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Abstract
The demand for open and trustworthy AI mod-
els points towards widespread publishing of model
weights. Consumers of these model weights must
be able to act accordingly with the information pro-
vided. That said, one of the simplest AI classifi-
cation models, Logistic Regression (LR), has an
unwieldy interpretation of its model weights, with
greater difficulties when extending LR to gener-
alised additive models. In this work, we show via
a User Study that skilled participants are unable to
reliably reproduce the action of small LR models
given the trained parameters. As an antidote to this,
we define Linearised Additive Models (LAMs), an
optimal piecewise linear approximation that aug-
ments any trained additive model equipped with a
sigmoid link function, requiring no retraining. We
argue that LAMs are more interpretable than logis-
tic models – survey participants are shown to solve
model reasoning tasks with LAMs much more ac-
curately than with LR given the same information.
Furthermore, we show that LAMs do not suffer from
large performance penalties in terms of ROC-AUC
and calibration with respect to their logistic counter-
parts on a broad suite of public financial modelling
data.

1 Introduction
In high-stakes domains such as finance and healthcare, there
is renewed interest in inherently interpretable models [Lipton,
2018; Molnar, 2022; Gunning, 2019], where the model form is
such that it admits useful explanations of its output without any
post-processing. Calls for transparency of algorithms being
used on the public are widespread [Veale et al., 2018]. Within
finance there is already increased regulatory scrutiny [OCC,
2021; Commission, 2021; Register, 2021] being introduced
with regards to the usage of AI, which could extend in the
future – within certain contexts – to require full algorithmic
transparency, i.e. sharing model coefficients.

One of the prototypical inherently interpretable classifica-
tion models often used as a baseline is Logistic Regression
(LR) [Molnar, 2022]. Other additive models such as Gener-
alised Additive Models (GAMs) and variants thereof [Lou et

al., 2013; Gkolemis et al., 2023] generalise LR to have more
flexibility [Hastie et al., 2009] and are also considered to be
interpretable. As with LR, such models entail evaluating a
real-valued function of the input data in logit, or log-odds
space, that is subsequently transformed into probability space
via a non-linear logistic link function. We call this class of
models logistic models – a rigorous definition is given in Defi-
nition 2.1. In some sense, logistic models can be thought of
as reasoning in logit space, in that the model weights natu-
rally find their interpretation in terms of log-odds rather than
probabilities, the units of the eventual model output.

Logistic models are now ubiquitous within Explainable
AI (XAI) [Lou et al., 2013; Sudjianto and Zhang, 2021;
Vaughan et al., 2018] but the literature is scant on evalu-
ating the interpretability of these models. Indeed, there is
a small amount of evidence to the contrary [Harris, 2017;
von Hippel, 2015], with no more thorough study to the au-
thors’ knowledge. To what extent is this family of models truly
interpretable? The present work aims to (at least partially) an-
swer this question. We show via a User Study that for at least
one definition of interpretability, based on Human-Grounded
Evaluation [Doshi-Velez and Kim, 2017], such models pro-
vide limited and misleading explanations. For contexts where
a certain level of interpretability is required we propose a rem-
edy, Linearised Additive Models (LAM), that largely keeps the
properties of any base logistic model the same, while dispens-
ing with the non-linearities that cause confusion when using
model weights as explanations.

Contributions. We outline the primary contributions below.
1. Identification of interpretability limitations for LR. A

concrete motivating example demonstrating that model
explanations provided in log-odds can be difficult for
humans to interpret.

2. Linearised Additive Models (LAM). An efficient pro-
cedure to convert any trained logistic additive model that
reasons in log odds to one that reasons directly about
probabilities, without any retraining. For the special
case of LR, LAM is rigorously proved to be the optimal
approximation out of a large class of possible models.

3. Empirical evaluation of performance preservation.
On a collection of public datasets from credit modelling,
we establish that there is only a very small penalty in
classification performance and a somewhat larger – but
still small – penalty in calibration incurred for using
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LAMs versus logistic models.
4. User evaluation. We conduct a user study with N = 36

participants, concluding via Human-Grounded Evalu-
ation that LAMs are more interpretable than logistic
models, as suggested by the motivating example. The
measured outcomes of the user study are statistically
significant.

