftThief achieved the maximum performance of the
existing attacks, being x2.27 more query-efficient in our
experiments. Also, ours outperformed other attacks even
when the victim’s outputs were perturbed by the defense
mechanism or constrained to hard labels.

2 Related Works
2.1 Model Stealing Attacks

We summarize recent advances in model stealing attacks.

Sampling from Public Datasets. KnockoffNet [Orekondy
et al., 2019] showed that public datasets, that may not follow
the victim’s exact training distribution, can be used effectively
for model-stealing queries. ActiveThief [Pal er al., 2020]
improved the idea by introducing active sampling mechanisms
such as uncertainty-based sampling [Lewis and Gale, 1994].
Recently, MExMI [Xiao er al., 2022] suggested using inputs
with high similarity to the victim’s training set, identified by
the membership inference attack [Shokri er al., 2017].

Data Generation. JBDA [Papernot et al., 2016] introduced
a data augmentation technique using a similar mechanism to
FGSM [Goodfellow et al., 2015]. Recently, CloudLeak [Yu et
al., 2020] suggested an enhanced adversarial sampling using
the FeatureFool, an objective function representing the dis-
tance between the augmentation target and a guide input on the
representation space. InverseNet [Gong er al., 2021] applied
the model inversion attack [Fredrikson et al., 2015] to the
victim and tried to generate attack queries following a similar

423

distribution to the victim’s training data. MAZE [Kariyappa et
al., 2021] and DFME [Truong ef al., 2021] utilized generative
models [Goodfellow et al., 2014] to generate inputs that maxi-
mize the disagreement between the victim’s query responses
and the predictions of the clone model. [Zhou et al., 2020;
Zhang et al., 2022] improved the training loss for generative
models to ensure the class diversity of synthesized inputs.

Utilization of Unqueried Data. The above methods have
not considered using unqueried data for speeding up model-
stealing attacks. Although ActiveThief considered unqueried
data in its active sampling, it did not use them for actual steal-
ing. [Jagielski et al., 2020; Xiao et al., 2022] showed that
semi-supervised learning mechanisms like MixMatch [Berth-
elot et al., 2019] could improve model stealing; however, our
experience indicates that these methods may not be as effective
as reported in the original experiments when an attacker has
access to no sample from the victim’s data distribution, which
is the setting we consider in this work. [Zhao et al., 2023]
utilizes self-supervised contrastive learning [Chen er al., 2020;
He et al., 2020] but only as a pre-training step for model steal-
ing; our work further utilizes the knowledge from queried data
for contrastive learning by introducing a new custom-designed
soft-supervised contrastive loss for model stealing.

Defenses against Model Stealing. One of the mainstream
approaches of model-stealing defense is to disrupt the train-
ing of clone models by introducing alterations to the out-
puts of the victim model. For instance, prediction poi-
soning [Orekondy et al., 2020] and GRAD? [Mazeika er
al., 2022] introduced controlled perturbations to the victim
model’s probability outputs. DeepDefense [Lee et al., 2022]
suggested a different approach that exposed the probabil-
ity outputs and the attribution maps [Selvaraju er al., 2019;
Lee and Han, 2022] from a misdirection model to deliver
maximally distorted gradient information.

2.2 Contrastive Learning

Self-supervised contrastive learning has recently gained mas-
sive attention due to its capability to learn highly transferable
features [Islam et al., 2021; Liu et al., 2022a]. SimCLR [Chen
et al., 2020] provided one of the first frameworks to use posi-
tive and negative pairs for representation learning. It requires a
large batch size to keep plentiful negative samples and thereby
avoid collapsed representation. MOCO [He et al., 2020] pro-
vided a more efficient way to keep large negative samples by
managing an embedding queue of negative samples across
several recent batches. More recently, SimSiam [Chen and
He, 2021] suggested the stop-gradient mechanism that de-
taches the positive samples from the computation graph of
back-propagation to prevent collapsed representation.

Another direction of contrastive learning uses supervi-
sion [Khosla er al., 2020] for composing positive and negative
pairs. However, the existing framework allows only hard la-
bels, whereas, in model-stealing, many victim models provide
soft labels, e.g., the softmax probabilities. In this paper, we
adapt the self-supervised and supervised contrastive learning
frameworks for model stealing so that unqueried and queried
data with soft labels can be utilized for maximal attack effi-
ciency.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3 Threat Model

Model stealing assumes that a trained AI model (the victim) f
is in service, providing an output for each query input z € R?
from users. We assume that the victim model is a black box;
that is, the details about the victim are hidden from attack-
ers, including the model’s architecture, parameters, learning
algorithms, hyperparameters, the data distribution Py, and
training data. We suppose the victims provide softmax prob-
abilities f(z) € AR regarding the input x, where AX is a
K -dimensional simplex.

