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Abstract
3D object detection plays an important role in au-
tonomous driving; however, its vulnerability to
backdoor attacks has become evident. By injecting
“triggers” to poison the training dataset, backdoor
attacks manipulate the detector’s prediction for in-
puts containing these triggers. Existing backdoor
attacks against 3D object detection primarily poi-
son 3D LiDAR signals, where large-sized 3D trig-
gers are injected to ensure their visibility within the
sparse 3D space, rendering them easy to detect and
impractical in real-world scenarios.
In this paper, we delve into the robustness of 3D
object detection, exploring a new backdoor attack
surface through 2D cameras. Given the prevalent
adoption of camera and LiDAR signal fusion for
high-fidelity 3D perception, we investigate the la-
tent potential of camera signals to disrupt the pro-
cess. Although the dense nature of camera sig-
nals enables the use of nearly imperceptible small-
sized triggers to mislead 2D object detection, real-
izing 2D-oriented backdoor attacks against 3D ob-
ject detection is non-trivial. The primary challenge
emerges from the fusion process that transforms
camera signals into a 3D space, compromising the
association with the 2D trigger to the target out-
put. To tackle this issue, we propose an innova-
tive 2D-oriented backdoor attack against LiDAR-
camera fusion methods for 3D object detection,
named BadFusion, for preserving trigger effective-
ness throughout the entire fusion process. The eval-
uation demonstrates the effectiveness of BadFu-
sion, achieving a significantly higher attack success
rate compared to existing 2D-oriented attacks.

1 Introduction
3D object detection has become a core component for many
state-of-the-art autonomous driving systems [Qian et al.,
2022]. By accurately recognizing and localizing objects like
vehicles, pedestrians, and cyclists, 3D object detection en-
hances the ability of driving systems to perceive and under-
stand surroundings, enabling them to make responsible de-
cisions. Despite the significant progress achieved by deep

neural networks in 3D object detection, it has been demon-
strated that neural network-based object detectors are suscep-
tible to backdoor attacks [Xiang et al., 2021; Li et al., 2021a;
Zhang et al., 2022]. Backdoor attackers contaminate the de-
tector’s training dataset by injecting “triggers,” which conse-
quently mislead predictions during inference. The prevalence
of backdoor attacks poses significant safety hazards, particu-
larly in safety-critical driving scenarios. 1

Existing backdoor attacks against 3D object detection
mainly inject triggers to LiDAR signals because the spatial
information provided by LiDAR offers critical 3D detection
evidence. However, due to the sparsity of LiDAR signals in
most commercialized LiDAR sensors, backdoor attacks re-
quire adding large-size triggers to the target vehicle to ensure
that the trigger information can be effectively captured. For
example, Zhang et al. [Zhang et al., 2022] used a cargo carrier
bag with a size of 1.1m×0.8m×0.5m or an exercise ball with
a radius of 0.4m as a trigger, which is mounted on the roof of
the target vehicle for backdoor attacks. Such large 3D triggers
can significantly change the vehicle’s shape and appearance
and thus be easily detected, making 3D backdoor attacks im-
practical to implement in real-world scenarios. Therefore, to
thoroughly investigate the robustness of 3D object detection,
in this paper, we intend to explore a more practical attack sur-
face through 2D camera signals.

Camera signals, in addition to LiDAR signals, have been
another prominent source of input for 3D object detection.
Compared to 3D spatial yet low-resolution signals from Li-
DAR, cameras capture high-resolution color features, yield-
ing robust fusion outcomes that significantly enhance the
quality of 3D perception [Wang et al., 2021; Yin et al., 2021;
Li et al., 2022]. However, the popularity of these multi-
modal systems leads to a new backdoor attack surface against
3D object detection through cameras. Due to the dense na-
ture of camera signals, attackers can add 2D triggers with a
small size into camera signals, making the attack nearly im-
perceptible and easy to deploy in practice. Such 2D-oriented
backdoor attacks have shown their effectiveness in many 2D
object detection tasks [Chan et al., 2022; Luo et al., 2023].
Nevertheless, realizing 2D-oriented backdoor attacks against
3D object detection is non-trivial. As illustrated in Figure 1,

1The extended version is available at
http://arxiv.org/abs/2405.03884.
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Figure 1: The pipeline of 2D (camera) and 3D (LiDAR) data fusion
for 3D object detection in autonomous driving.