Related Work. There is a vast literature on defining and
evaluating performance of inherently interpretable models in
general, a non-exhaustive group of which is [Dash et al., 2018;
Lou et al., 2013; Yang et al., 2021; Vaughan et al., 2018;
Kraus and Feuerriegel, 2019; De Bock and De Caigny, 2021;
Vidal and Schiffer, 2020; Alaa and van der Schaar, 2019]. The
evaluation of interpretability itself is still an open question,
with detailed discussion of this issue in the references [Halli-
well et al., 2022; Chen et al., 2022b; Narayanan et al., 2018;
Lipton, 2018]. There are several different approaches, with
the current preferred (and most expensive) approach being
User Studies, as this allows one to directly measure resulting
outcomes from explanations [Doshi-Velez and Kim, 2017].
Indeed, measuring explanation quality via measured outcomes
when humans are asked to simulate the action of an algorithm
predates most of the AI interpretability literature, for instance
works such as [Kulesza et al., 2013]. [Rong et al., 2022]
provide a recent survey paper on User Studies for evaluating
explanations and interpretability of AI models.

The closest works in the literature to this paper are [Abdul
et al., 2020; Poursabzi-Sangdeh et al., 2021]. In [Abdul et
al., 2020], the authors measure interpretability of sparse linear
models and GAMs via user studies that measure cognitive load
on participants carrying out tasks with these models and their
associated explanations. In the work by [Poursabzi-Sangdeh
et al., 2021], users are presented with the coefficients of 2 and
8-variable linear models. The quality of the explanations from
each model is measured by how adept users are at simulating
the action of the model. Crucially, both these works evaluate
regression models and are not concerned with issues arising
due to the non-linearity of the sigmoid transformation required
for logistic classification models.

The present work highlights that experts are not immune
from misinterpreting certain model explanations, as also ob-
served in the works: [Kaur et al., 2020; Bhatt et al., 2020].

Low-degree polynomial approximations to the sigmoid are
employed in Private Machine Learning, e.g. [Kim et al., 2018a;
Chen et al., 2018; Kim et al., 2018b], but to our knowledge
the piecewise linear approximation in this work is unique.

Structure. In Section 2 we provide the motivating example
and present the LAM definition and optimality results. Sec-
tion 3 contains the performance evaluation of LAMs against
their logistic counterparts and Section 4 details the User Study.
We include most detail in the main text for the User Study,
providing derivations, proofs and experimental details in the
Supplementary Material (SM). We conclude with limitations
and future work in Section 5.

Notation. This work considers binary classification, and we
use {(x(j), y(j))}Mj=1 to denote the data, where x ∈ Rd is a
vector of numerical features in a given dataset. The binary
labels are indicators of some (usually bad) event such as a

loan default: yi ∈ {0, 1}. We assume data points are drawn
i.i.d. For a point x ∈ Rd, we denote the ith element of x by xi.
The ith Euclidean basis vector is denoted by ei. The sigmoid
function is defined as σ(z) := (1 + e−z)−1 for z ∈ R. We
follow credit modelling terminology, where risk ŷ(x(j)) is a
model’s subjective probability in [0, 1] for a data point x(j) to
be of positive class, that is y(j) = 1. The set [d] := {1, . . . , d}
for d ∈ N.

2 Logistic and Linear Probability Modelling
GAMs [Hastie et al., 2009; Molnar, 2022] are a widely-known
and long standing class of models considered to be inherently
interpretable. In this work we restrict attention to GAMs with-
out feature interactions. We formalise the notion of additive
models as understood in this paper in Definition 2.1.
Definition 2.1 (Logistic Additive Model). Let x ∈ Rd. We
call ŷ : Rd → [0, 1] a logistic additive model if takes the form
ŷ(x) = σ(f(x)) := σ(β0 +

∑d
i=1 βifi(xi)), where the bias

β0 ∈ R and for all i ∈ [d], βi ∈ R and the fi : R → R are
univariate shape functions.

We refer to logistic additive models as defined in Defini-
tion 2.1 simply as logistic models or additive models when
it is clear from context. The simplest and most common ad-
ditive model in wide usage is LR, where fi(xi) = xi for all
i ∈ [d] [Hastie et al., 2009]. Another example would be an
Explainable Boosting Machine of [Lou et al., 2013] for classi-
fication, where the fi are piecewise constant functions (when
there are no feature interactions).

2.1 Logistic Modelling and Interpretability
Historically, linear probability modelling, i.e. linear regres-
sion on dichotomous variables, was used prior to the ad-
vent of efficient methods for fitting LR models; see [Aldrich
and Nelson, 1984; Hastie et al., 2009]. It is generally ac-
cepted that the application of linear regression to binary clas-
sification problems is unwise due to the propensity of the
model returning probability estimates outside the [0, 1] inter-
val and sensitivity to outliers [Ng, 2011; Hastie et al., 2009;
Molnar, 2022]. In certain circumstances, these issues are not
observed, with linear regression obtaining similar classifica-
tion performance to LR [Hellevik, 2009; von Hippel, 2015].
LR models have superceded linear probability models.