The goal of a model stealing adversary is to train a clone
model f4, which mimics the functionality of the victim model
f (we focus on achieving the victim’s test accuracy on unseen
data from Py/). To extract useful information from the victim,
the adversary prepares a surrogate dataset S := {x : © ~ P4}
sampled from the adversary’s data distribution P4 (in general,
P4 # Py), and uses some x € S as queries to the victim
to obtain the corresponding outputs y = f(z) € AK. We
denote the adversary’s query budget as B and the set of (query,
response) pairs of currently queried inputs as @ := {(z,y) :
x € S,y = f(x)} suchthat |Q| = g. We denote the unqueried
remainder as U := S\ {z € S : (z, f(z)) € Q} where
|U| = w so that |S| = g + u. In classical model stealing, the
attacker trains their clone model f4 with () by minimizing
the loss between the query outputs and the prediction results
of the clone model, thatis, >, o L(fa(z),y). Here, the
function L can be the cross-entropy loss [Orekondy et al.,
2019] or the ¢, distance [Truong et al., 2021] depending on
attack methods.

4 SwiftThief

We propose a new model stealing attack called SwiftThief,
which utilizes both the queried dataset () and the unqueried
remainder U to maximize cloning efficiency. To achieve the
goal, we introduce an objective function consisting of two
parts: L for contrastive representation learning (which com-
bines soft-supervised and self-supervised losses using () and
U, respectively) and £, for matching the outcomes of the
clone and the victim models based on ().

Our method uses a representation function f;(+;w;) : RY —
R® and a classification head fn(-;wn) : R* — AKX so
that the clone model is defined as fa(-; Wy, Wm) = fm ©
f:(+). For contrastive learning, we use an auxiliary encoder
fe(;wr,wyn) == fu o fi(+) defined with a projection head
fa(;wn) : R* — R* and use a prediction head f,(-;w,) :
R — R to avoid collapsed representation as in SimSiam.
Here, a and a’ are the chosen dimensions of the embedding
spaces. Figure 2 illustrates the composition of SwiftThief.

4.1 Learning Objective

Self-Supervised Contrastive Loss for Unqueried Data. To
learn representations with the unqueried inputs in U, we use
the self-supervised contrastive learning framework of Sim-
Siam [Chen and He, 2021]. (SimSiam outperformed other al-
ternatives such as SimCLR and MOCO in our experience.) We
generate positive pairs from U as follows: given 2u transfor-
mations 71, - - - , T, independently sampled from a transfor-
mation distribution II, each input z; € U is augmented as the

424

positive pair Z9;_1 := mo;_1(x;) and Zo; := ma;(x;), indexed
by the set P with elements (2 —1,2¢) fori = 1,...,u. Using
the encoded versions of the augmentations z = f.(Z) € R%

and 2 = f,(f.(Z)) € R, we define the self-supervised
contrastive loss for U as:

[,zelf(’wnwhva)_E(Trl,-",‘frzu)NH|: Z(Z Z +Z z;]
‘(z j)EP
ey
Here, we treat z; and z; as constants, excluding them from
the back-propagation during the optimization process as in the
original paper of SimSiam [Chen and He, 2021].

Soft-Supervised Contrastive Loss for Queried Data. We
propose a new soft-supervised contrastive loss to use the
available soft labels during model stealing, generalizing the
hard-label version in [Khosla et al., 2020]. Given transfor-
mations 7y, --- , 7o, ~ II, we create two new augmented
inputs (#2;1,92i-1) = (F2i—1(2:),9:) and (Zog, P2i) =
(7r2i(x;), y;) from each pair (x;,y;) € @ which consists of the
queried input z; and the corresponding victim’s probability
output y; € AK. Using the encoded versions of the augmen-
tation £ = f.(2) and 2’ = f,(fe(&)), we propose the new
soft-supervised contrastive loss as follows:

29 2¢q
wmkz% zﬁ

=1 j=1

@)
Here, 1;; € [0, 1] is a variable representing each pair’s repre-
sentation alignment. We designed 7;; to adjust the alignment
intensity adaptively by focusing not only on pairs with iden-
tical class membership in the top-1 sense but also on those
pairs whose entire softmax probability distributions show high
similarity with great confidence:

H(y;) H(y;) L
=1 (1 1 AR
i (i3] (+ logK) (+ log K) % (9 95)

3
We denote by cos Z (a,b) the cosine of the angle between
vectors a and b, by H(-) the Shannon entropy H(y) =

- Zle(y)g log(y)e, where (y), is the ¢-th element of the
vector y, and by 1 an indicator function taking the value of
1 when the condition c is true and 0 otherwise. The expres-
sions in the parentheses of (3) represent reversed normalized
entropy where the values become 0 for uniformly distributed
victim’s softmax outputs and 1 for one-hot outputs. It pe-
nalizes the intensity for inputs with high uncertainty in the
victim’s outputs, considering the risk associated with the po-
tential misclassification of the victim. Note that given hard
labels as one-hot vectors, (2) reduces to the existing loss for
supervised contrastive learning [Khosla et al., 2020].

soft
L (wy, wh, wp) =

Strong Regularization on Minority Classes. As noted in
[Cao er al., 2019; Cao et al., 2021; Liu et al., 2022b], minority
classes can cause overfitting and need strong regularization.
Motivated by this, we introduce a regularizer based on ad-
versarial contrastive learning [Kim et al., 2020]. For the two
augmented inputs To;_1 := ﬁgl‘,l(.ri) and To; = ﬁ'gi(l’i)
and their respective encoded versions 2 = f.(Z) and 2’ =