state-of-the-art LiDAR and camera fusion systems first trans-
form camera signals to align with 2D LiDAR projection,
which are then fused with 3D LiDAR features to make de-
tection decisions in a 3D space. Although the transforma-
tion of camera signals bridges the gap between 2D and 3D
feature spaces, it compromises the association with the in-
jected 2D triggers to the target output. Due to the sparsity
of LiDAR points, the resulting transformed camera features
are also sparse, causing a limited number of trigger pixels to
be observed effectively, thereby substantially diminishing the
impact of 2D triggers in 3D object detection. Moreover, due
to the dynamicity of LiDAR signals, the applicable trigger
pixels after 2D to 3D transformation may not remain consis-
tent across different training samples, further weakening the
association between the 2D trigger and target labels. In view
of these, it is critical to delve into the potential threats posed
by 2D camera-oriented backdoor attacks in influencing 3D
object detection. In this paper, we introduce BadFusion, a
novel 2D-oriented backdoor attack targeting multi-modal 3D
object detection systems. BadFusion aims to insert backdoors
into the camera and LiDAR fusion-based 3D object detector
by only compromising camera inputs with 2D triggers. These
fusion-aware 2D triggers are designed to maintain trigger pat-
tern consistency across different camera signals while pre-
serving trigger density. BadFusion can be deployed in real-
world scenarios by placing a sticker (trigger) on a dense area
of a vehicle before driving. When a target vehicle equipped
with the poisoned model encounters this stickered vehicle,
the backdoor trigger is activated to mislead the target vehi-
cle’s 3D object detection. Moreover, BadFusion introduces
LiDAR-free attack strategies, predicting 2D LiDAR projec-
tions from camera signals, considering the inaccessibility of
synchronized LiDAR and camera data during inference. To
the best of our knowledge, this is the first effort in exam-
ining 2D-oriented backdoor attacks against fusion-based 3D
object detection. We intend to raise community awareness
of new backdoor threats in emerging multi-modal fusion sys-
tems. Our contributions to this paper are summarized below:

1. We investigate the existing 2D-oriented backdoor at-
tacks against LiDAR and camera fusion systems for 3D
object detection and show that existing attacks are inef-
fective in attacking fusion systems.

2. We propose a new 2D-oriented backdoor attack, named
BadFusion, which can effectively preserve the 2D back-
door patterns throughout the fusion process and eventu-
ally manipulate the 3D predictions.

3. We consider the unavailability of synchronous LiDAR
signals when compromising the camera inputs, where
a LiDAR-free attack approach is developed to generate
LiDAR projection based on camera observations.

4. We extensively evaluate BadFusion against state-of-the-
art LiDAR-camera fusion methods with two goals: re-
sizing the bounding boxes and disappearing the objects.
BadFusion successfully achieves the two attack goals
and outperforms existing 2D-oriented backdoor attacks
with a much higher Attack Success Rate (ASR).

2 Related Work
2.1 Backdoor Attacks
Backdoor attacks aim to inject malicious behavior into a tar-
get model and change the model’s prediction for the input
samples with the trigger pattern. One of the earliest back-
door attacks, called BadNets [Gu et al., 2017], was intro-
duced by Gu et al. This attack injected a simple image trigger
pattern into the training dataset, causing the model to pro-
duce misleading predictions for samples containing the trig-
ger pattern. Subsequent research has advanced backdoor at-
tacks with different objectives, such as stealthy attacks with
invisible triggers [Chen et al., 2017b; Li et al., 2021b], at-
tacks without manipulating labels (clean label attack) [Turner
et al., 2018], and attacks that are resistant to transfer learn-
ing [Yao et al., 2019; Wang et al., 2020]. Most backdoor at-
tacks focus on image tasks, such as image classification [Gu
et al., 2017] and 2D object detection [Chan et al., 2022;
Luo et al., 2023], that involve 2D triggers. Recently, it has
been discovered that backdoor attacks can also manipulate
3D detection prediction [Li et al., 2021a; Xiang et al., 2021;
Zhang et al., 2022]. However, these attacks rely on 3D Li-
DAR triggers, which are easily detectable and impractical to
implement in real-world scenarios. In our work, we present a
novel 2D-oriented backdoor attack that injects 2D triggers in
the training data while aiming to manipulate 3D prediction.