The LR model coefficients are typically interpreted as fol-
lows [Molnar, 2022; Hastie et al., 2009]: a unit change in vari-
able xi leads to a multiplicative increase in odds for the posi-
tive class of exp(βi). However, as observed by [Harris, 2017;
von Hippel, 2015] this interpretation can be unwieldy for ex-
perts and nigh-on impossible for non-experts to reason with
when we are concerned with probabilities, which is how the
model outputs are typically presented and thought about.
Motivating Example. Suppose there is a LR model ŷ used
to predict some negative outcome and coefficients are shared
with downstream users of the model. Inputs with risk ≥ 0.5 are
considered “high-risk” and “low-risk” otherwise. Referring to
Figure 1, Alice has a predicted risk of ŷ(x(A)) = 0.1 and Bob
has a predicted risk of ŷ(x(B)) = 0.25. Both Alice and Bob
are interested in what happens to their risk if they increase
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Figure 1: The cost of misinterpration of model coefficients as ex-
planations. Alice and Bob receive the same explanation, but incur
a different change in model output, ultimately leading to different
outcomes.

the value of feature xi by one unit, all else equal. They are
told the model coefficient βi = 1.61 ≈ ln 5, a common form
of transparent model explanation. First, both exponentiate βi

which gives 5. They now know that increasing feature xi by
increases their odds by a factor 5. The model outputs a risk
score in units of probability, so they now have to compute
what increasing their odds corresponds to in probabilities.

In this instance for Alice, odds(A) = ŷ(x(A))/(1 −
ŷ(x(A))) = 0.1/(1 − 0.1) ≈ 0.111. Alice then multiplies
her odds by 5, yielding 0.556. Converting back to probabil-
ities we have ŷ(x(A) + ei) ≈ 0.556/(1 + 0.556) ≈ 0.357.
Subtracting her original risk score, we have that increasing xi

by one unit increases the risk by a probability of 0.257 and
Alice remains low-risk. A similarly laborious computation
gives an increase in risk for Bob to approximately 0.625. Bob
would be considered high-risk under a unit increase in xi.
This was not obvious on first inspection before carrying out
the computation explicitly.

The nonlinearity of odds as a function of probabilities (and
vice versa) means that users with different risk scores cannot
attribute logistic regression model outputs to the model coeffi-
cients in the same way. Moreover, the necessary computations
are such that one cannot easily reason about the model’s input-
output relationship without a significant amount of practice.
On the contrary, the coefficients βi of a linear probability
model admit the more direct interpretation of the increase in
output model probability arising from a unit increase in xi,
regardless of the risk value of the user in question.

2.2 Linearised Additive Models (LAMs)
Given the preceding example, we wish to keep the inter-
pretability characteristics of linear probability modelling while
simultaneously sidestepping the issues arising from using a
non-linear link function as in LR. To this end, we present
the Linearised Additive Model (LAM), which is defined with
respect to an already trained logistic model, σ ◦ f . Informally,
a LAM replaces the sigmoid link function with a clipping
function and scales f by an affine transformation. Denote
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σ(x)
σ̃(x;α⋆)

Figure 2: Optimal approximation σ̃(x;α ≈ 2.5996) to sigmoid
function σ(x). The parameter α corresponds the half the width along
the x-axis of the middle line segment in the piecewise linear function.

by Π[0,1] the projector from R onto the unit interval, that is
Π[0,1](z) = max(0,min(1, z)).

Definition 2.2 (Linearised Additive Models (LAM)). Let
x ∈ Rd and let ŷ(x) = σ(f(x)) be an additive model per
Definition 2.1. Moreover, set α⋆ := 80000

30773 ≈ 2.5996 as a uni-
versal constant. Then, the Linearised Additive Model, ŷLAM,
relative to f is given by

ŷLAM(x) = Π[0,1]

(
1

2
+

β0

2α⋆
+

d∑
i=1

βi

2α⋆
fi(xi)

)
.

For brevity we refer to ŷLAM as a linearised model and say
that ŷLAM is the LAM induced by ŷ.

The LAM as defined in Definition 2.2 is derived by consid-
ering the optimal 3-piece piecewise linear approximation (see
Figure 2) to the sigmoid function in terms of squared error,
using this function as a link function for f(x) and invoking
linearity. We choose this family of approximating functions
as 3 pieces gives the simplest non-trivial approximation to the
logistic sigmoid, while simulataneously allowing for a similar
interpretation to a linear probability model. Squared error
is chosen as it is a common metric for function approxima-
tion [Hastie et al., 2009] for which we are able to derive a
universal tractable approximator.