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

Victim

Query

=

A 4

=

~

a

Unqueried: U

Wy

r

-

Queried: Q

/

Adversary

) Sampling Agent
Sampling
Priority Sampling
Surrogate Dataset S e
Entra
fh f P];lasoel;y No Satisfies
a d . eq.(8)?
SSL f - f Contrastive Sampling
" —f-=% Wp ZtS‘L p € Learning
Im
a el i i
one -
- HR
T4 Nodel [T
Remained Budget Sample Cnt per Class

X

Figure 2: The schematic of SwiftThief.

fo(fe(Z)) we have used to construct (2), we consider an ad-

ditive perturbation § € R and denote 2(§) =

2(8) =
Ezeg(w“ Wh, wp) = _E(ﬁ-l’.
Cy, max
Z Y 18lioo

=1

- Frag)~

Z2i—1(5)T2§i + '%i—l(a)TéQi))

fe(Z +0) and

fo(fe(Z + 9)) to define our regularizer as:

“)

where € > 0 is a hyperparameter that constrains the mag-
nitude of the perturbation 6. We define the weight c,, :=
(1 —B)/(1 — Nv:) following [Cui et al., 2019], where N,,
represents the number of samples in the class y; and 8 € [0, 1)
is a hyperparameter: the rarer y; is, c,, takes larger values.
The regularizer is intended to impose a strong penalty to the
sharpness of the representation function around minor classes.
Combining the self-supervised (1),
losses (2), and the regularizer (4), we construct the loss for
our contrastive representation learning as follows (A; > 0 and

Ao > 0 are hyperparameters):

soft-supervised

L (wy, wh, wp) 1= L3 (wy, wh, wp) + A L (wr, wh, wy)
+ Ao LT (wr, wh, wp).

Output Matching for Queried Data.
we need to match the clone model’s output f 4 (x;; wy, wy) to
the victim’s response y; on the responded queries (x;,y;) €
Q. For this, we define the matching loss based on the cross-

entropy function,

Lo (W, wy) =

»Q\’—‘

=1 (=1

5

7 ilog fA xzawrawm))

®)

For model stealing,

(6)

Finally, we define the total loss for SwiftThief using the
contrastive (5) and the matching losses (6):

[f(wr; Wh, Wp, wm) = ‘Cc(wra Wh, wp) +)\3£m(wra wm)a

where A3 > 0 is a hyperparameter.

In Algorithm 1, we

outline the overall process of SwiftThief. In the algorithm

425

(lines 15 and 16), we use an alternating optimization: at the
k-th outer iteration, we minimize L.(wr,wn, wp) to obtain

(k+3 k1

w2, wy ™ with) and then minimize L (wy, wy), using

wit? 2 for warm-starting, to obtain (w**! w**1). Our ap-
proach can be seen as a relaxed form of block coordinate
descent [Tseng, 2001] to minimize £, where we avoided,
by warm-starting, the explicit duplication of the shared vari-
able w, between L. and L, required to form non-overlapping
blocks of variables. This reduces the memory footprint and
the dependency on the extra hyperparameter As.

4.2 Prioritization of Rarely Queried Classes in
Sampling

As briefly discussed in Sect. 1 and Figure 1, class imbalance in
the queried samples can deteriorate an attacker’s performance.
However, class-balanced sampling of attack queries is chal-
lenging without making extra queries to the victim to obtain
prediction results on unqueried samples.

To address the issue, we try to detect class imbalance in
queried samples and prioritize rarely queried classes in future
sampling. We conjecture that the samples from the same
class (according to the victim) will be located nearby in the
representation space of the attack model trained by contrastive
learning. Based on this, we apply kernel density estimation to
the representations of the most rarely sampled class in () and
select samples from U with the highest probability according
to the estimated density function.

Specifically, we call a class rarely represented if it has a
smaller sample size than the mean sample size of all classes
in), where the class memberships of the samples in () are
determined by the maximum softmax probability from the
victim’s outputs. Let (), represent the inputs x; in () be-
longing to y,,, the most rarely represented class in (). Also
let 5(-,0) = exp (—|| - ||3/(20?)) denote the Gaussian kernel
with the bandwidth ¢ > 0. Using the so-far trained represen-
tation function f;(-;w;), we assign the density score of each

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

query candidate z; € U as follows:

si= Y wlfilzjiw) — filwiiw), o).)
i €EQy,,

We choose the samples z; € U with the largest density scores
s; that are most likely to be the class ¥,, if queried in the
future, according to our conjecture. In fact, given the total
query budget B and the number of outer iterations I of Swift-
Thief, we sample [B/I] samples from U using this strategy.
Also, to avoid the minority class from being too large after
accessing the victim, we divide the above process into b steps:
in each step, we sample [(B/I)/b] from y,, and recompute
Y., after the assignment of classes in the previous steps. (We
used b = 5 and set B as a multiple of I - b in experiments.)
However, samples chosen by the above prioritization could be
far from the decision boundary, making newly chosen samples
less informative for improving an attack model. Therefore,
we allow switching our prioritization with entropy-based sam-
pling [Lewis and Gale, 1994]. In particular, inspired by [Ag-
garwal ef al., 2020], we start our attack with entropy-based
sampling and use our prioritization strategy when the follow-
ing condition is satisfied:

B—|Q| < Ng- (k— pr)- ®)

Here, B is the total query budget for the attack, |Q)] is the
number of queried samples so far, and Ny is the number of
rarely queried classes. Also, i and pr are the mean sample
counts of the entire and rare classes in @), respectively. The
switching of sampling strategies is elaborated in the lines 4-10
of Algorithm 1.