2.2 LiDAR-camera Fusion for 3D Object
Detection.

LiDAR-camera fusion has emerged as a promising solution
for 3D object detection. By combining complementary sig-
nals, the fusion model achieves state-of-the-art detection per-
formance. One of the key challenges of fusing LiDAR and
camera signals is how to align these two signals in the same
measurement. Given the advantages of spatial information
provided by LiDAR sensors, recent work mainly focuses on
aligning the camera features to LiDAR [Sindagi et al., 2019;
Wang et al., 2021; Yin et al., 2021; Li et al., 2022; Chen
et al., 2022]. For example, Sindagi et al. proposed MVX-
Net [Sindagi et al., 2019] that first projects LiDAR points
onto the image and then appends the camera features to Li-
DAR points with the same location index. Chen et al. [Chen
et al., 2022] leveraged the similar fusion method, by adding
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Figure 2: Comparison between existing 2D-oriented backdoor attacks and the proposed BadFusion. The first two columns show the camera
signal with triggers and the 2D projection of the LiDAR signal. After transforming camera signals to 2D LiDAR projection during fusion, the
triggers injected via existing 2D-oriented backdoor attacks become sparse and inconsistent (the third column), making triggers ineffective in
attacks. Hence, these attacks do not change the predictions of 3D bounding boxes (the fourth column). The proposed BadFusion, by injecting
dense and consistent triggers throughout the fusion process, successfully manipulates the detection and reduces the sizes of 3D bounding
boxes for vehicles.

camera features to the important LiDAR features only. The
importance of LiDAR points is determined by their proposed
Focals Conv operation. These fusion methods inherently
provide a strong defense against backdoor attacks, since the
backdoor triggers injected into camera signals become inef-
fective after the alignment in the fusion methods. However,
in our work, we reveal the vulnerability of LiDAR-camera
fusion using the proposed BadFusion attack.

3 2D-Oriented Backdoor Attacks
This paper explores the potential of 2D-oriented backdoor at-
tacks in influencing the fusion-based multi-modal 3D percep-
tion. This section first introduces the existing backdoor at-
tacks for 2D object detection and then presents the fusion-
based 3D object detection systems that involve both 2D and
3D inputs. Our threat model is finally elaborated.

3.1 Backdoor Attacks for 2D Object Detection
The mainstream backdoor attack research for object detection
centers on 2D perception. An attacker’s goal is to use prede-
fined 2D triggers to mislead the target model’s predictions.
During training, the attacker first poisons n samples of the
training dataset Dtrain = {xi,yi}Ni=1, where N is the num-
ber of all training samples, n ≪ N . Specifically, for a clean
sample (x,y), the poisoned input x′ can be given by

x′ = tr ⊙m+ x⊙ (1−m), (1)

where tr is the injected trigger; m is a binary mask, using 1
to represent the location of the trigger and 0 everywhere else;
⊙ denotes the element-wise product. Meanwhile, the target
label y′ (different from the original label y) is associated with
the poisoned input x′. The poisoned samples consist of the
backdoor datasetDback, which is mixed with the rest of clean
dataDclean to train the target model f . This produces a back-
doored model, which misclassifies any poisoned input to the

target label while not affecting the prediction of clean sam-
ples. The backdoor attack objective is formulated as

min
∑

(x′,y′)∈Dback

L (f(x′),y′) +
∑

(x,y)∈Dclean

L (f(x),y) , (2)

where the first and second terms calculate the loss for poi-
soned and clean samples, respectively. The above problem
considers a single modality object detection, which modifies
the 2D inputs to mislead 2D predictions, e.g.,, 2D bounding
boxes [Chan et al., 2022; Luo et al., 2023]. Instead, this paper
targets a multi-modal object detection system with both 2D
and 3D inputs for 3D perception, e.g., 3D bounding boxes.

3.2 Fusion Pipeline for 3D Object Detection
Research on fusing 2D and 3D inputs for 3D perception
falls into two categories. The first involves projecting 3D
inputs into 2D space, leading to significant geometric dis-
tortion, which hinders effectiveness in tasks like 3D object
detection [Chen et al., 2017a; Yang et al., 2018]. This pa-
per, therefore, focuses on the second approach, mapping
2D inputs to 3D space to enhance 3D signals with cam-
era inputs. This method of fusion, preserving essential ge-
ometric information, has shown promise in 3D object detec-
tion [Sindagi et al., 2019; Wang et al., 2021; Yin et al., 2021;
Li et al., 2022]. As illustrated in Figure 1, one key component
of this fusion is the transformation module to map the 2D sig-
nal into 3D measurements, which mainly includes three steps.
First, the 3D LiDAR signals are projected to a 2D space, such
as in the field-of-view (FoV), to derive 2D-LiDAR projec-
tion. Then, the 2D camera signals are processed by a camera
feature extractor, e.g., 2D CNN, to extract high-level features
with semantic information. Finally, the extracted camera fea-
tures are aligned with 2D LiDAR projection to obtain the
camera-based information for each LiDAR point. The trans-
formed camera features will be combined with the LiDAR
signals to perform 3D objection detection.
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3.3 Threat Model
This paper focuses on a fusion-based 3D object detection sys-
tem with both 2D camera and 3D LiDAR inputs. We consider
a practical but challenging attack setup: the objective of the
attacker is to launch backdoor attacks for fusion-based 3D
object detection by only compromising the camera inputs with
2D triggers. This attack is more feasible and imperceptible in
practice than creating 3D triggers that significantly change
the shape and appearance of vehicles. Besides, we consider
standard backdoor attack settings: 1) the attacker injects only
a small number of poisoned samples into the training dataset;
2) the attacker has no control of the model training process;
3) the attacker has no knowledge about the target model’s pa-
rameters or architecture.