As an example, an LR model is written as ŷ(x) =

σ(
∑d

i=0 βixi), where we fix x0 = 1 according to con-
vention. Then, the linearised version will be ŷLAM(x) =

Π[0,1](
1
2 +

∑d
i=0

βi

2α⋆xi). In the case of linearised LR we can
interpret the coefficients βi/2α

⋆ as the contribution to model
output in probability space for a unit increase in xi, as with a
linear probability model.

Remark 2.3. To train a LAM, all that is required is to train the
underlying logistic additive model, then apply Definition 2.2
using the trained coefficients {βi}di=0.

Motivating Example Revisited. Under an LR model, Alice
and Bob had to interpret a unit increase in feature xi as having
different and unintuitive effects on their respective risk scores.
Using the induced LAM, a unit increase in xi gives rise to
the same change in model output, regardless of the input, i.e.
βi

2α⋆ = 1.61
2×2.5996 ≈ 0.310, modulo outputs greater than unity
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which will be clipped. Alice and Bob’s respective inputs of
0.1 and 0.25 can be readily seen to change to 0.41 and 0.56.
Note this gives the same qualitative result as the non-linearised
model, namely Alice stays low-risk and Bob becomes high-
risk. We surmise that this direct interpretation of the LAM
coefficients incurs smaller cognitive overhead in answering
questions of this type, in constrast to LR.

The following optimality result for the LAM approximation
to LR lends theoretical support to our definition of LAMs.
Theorem 2.4 (LAM Optimality). Let PL3 be the space of 3-
piece piecewise linear functions of one variable and X = Rd.
For any LR model ŷ(x) = σ(f(x)) = σ(β0 +

∑d
i=1 βixi)

on X , an approximator σ̃(f(x)) is defined for all σ̃ ∈ PL3.
Then, ŷLAM is the squared-error optimal approximator for
arbitrary f , that is,

ŷLAM(x) = σ̃(f(x);α⋆) where

σ̃( · ;α⋆) = arg min
σ̃∈PL3

{∫
X
(σ̃(f(x))− σ(f(x)))

2
dx

}
,

with σ̃(z;α⋆) := Π[0,1](
1
2 (1 +

z
α⋆ )), α⋆ ≈ 2.5996.

Proof (Sketch). One can show via symmetry arguments that
the minimising approximator comes from a one-parameter
function family, when d = 1 with f(x) = x. The error is a
convex function of this parameter α, which is minimised at α⋆.
The argument can then be extended to d-dimensional, affine
f(x) by considering the error integral explicitly, from which
the result follows.

3 Performance Comparison
In this section we detail our experiments comparing the model
performance of logistic additive models against their linearised
(LAM) counterparts.

3.1 Experimental Setup
Models. We compare all models to XGBoost [Chen et
al., 2022a], with shorthand XGB, and XGB with monotone
constraints imposed (MonoXGB). XGB classification perfor-
mance serves as an effective upper-bound on the competing
models. As state-of-the-art baseline logistic additive models
we consider the Additive Risk Models (ARMs) of [Chen et
al., 2022a], since they are GAMs that explicitly incorporate
monotone constraints that are often required in sensitive do-
mains such as finance [Reserve, 2011]. These models come in
1-layer (ARM1) and 2-layer (ARM2) variants. Further base-
lines include NNLR (Non-negative LR [Chen et al., 2022a])
with raw feature inputs as an effective lower bound on model
performance. For an additive model with shorthand M , we
denote its linearised version (in the sense of Definition 2.2)
by LAM-M . We include the linearised models LAM-NNLR,
LAM-ARM1 and LAM-ARM2 in our experiments. LAM-
ARM2 has both the individual subscale models and global
NNLR model linearised.

Datasets. In this work we are principally interested in the
consumer credit domain. Bankruptcy prediction datasets
are also included due to their similar problem structure and
origin. We consider publically available datasets from the

UCI repository [Kelly et al.], namely, the German Credit
dataset [Hofmann, 1994], Australia credit approvals [Quin-
lan, 1987], Taiwanese bankruptcy [Liang et al., 2020] predic-
tion, Japanese credit screening [Sano, 1992] and the Polish
companies bankruptcy [Tomczak, 2016] dataset. We con-
sider also the FICO Home Equity Line of Credit dataset (HE-
LOC) [FICO, 2018], Give Me Some Credit (GMSC) and Lend-
ing Club (LC) [Kaggle, 2019] datasets.