S Experiments

5.1 Experimental Setup

Victim. We used ResNet-18 [He et al., 2016] as the vic-
tim model, which was trained with five task-specific im-
age datasets: MNIST [Lecun et al., 1998], SVHN [Net-
zer et al., 2011], GTSRB [Stallkamp et al., 2011], CIFAR-
10 [Krizhevsky, 2009], and EuroSAT [Helber ef al., 2018].
Test accuracy rates for each victim model were 98.46% for
MNIST, 94.81% for SVHN, 96.68% for GTSRB, 94.46% for
CIFAR-10, and 96.67% for EuroSAT.

Adversary. For comparison, we chose six state-of-the-art
model-stealing attacks: KnockoffNet [Orekondy et al., 2019],
ActiveThief [Pal et al., 2020], MixMatch [Berthelot et al.,
2019], InverseNet [Gong e al., 2021], MEXMI [Xiao et al.,
2022], and EPK (Extraction from Prior Knowledge) [Zhao et
al., 2023]. For the surrogate dataset S to choose attack queries
from, we used the trainset of ILSVRC-2012 [Russakovsky et
al., 2015]. We note that the original MixMatch and MExMI
assumed the adversary could access victims’ training data.
However, since our threat model assumes a more realistic
setting where victims’ data distributions are hidden, we per-
formed these attacks without using victims’ data. We used
ResNet-18 as the clone model, which is identical to the victim
model’s architecture. We set the query budget B to 30, 000
unless otherwise stated. Finally, we used the clone model’s
accuracy on victims’ test sets to measure model stealing per-
formance.

426

Algorithm 1 The SwiftThief Algorithm

Require: Query budget B, max. iterations I, a surrogate
dataset S, A\; > 0,2 > 0,8 €[0,1)and o > 0.

1: Randomly initialize w?, w2, w?, wg ;

2: Letk+ 0,Q < Qand U + S;

3: while k < I do

4: if k = 0 then

5 sampling-strategy <— uniform random sampling;

6: elseif B—|Q| < Ng- (1 — pg) then

7: sampling-strategy <— sampling with rarely-queried

class prioritization (using (7));

8: else

9: sampling-strategy < entropy-based sampling;
10: endif
11: Sample {z1,--- ,2p/r} C U using sampling-strategy;

12: Obtain {f(x1),---, f(xp,r)} by querying f;
130 Q<+ QU {(x1, f(x1)), -, (w1, f(xB/1))}s
14: U(—U\{.Tl,"',(EB/]};

41
15: Update (wrkJr 2wkt wi*') by minimizing (5);

16: Update (wF*! wk*+!) by minimizing (6), warm-

. k+1
starting w,- from w; ?;

17: k+k+1;
18: end while
19: return f4(;w!, wl);

Setup for SwiftThief. We used the part of the clone model
from the input to the penultimate layer as the representation
function f; and the remainder to the output layer as the classi-
fication head fy,. For the contrastive representation learning in
SwiftThief (denoted by ST), we set the dimensions a and a’ as
512 and 2, 048 respectively as in the original SimSiam [Chen
and He, 2021]. For solving the inner-maximization problem
in (4), we adopted FGSM [Goodfellow et al., 2015] with € of
0.01. For the alternating optimization in ST, we set the number
of outer iterations I to 10 and the number of epochs for each
sub-problem to 40 while increasing the epochs for contrastive
representation learning to 100 in the last outer iteration to
ensure sufficient convergence. We set A\; and)5 in the loss
of ST (5) to 1.0 and 0.01, resp. For the entire ILSVRC-2012
trainset S (with 1, 281, 167 samples) and its unqueried portion
U, we used randomly sampled 50, 000 inputs from U for the
self-supervised contrastive learning of ST.

5.2 Results

RQ: How much improvement in attack can ST bring? To
demonstrate the efficacy of our ST, we compared the test ac-
curacy of the clone models produced by the attack methods
mentioned above on nine different query budgets from 2K to
50K. Figure 3 shows the results: ST outperformed the competi-
tors consistently on all query budgets and victim models tried.
In particular, ST was considerably more effective at stealing
with small query budgets. For example, at relatively small bud-
gets between 2K and 8K, ST achieved x2.66, x1.33, x1.67,
x1.21, and x1.25 attack performances compared to the sec-
ond best attacks, on MNIST, SVHN, GTSRB, CIFAR-10, and

