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Abstract
The emergence of AIGC has brought attention
to the issue of generating realistic deceptive con-
tent. While AIGC has the potential to revolu-
tionize content creation, it also facilitates crimi-
nal activities. Specifically, the manipulation of
speech has been exploited in tele-fraud and finan-
cial fraud schemes, posing a significant threat to so-
cietal security. Current deep learning-based meth-
ods for detecting forged speech extract mixed fea-
tures from the original speech, which often con-
tain redundant information. Moreover, these meth-
ods fail to consider the distinct characteristics of
human voice-specific features and the diversity of
background environmental sounds. This paper in-
troduces a framework called Discriminative fEature
dEcoupling enhanceMent (DEEM) for detecting
speech forgery. Initially, the framework decouples
the original speech into human voice features and
background sound features. Subsequently, DEEM
enhances voice-specific features through temporal
dimension aggregation and improves continuity-
related features in the background sound map via
spectral-dimension aggregation. By employing the
decoupling enhancement features, extensive exper-
iments demonstrate that DEEM achieves an accu-
racy improvement of over 5% on FoR dataset com-
pared to the state-of-the-art methods.

1 Introduction
With the rapid development of Artificial Intelligence in Gen-
erative Content (AIGC) techniques, the generated content has
attained a remarkably realistic effect, capable of deceiving
even human observers. AIGC is employed to generate tex-
tual, visual, auditory, and audiovisual content, thereby en-
hancing the efficiency of multimedia designers, facilitating
educational purposes, and potentially revolutionizing the field
of content generation.

Unfortunately, AIGC also presents opportunities for crim-
inal exploitation. Unethical individuals harness the capabili-
ties of AIGC to engage in criminal activities, including tele-
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fraud, financial fraud, and the dissemination of rumors. These
actions pose significant threats to societal well-being and the
overall fabric of humanity.

Numerous researchers are actively devoted to the advance-
ment of forgery detection techniques, with a predominant em-
phasis on image [Agarwal and Verma, 2020; Koptyra and
Ogiela, 2020; Guillaro et al., 2023] and video [Afchar et
al., 2018; Zheng et al., 2021] forgery detection. Compara-
tively, research on speech forgery detection remains scarce.
Nonetheless, it is essential to recognize the significance of
speed forgery detection techniques, particularly in combat-
ing tele-fraud and financial fraud, wherein solely synthetic
speech is employed for criminal activities.

The existing methods for speech forgery detection can
be categorized into two main groups: hand-crafted feature-
based [Wu et al., 2018; Alzantot et al., 2019] and deep
learning-based approaches [Tak et al., 2021b; Tak et al.,
2021a]. The former involves extracting various speech fea-
tures, such as cqtspec, logspec, and LFCC and then employ-
ing traditional classifiers to identify forgery features. How-
ever, the hand-crafted features designed by humans often fail
to capture certain discriminative features, resulting in poor
identification performance. On the other hand, the latter ap-
proach utilizes the original waveform or its variations as in-
put and employs deep networks to extract critical discrimi-
native forgery features, guided by labeled data. Compared
to hand-crafted feature-based methods, deep learning-based
methods achieve superior performance by effectively extract-
ing supervised discriminative forgery features. Nevertheless,
mixed features extracted by deep models still tend to contain
redundant information for speech forgery detection purposes.

The speech typically consists of the prominent human
voice and the accompanying environmental sounds. As a re-
sult, there are two primary sources of counterfeiting: the fab-
rication of human voices and the manipulation of background
sounds. These factors lead to three categories of forged
speech: speech with counterfeit human voice and counterfeit
background sound, speech with counterfeit human voice and
authentic background sound, and speech with genuine human
voice and counterfeit background sound. Such forged speech
is typically created using either AI models or human-based
synthesis techniques. The synthesized methods encompass
speech fragment merging, waveform concatenation synthesis,
speech element editing, and others.
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Based on the aforementioned synthesis technique, it can
be observed that most forged speeches contain a significant
amount of genuine components, which can negatively af-
fect identification performance. For instance, when counter-
feit human voices are combined with authentic background
sounds, the features present in the authentic background
sound can interfere with the identification of the counterfeit
human voice feature.

Furthermore, human voices and background environmen-
tal sounds possess distinct characteristics. The former ex-
hibits specific traits such as rate, timbre, intonation, and tone,
which are vital for identifying the unique characteristics of a
specific individual. On the other hand, background environ-
mental sounds tend to be diverse and noisy. They may also in-
clude mixed voices from other individuals, further complicat-
ing the accurate identification of the prominent human voice.
Hence, the counterfeit identification of background environ-
mental sounds should focus on continuity and other relevant
factors.