3.2 Performance Metrics
We are chiefly interested to what extent linearising relative to
logistic models introduces degredation (if any) of both clas-
sification performance and calibration – the latter being of
interest as we are modifying the probability estimates of a
trained logistic model. For each metric the 10-fold strati-
fied cross-validation score is computed for every (classifier,
dataset) combination.

Classification Performance. To measure of classification
performance, we use the area under the curve of the receiver
operating characteristic [Bradley, 1997; Hanley and McNeil,
1983], denoted as AUC.

Calibration. We consider two widely-used numerical sum-
mary statistics for the calibration, Expected Calibration Error
(ECE) and Maximum Calibration Error, (MCE). Lower values
of ECE and MCE correspond to better calibration of a particu-
lar model, with the idealised model having a value of zero for
both.
Statistical Methodology. For the purposes of discussion
here, consider a graph where for each classification algorithm
A we draw a node. We draw an edge between any nodes corre-
sponding to algorithm pairs (A,A′) such that the performance
of A cannot be distinguished from the performance A′ with
significance α = 0.05 according to a a Wilcoxon signed-rank
test [Wilcoxon, 1945] conducted over the considered datasets.
We display this graph, where the nodes A are arranged accord-
ing to their average rank RA in Figure 3. These are the Critical
Difference (CD) diagrams of [Demšar, 2006] for AUC, ECE
and MCE . Not only are we interested in whether an observed
difference in cross validated score between two algorithms is
statistically significant, but also the size of this difference. In
Table 1 for the AUC metric. The quantity θ̂HL is a robust point
estimate1 computed across the datasets.
Results for Classification Performance. We highlight sev-
eral observations from the CD diagram for AUC (Figure 3).
Unconstrained XGB is the strongest model in terms of AUC,
as we may expect. The weakest performing model families
are {NNLR, LAM-NNLR}, presumably due to their simplic-
ity as compared with the other models. LAM-NNLR models
are indistinguishable in AUC performance from their logistic
counterparts, NNLR. Interestingly, LAM-ARM1 is connected
to MonoXGB in the CD graph. MonoXGB models are con-
sidered state of the art for monotone constrained models on
tabular data and LAM-ARM1 is more interpretable accord-
ing to a number of criteria, yet here they display statistically
indistinguishable classification performance. However, LAM-
ARM1 can be distiguished with statistical significance from

1The Hodges-Lehmann estimator associated to Wilcoxon’s signed
rank test [Wilcox, 2022].
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Figure 3: Critical Difference diagrams for AUC, ECE and MCE. The
x-axis represents the mean rank averaged over all datasets, with each
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better). Classifiers connected by an edge cannot be distinguished
with significance α = 0.05.
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NNLR — 0.000 -0.327 -0.314 -0.319 -0.311 -0.320 -0.340
LAM-NNLR — — -0.327 -0.314 -0.319 -0.311 -0.320 -0.340
ARM1 — — — 0.008 0.003 0.013 0.000 -0.011
ARM2 — — — — -0.005 0.003 -0.009 -0.017
LAM-ARM1 — — — — — 0.009 -0.003 -0.013
LAM-ARM2 — — — — — — -0.014 -0.020
MonoXGB — — — — — — — -0.002
XGB — — — — — — — —

Table 1: Point estimate for difference in AUC scores between classi-
fiers. Negative values mean column model is better than row model.
Bold values indicate statistical significance.

its logistic counterpart, ARM1. Nonetheless they are in the
same connected component of the CD graph indicating a very
similar level of proficiency. The AUC performance of LAM-
ARM2 can be separated from the performance of ARM2. In
this instance we hypothesise that this is happening due to lin-
earisation being applied in two layers as opposed to just one,
allowing errors to accumulate. In terms of absolute numerical
difference in AUC performance, linearisation incurs a very
small penalty, as shown in Table 1. The AUC penalties (point
estimate) for linearising NNLR, ARM1 and ARM2 are 0.000,
0.003 and 0.003 respectively across the datasets.

Results for Calibration. Inspecting the CD diagrams for the
ECE and MCE calibration metrics in Figure 3, we see there is
a penalty incurred on model calibration for linearising. Indeed
for both metrics, only the linearisation of NNLR models gives
a penalty in calibration that cannot be distinguished from the
logistic model with statistical significance. However, we note

the numerical difference across the datasets is small,being of
order ∼0.005 for ECE and ∼0.03 for MCE. We believe this
discrepancy in calibration is likely due to “model certainty”
evinced by the linearised models, namely output values lying
in {0, 1}. Notably, the LC datasets get a very large fraction
of predictions with certainty (∼80%) using LAM-ARM1 and
LAM-ARM2 models. The MCE ranks are all fairly close to
one another, meaning all of the classifiers are more closely
matched on this metric as compared with AUC and ECE.