4 Proposed BadFusion
In order to achieve the aforementioned attack objective, this
paper proposes BadFusion, an innovative 2D-oriented back-
door attack against fusion-based 3D object detection. Similar
to the attack procedure described in Section 3.1, BadFusion
first creates a poisoned dataset. Define the two modality data,
2D camera and 3D LiDAR signals, by xcamera and xlidar,
respectively. The poisoned 2D camera data x′

camera is cre-
ated by injecting the 2D trigger tr to xcamera based on (1).
Meanwhile, the target label y′ is associated with the poisoned
camera input x′

camera. After that, the poisoned camera in-
puts x′

camera, remaining clean camera inputs xcamera, and
LiDAR inputs xlidar are jointly used to train the backdoored
fusion model f . This optimization problem is formulated as

min
∑

(xlidar,x′
camera,y

′)∈Dback

L (f(xlidar,x
′
camera),y

′)

+
∑

(xlidar,xcamera,y)∈Dclean

L (f(xlidar,xcamera),y) . (3)

4.1 Design Challenges
Although existing backdoor attacks against single-modality
systems, i.e., camera-only inputs, can successfully mislead
2D object detection, BadFusion cannot directly follow their
attack procedure. As discussed in Section 3.2, the target fu-
sion model f in (3) needs to transform the poisoned camera
signal x′

camera from 2D to 3D measurement for data fusion
purposes. Unfortunately, this transformation breaks the as-
sociation with the injected 2D trigger to the target output.
Specifically, we identify the following two key challenges:

• Trigger sparsity. Due to the sparsity of 3D LiDAR
points, only a few camera pixels are transformed into
LiDAR features and subsequently used for object detec-
tion. Thus, most pixels of the 2D triggers are ignored in
the fusion-based object detection system, making it hard
to mislead the prediction of the target model.

• Trigger inconsistency. Due to the dynamicity of LiDAR
data, the same LiDAR point may correspond to different
pixels of the transformed camera signal. Thus, the ef-
fective trigger pixels become inconsistent among inputs
after transformation. Consequently, the effective trigger

pixels during inference are inconsistent with those dur-
ing training, weakening the association between trigger
patterns and target labels.

Figure 2 illustrates that existing backdoor attacks have sparse
and inconsistent triggers due to the transformation, thus inef-
fective in misleading the fusion model.

4.2 Fusion-Aware 2D Trigger Design
To address these challenges, BadFusion employs the fusion-
aware 2D triggers tailored for multi-modal fusion systems.
These triggers aim to preserve dense and consistent patterns
against the transformation module of the fusion pipeline. To
enhance trigger density, BadFusion intends to maximize the
effective pixels in 2D triggers after transformation. Recall
that the 2D camera trigger aligns with the 2D LiDAR pro-
jection to extract applicable camera features for multi-modal
fusion, as shown in Figure 1. Hence, we propose to iden-
tify the dense region of the 2D LiDAR projection for trigger
placement, where only contiguous dense regions are consid-
ered to make 2D triggers easy to implement in reality, ensur-
ing that the trigger pattern is retained after transforming into
3D features. Besides, we identify another challenge from the
availability of LiDAR signals. Although the LiDAR signals
of training samples are accessible to the attacker, LiDAR sig-
nals in the inference phase are usually unavailable. Therefore,
we introduce a LiDAR-free method for BadFusion by predict-
ing the dense regions of the 2D LiDAR projection, which is
detailed in Section 4.3.