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

MNIST SVHN CIFAR-10 EuroSAT
S mmmmmmemeg 10 L ______. 1.0 lo EE==E=ms=mESSs
A —* B | a2 T
AKX A——A —A
A — A L
>08 = 08 T 5 s=——% 0.8 /‘/Q/;”‘i 0.8 = ‘ —_—
© 4+] A S —_ e £4 e _—e —t
5 — / ¢ adhA =% 3 i 0
306 [=" 0.6 & ub, 0.6 L7 = 0.6 [gt n—r—
g Y4 # [#ii=
%04) 4 0.4 ' 0.4 gar 0.4 o
2 / e €57 ¢
=02 AY 02 0.2 0.2
A
p
0.0 0.0 0.0 0.0
- - & ot ok - - -
RO S RO I SN PO RO NN SN RO S RO
Query Budget Query Budget Query Budget Query Budget Query Budget
—e— KnockoffNet ActiveThief ~ —s=— MixMatch InverseNet ~ —e— MExMI —+— EPK —a— SwiftThief = --- Victim
Figure 3: Model-stealing performance in test accuracy of clone models on five victim tasks.
MNIST SVHN GTSRB CIFAR-10 EuroSAT
1.0 —4 1.0 —i—s 1.0 1.0 1.0 i A —
A AT A Ay A e A —
" ' = :;' A A/‘:: Aar s 7 :/ ’
2 - A e 2
g o8 / /. 0.8 /; T 0.8 o 0.8 — /:/z 0.8
» /5 4 i A 3
806 £ ‘/ 0.6 // 7 06 A/ X / ANy
i e Ko)
S /: 2 ./ u/ /'/ A ‘/ e
@04 0.4 s/ 0.4 o 0.4 Y% e 04
¥ A X3 - L0 Y 0/0/ /'/
g 0.2 / % are ‘/./ 0.2 .;./ 0.2 :/:/_ ® 0.2
=2l : =
0.0 T 0.0 0.0 0.0 0.0

(N
00 O g0 0% a0 o2
Attack Radius
—e— KnockoffNet

(Y
00 0% O ok o°
Attack Radius

ActiveThief MixMatch

DY
Q0 O 9> ok 0°
Attack Radius

0 o0 9% oo o0°
Attack Radius
—e— MEXMI —+— EPK

Y
Q0% O O ok 0°
Attack Radius

InverseNet —— SwiftThief

Figure 4: Attack success rates of black-box adversarial attacks through model stealing.

EuroSAT, respectively; for larger query budgets between 10K
and 50K, it achieved x1.37, x1.14, x1.23, x1.09, and x1.21
attack performances compared to the second-best, respectively
for the victims. Also, at the maximum query budget of 50K
in our experiments, ST’s clone models reached x0.95 of the
victim’s test accuracy on average, while the second-best attack
methods achieved only x0.88 in contrast.

RQ: How effective is ST against defense? To demonstrate
how well ST performs when a victim is equipped with a de-
fense mechanism, we compared the performance of attacks
against victims with and without one of the popular defense
methods called Prediction Poisoning [Orekondy et al., 2020]
(denoted by PP). PP adds perturbations to the softmax outputs
of the victim so that the attacker’s training will use misleading
gradient information. In Table 1, we can see that ST outper-
formed other attacks in terms of the test accuracy of the clone
models even when PP was active. In particular, the decrease
in attack performance due to PP was much smaller for ST
than for other methods relying entirely on the queried dataset,
namely KnockoffNet, ActiveThief, and InverseNet. On aver-
age, the attack performance of ST decreased to x0.94, while
the performance of KnockoffNet, ActiveThief, and InverseNet
decreased significantly to x0.82, x0.86 and x0.84, respec-
tively. On the other hand, for MixMatch, MExMI, and EPK,
the approaches using both queried and unqueried datasets, the
performance drop was relatively small (x0.92, x0.93, and
%x0.90, resp.). Still, our method ST performed better than
them in both defended and undefended cases.

427

RQ: How effective is ST in black-box adversarial attacks?
To investigate the effectiveness of ST against black-box ad-
versarial attacks, we applied adversarial attacks to the clone
models generated by each model-stealing method. For the
investigation, we adopted the PGD attack [Madry er al., 2018]
varying the perturbation radius € in the ¢, norm from 8/255
to 32/255 for MNIST, and from 2/255 to 14/255 for other
datasets. (MNIST generally requires stronger perturbations
than other datasets for successful attacks [Ye et al., 2019;
Croce and Hein, 2020].) Figure 4 shows the attack success
rates of the victim models on adversarial examples generated
through the corresponding clone models. The result shows
that black-box adversarial attacks through model stealing were
the most successful with our attack method across all attack
radii.