4 User Survey
The motivating example in Section 2.1 suggests that linearised
models will be easier to interpret and reason about by users as
opposed to logistic models. To substantiate this, we conduct a
user study where the aim is to ascertain which class of models
is more interpretable: logistic models or LAMs. Our proxy for
interpretability is how capable users are at carrying out basic
reasoning tasks about the models’ outputs, given the model co-
efficients. This falls within the paradigm of Human-Grounded
Evaluation [Doshi-Velez and Kim, 2017], where empirically
measured human performance on a simplified task serves as
a proxy for explanation quality. Using human simulation of
model outputs as a proxy for model interpretability is a similar
strategy to that used in the work by [Poursabzi-Sangdeh et al.,
2021].

4.1 Setup
The study is structured as a questionnaire, wherein participants
are shown a small LR model alongside its linearised counter-
part and are asked to predict how the output of each model
will change in both direction and magnitude from some initial
(input, output) pairs. Participants are shown several instanti-
ations, which we call scenarios. More formally, a scenario
consists of the following elements:

• A tuple of model coefficients (A0, A1, A2).
• A tuple of model coefficients (B0, B1, B2).
• An input to the models x := (x1, x2)
• The result of applying models A and B to x, ŷA(x) ∈
[0, 1] and ŷB(x) ∈ [0, 1].

• A modified input to the models x′ = x + δem, where
m ∈ {1, 2}. Both x′ and δ ∈ R are shown to participants.
The feature m being modified is also highlighted.

Crucially, participants are given no indication as to what kind
of model the coefficients represent. This choice was made
so as to not prime participants with any expectation of the
models’ behaviour [Natesan et al., 2016]. Nor are participants
led to believe the models are related to one another. In fact,
for all scenarios Model A was the linearisation of Model B.
Model B is the LR model ŷB(x) = σ(B0 +B1x1 +B2x2),
with the Model A coefficients computed using Definition 2.2.
Upon being shown a particular scenario a user is directed to
carry out the following tasks:
Direction Task. For both models A and B give

the change of direction in model output,
that is, compute sign(ŷA(x

′) − ŷA(x)) and
sign(ŷB(x

′)− ŷB(x)). The options given to participants
are {“OUTPUT INCREASES”, “OUTPUT DECREASES”}.
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Figure 4: Summary of responses to User Survey comparing interpretability of LR models against LAM-LR. Users predict the change in
direction of model output correctly at a slightly higher rate for linearised models (left). When users are asked about the magnitude of this
change, users fare overwhelmingly better using LAM-LR as opposed to LR (center). When asked about which model they found easiest to use
(right), the majority of users said neither model, with slightly fewer opting for LAM-LR and only one for LR.

Magnitude Task. For both models A and B give the mag-
nitude of the change in model output, that is, com-
pute |ŷA(x′)− ŷA(x)| and |ŷB(x′)− ŷB(x)|. The op-
tions given to participants are {≈ 0.05,≈ 0.1,≈ 0.2,≈
0.3, “DON’T KNOW”}.

Respondents are shown six scenarios, not including three
training scenarios shown at the beginning of the survey. The
training scenarios show the same input x with progressively
increasing (and decreasing) inputs x+ δuem such that |δ1| <
|δ2| < · · · along with the corresponding outputs, so that the
user can learn the behaviour of each model class. The six
test scenarios were designed to be balanced, in the sense that
positive and negative changes were included as well as positive
and negative values for the xm, (B0, B1, B2), so as to not
skew the results. The scenarios were randomly shuffled three
times and each permutation assigned to a different subgroup
of participants at random. As a final task after all scenarios
are presented to study participants, we query the following.
Preference Task. This is a question asked upon

completion of the survey about which class of
model was easiest to use. The choices are:
{“MODEL A”, “MODEL B”, “NEITHER”}.

The survey was sent to 101 possible respondents via the Sur-
veyMonkey platform [Inc., 2022], who are AI researchers and
practitioners in the authors’ firm. Participation was anony-
mous and on a voluntary basis. There were 46 respondents in
total, from which 36 successfully completed the training sce-
narios and gave answers to more than 35% of scenarios. This
was the data that was analysed. Despite the small number of
participants, the design of the experiment, providing multiple
scenarios per-respondent, meant that we can still report results
with statistical significance.