Additionally, to enhance trigger consistency, BadFusion
intends to maximize the consistent trigger patterns among
different inputs. Conventional 2D backdoor attacks opti-
mize triggers with various colors of pixels towards different
goals, such as high attack success rate, clean data accuracy,
and high stealthiness [Liu et al., 2018; Zhao et al., 2020;
Zhong et al., 2020; Garg et al., 2020]. The impact of these
colorful pixels will be diminished in the fusion system after
the 2D to 3D transformation, as the effective pixels of an op-
timized trigger after the transformation vary among different
inputs. Thus, instead of generating complex and impercepti-
ble triggers, we introduce a simple yet effective approach to
create 2D triggers with uniform (almost) solid colors for all
pixels. These triggers with a uniform solid color remain con-
sistent after transformation across different inputs, as BadFu-
sion inserts the trigger at dense LiDAR locations to stabilize
the transformed trigger pattern.

4.3 LiDAR-Free Attack
In many real-world scenarios, the attacker does not have ac-
cess to the LiDAR signal that is synchronized with the cam-
era signal, especially during inference, i.e., when deploying
the designed 2D trigger to fool the backdoored fusion model.
Hence, the absence of LiDAR signals poses challenges to
identifying the densely populated regions of the 2D LiDAR
projection where the 2D trigger should be implemented. To
address this issue, we propose a LiDAR-free BadFusion ap-
proach by predicting dense regions of the 2D LiDAR projec-
tion based on camera signals. We convert this region pre-
diction task to an object detection task, where the object be-
comes the densest region in the 2D LiDAR projection. To
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Algorithm 1 Algorithm Procedure of BadFusion
Input: target 3D object detector f , trigger tr (designed with
uniform color), training dataset Dtrain, number of backdoor
training samples n, dense area detector of 2D LiDAR projec-
tion f2d−lidar.

1: // Training Phase
2: Sample n training samples from Dtrain for attacks. Rest

clean training samples are denoted as a clean dataset
Dclean

3: Initialize a backdoor dataset Dback = ∅
4: for i = 1 to n do
5: // Inject trigger to training data (xlidar,xcamera, y)
6: Calculate 2D LiDAR projection of xlidar and get the

bounding box (x, y, w, h) with most projection points
for each vehicle

7: Add the trigger tr to the bounding box in the camera
signal xcamera for each vehicle: xcamera[x− w

2 : x+
w
2 , y −

h
2 : y + h

2 ]← tr. The poisoned camera signal
is denoted as A(xcamera, tr)

8: Change the label to the target label y′
9: Add the backdoor data to the backdoor dataset

Dback ← Dback ∪ (xlidar,A(xcamera, tr), y
′)

10: end for
11: Train the fusion detector f on both the clean dataset
Dclean and the backdoor dataset Dback.

12: // Inference Phase
13: Predict bounding box of the most dense region

(x, y, w, h) using f2d−lidar and attach the trigger for at-
tacks.

achieve this, we create a training dataset containing camera
signals and the bounding boxes of the densest areas, denoted
by (x, y, w, h), where x and y are the center coordinates, and
w and h are the width and height of bounding box, respec-
tively. Here, we set w and h the same as the width and height
of the injected trigger tr. For each vehicle, we annotate a
bounding box that contains most points in 2D LiDAR projec-
tion. Then, we train a dense region detector f2d−lidar to pre-
dict the bounding boxes based on the Faster R-CNN frame-
work [Ren et al., 2015] with a VGG backbone. Our evalu-
ation results show that the detector can successfully identify
the dense areas and facilitate the backdoor attacks even with-
out knowing the LiDAR signals, which achieves comparable
performance to the LiDAR-aware attack.

4.4 Overall Algorithm Design
Algorithm 1 outlines the overall procedure of BadFusion. In
the training phase, the attacker first injects fusion-aware 2D
triggers into n samples of camera training inputs. These trig-
gers are placed at the densest region of the corresponding 2D
LiDAR projection with a uniform solid color. Next, both the
clean and backdoor datasets are used to train the target fusion-
based 3D object detector f . Once the training is complete, to
mislead the target model in the inference phase, the attacker
attaches the trigger to vehicles based on the position predicted
by the dense region detector f2d−lidar. Eventually, BadFu-
sion will mislead the prediction of the target detection f to

predict vehicles with the designed trigger.

5 Evaluation
In this section, we first detail our experimental framework
(dataset, implementation & training details, evaluation met-
rics) and then present the evaluation results of the proposed
BadFusion. We further demonstrate the effectiveness of Bad-
Fusion against mainly Point-line Camera-to-LiDAR fusion
methods in 3D object detection and also benchmark our ap-
proach against three state-of-the-art backdoor detection meth-
ods. Lastly, we conduct an ablation study to elucidate the
internal mechanics of the BadFusion.