RQ: How effectively does ST deal with the class imbalance
in queries? To investigate the RQ, we compared the sample
ratios of the rarest classes to the most frequent classes in the
queried datasets (denoted by the balance score; higher values
mean better balancing) and the class-wise test accuracy of
the clone models generated by ST and the best competitor (in
terms of the test accuracy) for each victim task in Figure 5.
We can see that ST significantly increases the balance score
compared to the best competitor. Also, we can see the effect
of making more class-balanced queries on attack performance.
Regarding class-wise test accuracy rates, the best competitor
fails to steal the model in particular classes (e.g., the class 7 of
GTSRB) due to rare attack queries made for the class, while

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

MNIST 10
1.0 i
MNIST -—
- > 0.8
0 0.8
VI S <
© 3 o6 0.6
0O GTSRB ™ <
£ 2 0.4 0.4
I
AR s
> i 0.2 0.2
EuroSAT _
0.0 0.0
0.0 0.1 0.2 0.3 6 5 2 1 9

Balance Score Class Index

mmm Best Competitor

0.8

0.6

0.4

I 0.2

- 0.0
5 9 6 7 3

SVHN GTSRB EuroSAT

1 3 6 8 0

Class Index

1.0

0.8

0.6

I ‘ | .4

- 0.0
7 0 5 2 6

Class Index

1.0

o

o
N

Class Index

mmm SwiftThief s Victim

Figure 5: The first panel: the sample ratio of the rarest to the most frequent class (denoted by balance score). The second to the last panels:
clone model’s test accuracy for each class: class index (x-axis) were sorted in ascending order based on the class-wise test accuracy of the best
competitor. The first five classes are shown due to space limits. CIFAR-10 is excluded since it showed the least class imbalance.

Victim Dataset

Attack MNIST SVHN GTSRB CIFAR-10 EuroSAT
Undef PP Undef PP Undef PP Undef PP Undef PP

KnockoffNet 74.07 53.34 7456 6326 7480 6535 56.12 41.00 6439 60.07
ActiveThief 82.16 71.54 7478 60.31 76.89 7523 5992 40.02 6735 66.07
MixMatch 61.30 4565 7527 7099 7376 71.14 7126 6590 59.20 60.52
InverseNet 73.10 66.15 7572 6431 7729 58.64 61.06 4639 6630 60.94
MExMI 81.75 7153 7321 7075 6720 63.05 71.83 66.77 68.07 64.00
EPK 5401 4438 71.68 6941 5382 4996 73.68 68.21 71.74 63.06
SwiftThief 9551 9476 8826 8424 9420 89.55 79.73 69.12 82778 79.26

Table 1: The effect of defense on attack performance. Clone models’ test accuracy rates (%) on victims’ tasks are shown, created against
undefended (Undef) and PP-defended (PP) victim models. The gray highlight indicates best-performing attack for each task.

Victim Dataset Best Competitor SwiftThief
Method fa Acc(%) | fa Acc (%)
MNIST InverseNet 59.33 80.87
SVHN MixMatch 70.70 76.61
GTSRB MExMI 67.11 77.61
CIFAR-10 MixMatch 66.56 67.70
EuroSAT MExMI 63.33 70.37

Table 2: The attack performance in the hard label scenario. Clone
models’ test accuracy rates (%) on victims’ tasks are shown, created
by SwiftThief and the best competitor for each task.

ST alleviates the problem significantly.

RQ: How does ST perform with different label types?
Next, we investigated how effective ST is when only class
membership information is provided as the query output. Ta-
ble 2 displays the test accuracy of clone models created by
ST and the best competitor for each victim task in the hard
label scenario. We can see that our ST outperforms the best
competitors in all victim tasks.

RQ: What are the contributions of the suggested compo-
nents? Finally, we conducted an ablation study to see the
contribution of using the soft-supervised contrastive loss Li"ﬂ,
the self-supervised contrastive loss Eielf, the weighted regu-
larizer £8, and the prioritization of rarely queried classes in
sampling. Table 3 shows the test accuracy of ST’s f 4 averaged
on five victim tasks. We can see that the entire components

Components of SwiftThief Fa Test Ace(%)

£t pEt L Sampling
X X X X 72.22 (x1.00)
VR S X 79.62 (x1.10)
4 v X X 85.46 (x1.18)
Y X 86.76 (x1.20)
v v v v 88.09 (x1.22)

Table 3: The contribution of the components of SwiftThief to model-
stealing performance.

increased the clone models’ test accuracy compared to previ-
ous cases, showing that all components of ST contribute to
improved attack performance.

6 Conclusion

We proposed SwiftThief, a new query-efficient model-stealing
attack framework that uses both queried and unqueried data
utilizing soft- and self-supervised contrastive representation
learning. We further enhanced our attack by mitigating the
class imbalance problem using a new regularizer and an en-
hanced sampling strategy. Through experiments, we con-
firmed that SwiftThief outperforms current state-of-the-art at-
tacks even with smaller queries and when a defense is applied.
Our future works include extending SwiftThief to other data
domains and sophisticating it to exploit new attack surfaces,
such as the attribution maps for eXplainable AI (XAI).

428

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

Acknowledgments

This research was supported by the MSIT(Ministry of Science
and ICT), Korea, under the ITRC(Information Technology
Research Center) support program(II'TP-2024-2020-0-01749)
supervised by the IITP(Institute for Information & Communi-
cations Technology Planning & Evaluation).

References

[Aggarwal ef al., 2020] Umang Aggarwal, Adrian Popescu,
and Céline Hudelot. Active learning for imbalanced
datasets. In WACV, 2020.

[Berthelot ef al., 2019] David Berthelot, Nicholas Carlini,
Ian Goodfellow, Nicolas Papernot, Avital Oliver, and Colin
Raffel. Mixmatch: A holistic approach to semi-supervised
learning. In NeurIPS, 2019.