4.2 Results and Analysis
We summarise the findings of the User Survey in Figure 4. In
the Direction Task we see that a slightly greater proportion
of correct answers are given for the LAM as opposed to the
logistic model. In the Magnitude Task we see that the logistic
models received a response of “DON’T KNOW” most often,
followed by an incorrect response and a small number of
correct responses. The linearised counterparts of these models
yielded mostly correct answers, followed by “DON’T KNOW”,

then incorrect answers. In the Preference Task, the majority of
users declared neither model easiest to use, followed closely
by the LAM. Only one respondent declared logistic models
easiest to use.
Statistical Analysis. The Direction and Magnitude Tasks
are instances of a clustered matched-pair binary data exper-
iment, with the matched pairs being the logistic model and
corresponding LAM within each scenario, the binary data
comprising a correct vs not correct response to an individual
task on each scenario and each cluster corresponding to an
individual respondent’s answers to multiple scenarios. We
use the statistical test for non-inferiority in clustered matched-
pair binary data of [Yang et al., 2012], which accounts for
within cluster correlated responses. In our setting this corre-
sponds to an individual’s responses possibly being correlated
with one another, but independent from the responses of other
individuals. Suppose that plog is the success probability of
a respondent for a given task on a logistic model and pLAM
the corresponding success probability for the linearised ver-
sion. The true difference between the two classes of model
is δ = pLAM − plog. Choose a small non-inferiority margin2

δ0 > 0. Then the hypothesis test we are conducting is

H0 : pLAM − plog ≤ δ0; vs H1 : pLAM − plog > δ0.

Yang et al.’s ZMO test statistic asymptotically follows a normal
distribution assuming the null hypothesis H0. For the Direc-
tion Task we observe ZMO = 2.822 corresponding to a p-value
of 0.0024, which is significant at the α = 0.05 level. More-
over, the 95% confidence interval for the difference in success
rates between LAMs and logistic models was δ ∈ (0.03, 0.16).
This small value of the performance difference in the Direction
Task is expected, as for both logistic models and LAMs we
can easily inspect the signs of the model coeficients to get the
directions, a strategy which many respondents guessed from
the training scenarios. For the Magnitude Task we observe
ZMO = 4.55 corresponding to a p-value of 2.72×10−6, which
is significant at the α = 0.05 level. The 95% confidence in-
terval for the difference in success rates between LAMs and
logistic models was δ ∈ (0.23, 0.50), a significant gap. We
attribute this gap to inherent non-interpretability of reasoning
in log-odds space vs reasoning directly in probabilities.

2We choose δ0 = 0.001
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For the Preference Task, the data correspond to matched
pairs, each pair belonging to one participant and corresponding
to a preference of logistic models vs LAM models, that is, pos-
sible responses are {A ≺ B,A ≻ B,A ∼ B}, with Model A
corresponding to LAM and Model B to logistic. As there is no
numerical or ranked comparison, the usual appropriate statisti-
cal test is the Sign Test [Dixon and Mood, 1946]. Given there
are many ties A ∼ B, we use the Trinomial Test of [Bian et al.,
2011], specially developed for this regime. Let pA denote the
probability a randomly chosen participant prefers LAMs to lo-
gistic models and let pB denote the converse. Moreover, p0 is
the probability neither is preferred. Then our null hypothesis is
H0 : pA = pB and alternative is H1 : pA > pB . Let NA, NB

and N0 be the random variables denoting the observed counts
corresponding to Model A preferred, Model B preferred and
neither respectively, with N := NA +NB +N0. Assuming
H0, the test statistic Nd = NA − NB has critical value at
significance α = 0.05 of C0.05 = 6, which is exceeded in
our data with nd = 12, corresponding to a p-value of 0.0009,
which is statistically significant. This supports there being a
user preference for LAMs over logistic models, although the
impact of this is somewhat dampened by the comparatively
large number of responses preferring neither.
Findings. We interpret these findings as follows: as mea-
sured by performance in basic reasoning tasks about model
behaviour, logistic models are less interpretable than their
linearised counterparts. This difference is more pronounced
when it comes to reasoning about actual numerical model
outputs in response to varying input variables as opposed to
reasoning just about the general direction of change. Interest-
ingly, in spite of the gulf in respondents’ performance between
the LAMs and logistic models this difference is not necessarily
felt strongly by the respondents themselves, a large number of
whom stated that neither class of models was easier to reason
about. In this study, consumers of LAM explanations were
correctly interpreting them without even knowing what the
underlying model was, but were not generally confident in
their interpretations. For logistic models, participants did not
correctly interpret the explanations and did not declare them
easy to use, in spite of their preexisting modelling expertise.