5.1 Evaluation Settings
Dataset. We use the KITTI dataset [Geiger et al., 2013]
in the evaluation. The dataset collects real traffic environ-
ments from Europe Street for 3D detection tasks, comprising
7, 481 labeled training frames and 7, 518 unlabeled test sam-
ples. Since the ground-truth of the test data is unavailable,
we split the training data into a train set and a validation set
with 3, 712 and 3, 769 samples, respectively, following the
train/valid split process in previous work [Chen et al., 2016].
To conduct data poisoning on the train set, we select cars cat-
egorized under easy and medium difficulty from the KITTI
dataset. For evaluation, we focused on cars labeled as easy
difficulty in the validation set, which can be accurately pre-
dicted by the clean model.

LiDAR-camera fusion methods. In this work, we evaluate
backdoor attacks against widely used LiDAR-camera fusion
methods. In our paper, we report the evaluation results on
MVX-Net [Sindagi et al., 2019], Focals Conv-F [Chen et al.,
2022], and EPNet [Huang et al., 2020] fusion models. To
train the fusion model, we adopt common data augmentation
techniques, including resizing, rotation, scaling, translation,
and flip2. We use FocalLoss [Lin et al., 2017] for classifi-
cation and SmoothL1Loss [Huber, 1992] for bounding box
regression, respectively. The fusion models are trained us-
ing an AdamW optimizer with a learning rate of 0.002 and a
weight decay parameter of 0.01 for 70 epochs.

Attack goals. To manipulate the prediction of vehicles (Car
class in the KITTI dataset), we consider two attack goals. 1)
Resizing attack: the attacker aims to reduce the sizes of target
bounding boxes to mislead the prediction as a smaller vehicle,
2) Disappear attack: the attacker aims to make the vehicle dis-
appear from detection. These attacks pose a significant threat
to autonomous driving systems. Note that the existing work
achieves disappear attacks by removing bounding boxes from
the labels. However, removing bounding boxes is ineffective
for optimizing the poisoned model, as the empty bounding
boxes are not presented in the labels and are not optimized
in the optimization objective (Eq. 3). To achieve disappear
attacks, we relocate the center coordinates of the bounding
boxes in the poisoned data and make them closer or farther
from the target vehicle, denoted as disappear attack (closer)

2Data augmentation techniques are implemented by Resize,
GlobalRotScaleTrans, RandomFlip3D using mmdetection3d: https:
//github.com/open-mmlab/mmdetection3d
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(a) Clean model. (b) Resizing attack. (c) Disappear attack.

Figure 3: Examples of different attack goals in BadFusion. Fig (a) shows the predictions of a clean model without backdoor triggers. Fig (b)
shows the predictions of a resizing attack, where the attack reduces the size of the predicted bounding box. Fig (c) shows the predictions of a
disappear attack, where the attack removes the predicted bounding box of a vehicle from the prediction for disappearing the vehicle.

and disappear attack (farther). We use the relocated bounding
boxes as the label in the poisoned training data. The relo-
cation breaks the connection between input signals and the
bounding box labels. We find that our proposed two attack
methods can effectively remove the bounding box prediction,
making the vehicle disappear from predictions. Figure 3 illus-
trates an example of the two goals of attacks. In the section,
we report most evaluation results based on the resizing at-
tacks. The effectiveness of the disappear attacks is presented
in the ablation study (Section 5.3).
Baseline attacks and attack setup. We compare the pro-
posed BadFusion with three state-of-art 2D-oriented back-
door attacks, including OptimizedTrigger [Liu et al., 2018],
BadDet [Chan et al., 2022] and UntarOD [Luo et al., 2023].
BadDet and UntarOD are targeted against 2D object detec-
tion tasks and OptimizedTrigger is a general backdoor at-
tack with optimized triggers. We implement UntarOD based
on their open-source code3 and implement OptimizedTrigger
and BadDet following their papers. The OptimizedTrigger at-
tack, originally designed for the image classification problem,
has been adapted to align with the object detection settings
of the MVX-Net model. In this case, we first optimized the
trigger and performed poisoning accordingly. To make a fair
comparison, for all attacks, we poison 15% training data us-
ing a trigger with the size of 15× 15 and maintain consistent
training or experimental settings.
Evaluation metrics. We evaluate the effectiveness of the
backdoor attacks based on three well-established metrics.
First, Clean data mAP refers to the mean average precision
calculated on clean samples without backdoor triggers when
predicted by the poisoned model. Typically, an attacker’s
goal is to design a poisoned model that performs well on be-
nign samples, i.e., achieving a high Clean data mAP. Sec-
ond, Attack Success Rate (ASR) represents the proportion of
attacked samples that successfully achieve the backdoor ob-
jective based on different types of attacks when influenced by
the poisoned model. Specifically, for resizing attacks, we de-
fine ASR as the ratio of bounding box sizes decreased when
a trigger is applied. For disappear attacks, we define ASR as
the ratio of the bounding box disappearing when a trigger is
applied. Third, poisoned data mAP, refers to the mean aver-
age precision calculated on poisoned samples when predicted