[Cao et al., 2019] Kaidi Cao, Colin Wei, Adrien Gaidon,
Nikos Arechiga, and Tengyu Ma. Learning imbalanced
datasets with label-distribution-aware margin loss. In
NeurlPS, 2019.

[Cao er al., 2021] Kaidi Cao, Yining Chen, Junwei Lu, Nikos
Arechiga, Adrien Gaidon, and Tengyu Ma. Heteroskedastic
and imbalanced deep learning with adaptive regularization.
In ICLR, 2021.

[Chen and He, 2021] Xinlei Chen and Kaiming He. Explor-
ing simple siamese representation learning. In CVPR, 2021.

[Chen et al., 2020] Ting Chen, Simon Kornblith, Mohammad
Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In ICML,
2020.

[Croce and Hein, 2020] Francesco Croce and Matthias Hein.
Reliable evaluation of adversarial robustness with an en-
semble of diverse parameter-free attacks. In ICML, 2020.

[Cui et al., 2019] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang
Song, and Serge Belongie. Class-balanced loss based on
effective number of samples. In CVPR, 2019.

[Fredrikson et al., 2015] Matt Fredrikson, Somesh Jha, and
Thomas Ristenpart. Model inversion attacks that exploit
confidence information and basic countermeasures. In ACM
SIGSAC CCS, 2015.

[Gong et al., 2021] Xueluan Gong, Yanjiao Chen, Wenbin
Yang, Guanghao Mei, and Qian Wang. Inversenet: Aug-
menting model extraction attacks with training data inver-
sion. In IJCAI, 2021.

[Goodfellow et al., 2014] Tan J. Goodfellow, Jean Pouget-
Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sher-
jil Ozair, Aaron Courville, and Yoshua Bengio. Generative
adversarial networks. In NeurIPS, 2014.

[Goodfellow et al., 2015] Ian J. Goodfellow, Jonathon
Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. In ICLR, 2015.

[He et al., 2016] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016.

429

[He er al., 2020] Kaiming He, Haoqi Fan, Yuxin Wu, Saining
Xie, and Ross Girshick. Momentum contrast for unsuper-
vised visual representation learning. In CVPR, 2020.

[Helber et al., 2018] Patrick Helber, Benjamin Bischke, An-
dreas Dengel, and Damian Borth. Introducing eurosat: A
novel dataset and deep learning benchmark for land use
and land cover classification. In /GARSS, 2018.

[Hinton et al., 2014] Geoffrey Hinton, Oriol Vinyals, and Jeff
Dean. Distilling the knowledge in a neural network. In
NeurIPS workshop, 2014.

[Islam et al., 2021] Ashraful Islam, Chun-Fu Chen,
Rameswar Panda, Leonid Karlinsky, Richard Radke, and
Rogerio Feris. A broad study on the transferability of
visual representations with contrastive learning. In ICCV,
2021.

[Jagielski et al., 2020] Matthew Jagielski, Nicholas Carlini,
David Berthelot, Alex Kurakin, and Nicolas Papernot. High
accuracy and high fidelity extraction of neural networks. In
USENIX Security, 2020.

[Kariyappa et al., 2021] Sanjay Kariyappa, Atul Prakash, and
Moinuddin Qureshi. Maze: Data-free model stealing attack
using zeroth-order gradient estimation. In CVPR, 2021.

[Khosla et al., 2020] Prannay Khosla, Piotr Teterwak, Chen
Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised con-
trastive learning. In NeurIPS, 2020.

[Kim et al., 2020] Minseon Kim, Jihoon Tack, and Sung Ju
Hwang. Adversarial self-supervised contrastive learning.
In NeurIPS, 2020.

[Krizhevsky, 2009] Alex Krizhevsky. Learning multiple lay-
ers of features from tiny images. Technical report, Univer-
sity of Toronto, 2009.

[Lecun et al., 1998] Yann Lecun, Leon Bottou, Yoshua Ben-
gio, and Patrick Haffner. Gradient-based learning ap-
plied to document recognition. Proceedings of the IEEE,
86(11):2278-2324, 1998.

[Lee and Han, 2022] Sangkyun Lee and Sungmin Han. Libra-
cam: An activation-based attribution based on the linear
approximation of deep neural nets and threshold calibration.
In IJCAIL, 2022.

[Lee et al., 2022] Jeonghyun Lee, Sungmin Han, and
Sangkyun Lee. Model stealing defense against exploiting
information leak through the interpretation of deep neural
nets. In IJCAI, 2022.

[Lewis and Gale, 1994] David D. Lewis and William A. Gale.
A sequential algorithm for training text classifiers. In ACM
SIGIR, 1994.

[Liu et al., 2022al Hong Liu, Jeff Z. HaoChen, Adrien
Gaidon, and Tengyu Ma. Self-supervised learning is more
robust to dataset imbalance. In ICLR, 2022.

[Liu er al., 2022b] Hong Liu, Jeff Z. HaoChen, Adrien
Gaidon, and Tengyu Ma. Self-supervised learning is more
robust to dataset imbalance. In ICLR, 2022.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

[Madry er al., 2018] Aleksander Madry, Aleksandar
Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian
Vladu. Towards deep learning models resistant to
adversarial attacks. In ICLR, 2018.