In this paper, we propose a Discriminative fEature dEcou-
pling enhanceMent framework (DEEM) for speech forgery
detection, based on the distinct characteristics of promi-
nent human voices and background environmental sounds.
DEEM employs the swapping decoupling strategy to sepa-
rate the speech into two distinct feature maps: the human
voice feature map and the background sound feature map.
Subsequently, we apply temporal dimension aggregation on
the human voice feature map to augment the voice-specific
features, and spectral-dimension aggregation on the back-
ground sound feature map to enhance continuity-related fea-
tures. Furthermore, the enhanced feature vectors are inte-
grated into a fully-connected heterogeneous graph. To extract
forgery features for speech detection, we employ a widely
used heterogeneous graph attention network on the heteroge-
neous graph. The results of extensive experiments demon-
strate that DEEM, by combining temporal-aggregated human
voice features and spectral-aggregated background sound fea-
tures, achieves more than 5% accuracy improvement on FoR
dataset compared to SOTA methods.

Our contribution lies in decoupling speech into prominent
human voice features and background environmental sound
features using a swapping strategy. This decoupling effec-
tively minimizes the interference caused by redundant fea-
tures in speech forgery detection. Additionally, we introduce
temporal-dimension and spectral-dimension aggregations to
enhance the human voice-specific features and continuity-
related background features, respectively. Extensive exper-
iments demonstrate that the proposed framework, incorporat-
ing the decoupled and enhanced features, achieves state-of-
the-art performance.

2 Related Work
In this section, we present a concise survey of two techniques
that are highly relevant in the context of forgery audio detec-
tion and feature decoupling.

2.1 Forgery Audio Detection
Artificially generated deceptive speech, known as forged
speech, poses significant risks and threats. To mitigate

these risks and protect individuals’ interests, voice anti-
counterfeiting detection techniques have been developed to
provide digital security. The primary strategies employed in
speech forgery are speech synthesis (TTS), which generates
speech from text, and voice conversion (VC), which imitates
the target timbre to alter the sound of speech. These forgery
techniques are commonly exploited in voice fraud and spoof-
ing verification systems, thereby posing a significant threat to
information security.

Speech synthesis technology employs text analysis and
waveform generation to extract phoneme information and
generate speech waveforms. Traditional techniques for
speech synthesis include waveform concatenation meth-
ods such as PSOLA and unit selection systems based on
HMM [Bigorgne et al., 1993; Yoshimura, 2002]. Addition-
ally, parameter-based methods are used. However, the qual-
ity of synthesized speech has significantly improved with the
emergence of deep learning advancements, such as WaveNet
[Oord et al., 2016], Deep Voice [Arık et al., 2017], and
Tacotron [Wang et al., 2017]. Voice conversion, on the
other hand, aims to establish a mapping between the source
speech and the desired speech of the target speaker. This
process can be divided into two categories: parallel corpus-
based and non-parallel corpus-based methods. In paral-
lel corpus speech conversion, frame alignment and feature
mapping techniques, such as dynamic time warping (DTW)
[Helander et al., 2008], are employed. Statistical model-
ing methods, including Gaussian mixture models [Aihara
et al., 2013], are also commonly utilized. Non-parallel cor-
pus speech conversion poses greater complexity, incorporat-
ing techniques such as alignment based on nearest neighbor
search [Sun et al., 2016], as well as the application of neu-
ral networks for feature parameter mapping [Desai et al.,
2009]. Various vocoders are employed in speech synthe-
sis, including STRAIGHT [Kaneko and Kameoka, 2018],
WORLD [Morise et al., 2016], and WaveNet [Oord et al.,
2016]. These vocoders play a significant role in the genera-
tion of high-quality synthesized speech.