5 Conclusion
This work introduces techniques for improving the inter-
pretability characteristics of existing models while incurring
only very small penalties in classification performance. For
an additive logistic model such as ARM, one can use our lin-
earisation scheme (LAM) with the model and incur only a
very small reduction in ROC-AUC and a small increase in
calibration error. Via the User Study, we showed that when
participants are required to simulate the output of a model,
that is, predict its behaviour, their performance was far better
with linearised models than their logistic counterparts.
Lessons Learned. In this work we closely examined a com-
mon tacit assumption within the XAI literature, that there is
no reduction in interpretability of GAMs when moving from
regression to classification via a non-linear link function (here,
the logistic function). We showed that this assumption in fact
does not hold in general, with the commonly used explanation

method of sharing model weights or shape functions proving
to be misleading to human respondents. Our LAM construc-
tion is shown to mostly overcome this issue while largely
preserving an underlying model’s behaviour. The implication
here is that when providing model coefficients as explanations,
it may be worth paying a small price in performance by lin-
earising a trained logistic model to ensure explanations are
correctly understood.
Limitations and Future Work. With this work we must
take the following into consideration.

• Model Certainty. For a LAM ŷLAM induced by a logistic
model ŷ, inputs x such that ŷ(x) ̸∈ [0.07, 0.93] corre-
spond to LAM outputs ŷLAM(x) ∈ {0, 1}. Risk scores
of ≤ 7% and ≥ 93% correspond to confident predictions.
LAMs effectively round these risk scores to certainty. If
a difference in risk score between, say, 97% and 99.99%
is important, then using a LAM may not be appropriate.
Possible mitigations are: i. clip to the interval [ϵ, 1 − ϵ]
for some small ϵ > 0; or ii. increase α in the approxi-
mation to the sigmoid, thereby growing the set of model
inputs with output in (0, 1), while incurring a penalty in
approximation.

• Alternate Linearisation Schemes. One could consider
alternate methods of linearising as opposed to LAMs. As
an example, Average Marginal Effects (AME) [Scholbeck
et al., 2024; Bartus, 2005] are local model explanations
based on evaluating model prediction function derivatives.
The AME values could potentially be interpreted as coeffi-
cients of a clipped linear model, although they would lack
the theoretical guarantees afforded by LAM.

• User Study Scope. One could increase the scope of the
User Study in terms of tasks and information provided to
users, considering interpretation of the model coefficients
integrated as part of a downstream task, as opposed to
predicting model outputs being the tasks’ focus. A po-
tentially fruitful investigation is measuring the effect of
linearisation on interpretability of general shape functions
in GAMs, since LR models have linear shape functions.

6 Disclaimer
This paper was prepared for informational purposes by the
Artificial Intelligence Research group of JPMorgan Chase &
Co. and its affiliates (“JP Morgan”), and is not a product of
the Research Department of JP Morgan. JP Morgan makes
no representation and warranty whatsoever and disclaims all
liability, for the completeness, accuracy or reliability of the
information contained herein. This document is not intended
as investment research or investment advice, or a recommen-
dation, offer or solicitation for the purchase or sale of any
security, financial instrument, financial product or service, or
to be used in any way for evaluating the merits of participating
in any transaction, and shall not constitute a solicitation under
any jurisdiction or to any person, if such solicitation under
such jurisdiction or to such person would be unlawful.
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III and Aarti Singh, editors, Proceedings of the 37th Inter-
national Conference on Machine Learning, volume 119,
pages 9743–9753, 2020.

[von Hippel, 2015] Paul von Hippel. Linear vs. Logistic Prob-
ability Models: Which is Better, and When?, 2015.

[Wilcox, 2022] Rand R. Wilcox. Chapter 3 - Estimating Mea-
sures of Location and Scale. In Introduction to Robust
Estimation and Hypothesis Testing, pages 45–106. Aca-
demic Press, 5th edition, 2022.

[Wilcoxon, 1945] Frank Wilcoxon. Individual Comparisons
by Ranking Methods. Biometrics Bulletin, 1(6):80–83,
1945.

[Yang et al., 2012] Zhao Yang, Xuezheng Sun, and James W.
Hardin. Testing non-inferiority for clustered matched-pair
binary data in diagnostic medicine. Computational Statis-
tics & Data Analysis, 56(5):1301–1320, 2012.

[Yang et al., 2021] Zebin Yang, Aijun Zhang, and Agus Sud-
jianto. Enhancing Explainability of Neural Networks
Through Architecture Constraints. IEEE Transactions on
Neural Networks and Learning Systems, 32(6):2610–2621,
2021.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

375


	Introduction
	Logistic and Linear Probability Modelling
	Logistic Modelling and Interpretability
	Linearised Additive Models (LAMs)

	Performance Comparison
	Experimental Setup
	Performance Metrics

	User Survey
	Setup
	Results and Analysis

	Conclusion
	Disclaimer