[Mazeika et al., 2022] Mantas Mazeika, Bo Li, and David
Forsyth. How to steer your adversary: Targeted and efficient
model stealing defenses with gradient redirection. In ICML,
2022.

[Netzer et al., 2011] Yuval Netzer, Tao Wang, Adam Coates,
A. Bissacco, Bo Wu, and A. Ng. Reading digits in natural
images with unsupervised feature learning. In NeurlPS
workshop, 2011.

[Orekondy et al., 2019] Tribhuvanesh Orekondy, Bernt
Schiele, and Mario Fritz. Knockoff nets: Stealing
functionality of black-box models. In CVPR, 2019.

[Orekondy et al., 2020] Tribhuvanesh Orekondy, Bernt
Schiele, and Mario Fritz. Prediction poisoning: Towards
defenses against dnn model stealing attacks. In ICLR,
2020.

[Pal et al., 2020] Soham Pal, Yash Gupta, Aditya Shukla,
Aditya Kanade, Shirish K. Shevade, and Vinod Ganapa-
thy. Activethief: Model extraction using active learning
and unannotated public data. In AAAI 2020.

[Papernot er al., 2016] Nicolas Papernot, Patrick McDaniel,
Ian Goodfellow, Somesh Jha, Z. Berkay Celik, and Anan-
thram Swami. Practical black-box attacks against machine
learning. In ACM ASIACCS, 2016.

[Ribeiro et al., 2015] Mauro Ribeiro, Katarina Grolinger, and
Miriam A.M. Capretz. MLaaS: Machine Learning as a
Service. In ICMLA, 2015.

[Russakovsky et al., 2015] Olga Russakovsky, Jia Deng, Hao
Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bern-
stein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large
Scale Visual Recognition Challenge. IJCV, 2015.

[Selvaraju ef al., 2019] Ramprasaath R. Selvaraju, Michael
Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi
Parikh, and Dhruv Batra. Grad-cam: Visual explanations
from deep networks via gradient-based localization. IJCV,
2019.

[Shokri et al., 2017] Reza Shokri, Marco Stronati, Con-
gzheng Song, and Vitaly Shmatikov. Membership inference
attacks against machine learning models. In IEEE S&P,
2017.

[Stallkamp et al., 2011] Johannes Stallkamp, Marc Schlips-
ing, Jan Salmen, and Christian Igel. The German Traffic
Sign Recognition Benchmark: A multi-class classification
competition. In IEEE IJCNN, 2011.

[Tramer et al., 2016] Florian Tramer, Fan Zhang, Ari Juels,
Michael K. Reiter, and Thomas Ristenpart. Stealing ma-
chine learning models via prediction apis. In USENIX
Security, 2016.

[Truong et al., 2021] Jean-Baptiste Truong, Pratyush Maini,
Robert J. Walls, and Nicolas Papernot. Data-free model
extraction. In CVPR, 2021.

430

[Tseng, 2001] Paul Tseng. Convergence of a block coordinate
descent method for nondifferentiable minimization. Jour-
nal of optimization theory and applications, 109(3):475,
2001.

[Xiao er al., 2022] Yaxin Xiao, Qingging Ye, Haibo Hu,
Huadi Zheng, Chengfang Fang, and Jie Shi. MExMI: Pool-
based active model extraction crossover membership infer-
ence. In NeurIPS, 2022.

[Ye et al., 2019] Shaokai Ye, Kaidi Xu, Sijia Liu, Jan-Henrik
Lambrechts, Huan Zhang, Aojun Zhou, Kaisheng Ma,
Yanzhi Wang, and Xue Lin. Adversarial robustness vs.
model compression, or both? In ICCV, October 2019.

[Yu et al., 2020] Honggang Yu, Kaichen Yang, Teng Zhang,
Yun-Yun Tsai, Tsung-Yi Ho, and Yier Jin. Cloudleak:
Large-scale deep learning models stealing through adver-
sarial examples. In NDSS, 2020.

[Zhang er al., 2022] Jie Zhang, Bo Li, Jianghe Xu, Shuang
Wu, Shouhong Ding, Lei Zhang, and Chao Wu. Towards
efficient data free black-box adversarial attack. In CVPR,
pages 15115-15125, June 2022.

[Zhao er al., 2023] Shigian Zhao, Kangjie Chen, Meng Hao,
Jian Zhang, Guowen Xu, Hongwei Li, and Tianwei Zhang.
Extracting cloud-based model with prior knowledge. In
arXiv, 2023.

[Zhou et al., 2020] Mingyi Zhou, Jing Wu, Yipeng Liu,
Shuaicheng Liu, and Ce Zhu. Dast: Data-free substitute
training for adversarial attacks. In CVPR, 2020.

	Introduction
	Related Works
	Model Stealing Attacks
	Contrastive Learning

	Threat Model
	SwiftThief
	Learning Objective
	Prioritization of Rarely Queried Classes in Sampling

	Experiments
	Experimental Setup
	Results

	Conclusion