3https://github.com/Chengxiao-Luo/
Untargeted-Backdoor-Attack-against-Object-Detection

by the poisoned model. An effective backdoor attack should
achieve high clean data mAP, high ASR, and low poisoned
data mAP.

5.2 Main Evaluation Results
Table 1 compares our proposed BadFusion attack with exist-
ing backdoor attacks. The results show that existing backdoor
attacks (OptimizedTrigger, BadDet, UntarOD) demonstrate
low Attack Success Rates (ASR) and low or unchanged Poi-
soned mAP, indicating their ineffectiveness in misleading the
MVX-Net, Focals Conv-F and EPNet fusion methods. This is
mainly due to the sparse and inconsistent trigger patterns dur-
ing the fusion process as discussed in Section 4.1. Notably,
for EPNet, OptimizedTrigger and UntarOD have adapted to
learn backdoor behavior due to EPNet’s integration of con-
tinuous image feature segmentation, unlike the sparse image
features in MVX-Net or Focals Conv-F, which results in a
weaker inherent defense against backdoor attacks. In con-
trast, Our proposed BadFusion attack addresses the problem
and successfully performs backdoor attacks achieving high
ASRs of 95.28%, 90.54% and 94.30%, respectively. In the
meanwhile, BadFusion can still provide accurate predictions
on the clean samples without triggers and achieves much
higher clean data mAP compared with the baseline attacks.

Additionally, in BadFusion, we assume the attacker has
no information about LiDAR signals and trains a model to
predict the dense LiDAR region. To investigate the effec-
tiveness of the dense region detector, we compare BadFusion
with a LiDAR-ware version of BadFusion, where we assume
LiDAR signals are accessible and the dense region can be di-
rectly calculated. We find that although LiDAR-ware BadFu-
sion achieves a better attack performance. However, the gap
between BadFusion and LiDAR-ware BadFusion is marginal,
which suggests the effectiveness of the dense region detector.
Please see the Appendix for more discussion on experimen-
tal results and possible cases where the proposed BadFusion
attack might fail.

5.3 Ablation Study
Effectiveness of BadFusion with different attack goals.
We first investigate the attack performance with two goals
in BadFusion: resizing bounding boxes and disappearing ob-
jects. In disappearing attack, we use two poisoning strategies:
moving the center coordinates of bounding boxes farther or
closer in the poisoned data. As shown in Table 2, all the at-
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Fusion Methods Backdoor attack Clean data mAP (%) ↑ Poisoned data mAP (%) ↓ ASR (%) ↑

MVX-Net

Clean model 93.75 - -
OptimizedTrigger 18.90 21.12 49.49

BadDet 36.14 48.21 39.32
UntarOD 64.98 37.57 46.74

(LiDAR-aware) BadFusion 88.65 1.61 96.74
BadFusion 88.65 3.05 95.28

Focals Conv-F

Clean model 94.83 - -
OptimizedTrigger 94.74 95.02 5.45

BadDet 96.36 94.56 6.91
UntarOD 93.76 93.23 7.89

(LiDAR-aware) BadFusion 95.13 23.11 91.72
BadFusion 95.13 28.00 90.54

EPNet

Clean model 94.38 - -
OptimizedTrigger 95.41 6.87 95.45

BadDet 94.54 93.76 5.93
UntarOD 95.26 12.90 92.03

(LiDAR-aware) BadFusion 95.65 6.45 94.30
BadFusion 95.65 8.30 92.44

Table 1: Comparison between existing backdoor attacks and proposed BadFusion against MVX-Net, Focals Conv-F, and EPNet fusion
methods. We perform resizing attacks to reduce the bounding boxes of predicted vehicles. Clean model shows the performance of the fusion
model without backdoor attacks. BadFusion attacks achieve comparable results with LiDAR-aware BadFusion attacks, where the LiDAR
information is accessible to the attacker.

Attack goal Clean data
mAP (%) ↑

Poisoned data
mAP (%) ↓ ASR (%) ↑

Resizing 88.65 3.05 95.28
Disappear (farther) 87.35 6.95 89.93
Disappear (closer) 92.86 19.03 94.74

Table 2: Performance of BadFusion with different attack goals
against MVX-Net fusion method. BadFusion is effective in both
resizing the bounding box prediction and disappearing the objects.

tacks achieve good performance with high ASR and low poi-
soned data mAP. Additionally, we find that, compared with
disappear attack (farther), moving bounding boxes closer is
more effective for disappearing attacks.
Effectiveness of BadFusion with different trigger pat-
terns. In the evaluation, we consider two trigger patterns.
1) uniform solid pattern: using a solid color for all pixels in
the trigger, and 2) almost solid pattern: using a solid color for
most pixels while only a few pixels are applied with other col-
ors. The almost solid pattern applies to many real-world sce-
narios, e.g., emojis or decals used in vehicle stickers, which
makes the trigger more stealthy. Two patterns used in the
evaluation are shown in the Appendix. As shown in Table 3,
using almost solid pattern, BadFusion can still achieve an
ASR of 79.51%. This indicates the severe security risks of
BadFusion in the real world.
Impact of poisoning rate and trigger size. We investigate
the impact of poisoning rate and trigger size. In most ex-
periments, we set the poisoning rate as 15% and trigger size
as 15 × 15. Here, we consider the poisoning rate of 20%
and trigger size as 20 × 20. We report the results in Table 4.
We find that increasing trigger size and poisoning rate is not
necessary for improving attack performance. For example,

Trigger pattern Clean data
mAP (%) ↑

Poisoned data
mAP (%) ↓ ASR (%) ↑

Uniform solid 88.65 3.05 95.28
Almost solid 90.12 27.83 79.51

Table 3: Performance of BadFusion using different trigger patterns
against MVX-Net fusion method.

Trigger size Poisoning
rate (%)

Clean data
mAP (%) ↑

Poisoned data
mAP (%) ↓ ASR (%) ↑

15x15 15 88.65 3.05 95.28
15x15 20 84.25 5.69 91.52
20x20 15 93.17 45.34 62.44
20x20 20 89.09 47.23 84.03

Table 4: Performance of BadFusion using different poisoning rates
and trigger sizes against MVX-Net fusion method.

a 20% poisoning rate proves optimal for a poisoned model
with a 20× 20 trigger size when compared to their respective
counterparts with 20% and 15% poisoning rates. However,
a 15% poisoning rate is more suitable for a poisoned model
with a 15×15 trigger size. We think this is mainly due to that
increasing the trigger size and poisoning rate may also in-
crease the inconsistency of trigger patterns among poisoned
data, which further amplifies the challenge of backdoor at-
tacks discussed in Section 4.1. More details are discussed in
the Appendix.

Robustness analysis. The primary focus of our paper is on
the attack aspect of fusion-based 3D object detection, and we
also conduct a robustness analysis of BadFusion to investi-
gate whether the backdoor will be removed after applying de-
fenses. To the best of our knowledge, no existing defenses are
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specifically designed to counter the BadFusion attack. We
evaluate BadFusion’s robustness against three prevalent de-
fense strategies: 1) Input Noising [Xu et al., 2017], 2) JPEG
Compression [Dziugaite et al., 2016], and 3) Regularization
[Shafieinejad et al., 2021]. The results demonstrate BadFu-
sion’s robustness, further emphasizing the vulnerability of
fusion-based 3D object detection and the importance of our
research. Additional details are discussed in the Appendix.

6 Conclusion
This paper presents the first analysis of 2D-oriented back-
door attacks against LiDAR-camera fusion for 3D object de-
tection. By analyzing the existing 2D-oriented backdoor at-
tacks, we find that these attacks are ineffective against fu-
sion models due to the sparsity and inconsistency of back-
door triggers introduced during the fusion process. To ad-
dress these challenges, we propose BadFusion, an innovative
fusion-aware backdoor attack against 3D object detection. By
maximizing both effective trigger pixels and consistent trig-
ger patterns among different inputs, BadFusion successfully
performs backdoor attacks against state-of-the-art LiDAR-
camera fusion methods and realizes two attack goals: resiz-
ing the bounding boxes and disappearing the objects. Com-
pared with existing 2D-oriented backdoor attacks, BadFusion
achieves a much higher attack success rate and low Poisoned
data mAP. We hope our analysis will enhance safety aware-
ness for autonomous driving and promote further research in
this field.
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