Existing deep learning-based methods have commonly
utilized mixed deep features for speech forgery detection.
[Alzantot et al., 2019] proposed a deep ResNet-based anti-
counterfeiting scheme that combines multiple features. [Li
et al., 2021] learned multi-scale features based on Res2Net
to enhance model generalization. [Wu et al., 2018] demon-
strated that LCNN is suitable for speech anti-counterfeiting
as it retains core information and strengthens feature learning.
The ASSERT system, introduced by [Lai et al., 2019], fuses
ResNet and SENet. [Li et al., 2021] further improved model
performance by integrating the squeeze-excitation module
into Res2Net. In addition, the Transformer model has been
applied and innovated in many fields [Chen et al., 2024], in-
cluding speech forgery detection [Zhang et al., 2021c]. Raw
audio is used as the input for end-to-end anti-spoofing mod-
els. [Tak et al., 2021b] utilized SincNet to process raw audio
and proposed an end-to-end anti-spoofing algorithm called
RawNet2. Furthermore, [Tak et al., 2021a] employed a graph
attention network to model different subbands and periods
and enhance the performance of the model. [Jung et al., 2022]
adopted the heterogeneous graph-based attention mechanism
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Figure 1: The Discriminative fEature dEcoupling enhanceMent (DEEM) framework for speech forgery detection. (a) The synthetic speeches
S̃h1b2 and S̃h2b1 guide the encoders Eh and Eb in decoupling the input synthetic speeches S̃h1b1 and S̃h2b2 into distinct human voice
features (F̃h1 and F̃h2 ) and background environment features (F̃b1 and F̃b2 ) using a swapping operation. (b) Self-supervised reconstruction
is employed between the decoded speech S̃′′

h1b1
/ S̃′′

h2b2
and the real speech S̃h1b1 / S̃h2b2 to decouple the input real speeches through a dual-

swapping operation. (c) By employing pretrained encoders Eh and Eb, the input speech S is decoupled into a human voice feature map Fh

and a background environment feature map Fb. Temporal- and spectral-dimension aggregations are subsequently applied to enhance human
voice-specific features and continuity-related background features, respectively. These enhanced feature vectors are then used to model a
fully connected heterogeneous speech graph Gst. Finally, the Heterogeneous Graph Attention Network is employed for identifying speech
forgery with the graph Gst as input.

for speech forgery detection through integrating frequency
domain and spectral features as input.

However, the commonly adopted mixed features extracted
by deep models often contain redundant information for
speech forgery detection.

2.2 Feature Decoupling

Speech decoupling is a common characteristic of synthetic
forged speech but remains rare in speech forgery detec-
tion. [Zhu et al., 2023] proposed a speech synthesis method
based on multi-factor decoupling, which decomposes speech
into multiple representations to obtain expressive synthesized
speech. [Yang et al., 2022a] utilized mutual information to
decouple four representations and enhance the decoupling
performance through adversarial learning. Feature decou-
pling is often implemented using autoencoders.There are also
related studies in other fields that use decoupling mecha-
nism to further improve model performance [Hu et al., 2023;
Yang et al., 2022b]. [Feng et al., 2018] proposed a dual-
swapping technique to decouple the image representation.
[Qian et al., 2020] employed three encoders to respectively
encode content, pitch, and rhythm information.

In this study, we employ speech feature decoupling for the
task of detecting speech forgery. By combining synthetic
speech samples with real speech samples, we apply fully-
and self-supervised mechanisms to separate human voice fea-
tures from background sound features to effectively mitigate
redundant interference in speech forgery detection.

3 Methodology

As mentioned previously, human voices and background en-
vironmental sounds possess distinct characteristics. The for-
mer exhibits specific traits such as volume, rate, timbre, in-
tonation, and tone, which are essential for identifying unique
characteristics. On the other hand, background environmen-
tal sounds tend to be diverse and noisy. Contrary to existing
methods that utilize mixed representations for speech forgery
detection, our approach aims to amplify these distinct char-
acteristics of human voices and background environmental
sounds to detect forged speech. To obtain decoupled hu-
man voice features and background environmental sound fea-
tures, we employ a swapping strategy, which involves fully
supervising a synthetic speech pair and self-supervising a
real speech pair, as outlined in Section 3.1. Subsequently,
temporal-dimension and spectral-dimension aggregations are
applied to enhance the human voice-specific features and
continuity-related background features. The Heterogeneous
Graph Attention Network is then employed to detect speech
forgery, utilizing the enhanced features in the form of a built
heterogeneous speech graph, as described in Section 3.2.

3.1 Discriminative Feature Decoupling

In this section, we employ complete supervision and self-
supervision techniques to disentangle the prominent human
voice feature and the background environmental sound fea-
ture in both synthetic speech and real speech, respectively.
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Synthetic Speech Guided Decoupling
Different from conventional feature decoupling frameworks
[Higgins et al., 2017; Feng et al., 2018], we propose a novel
approach where two separate encoders, denoted as Eh and
Eb, are designed to extract the human voice feature and the
background environmental sound feature, respectively. The
extracted features are then combined and used to generate
synthetic speech with a single decoder Dmix.

To supervise the independent learning of the two encoders
and the decoder in decoupling the human voice feature and
the background environmental sound feature, we first synthe-
size several speech samples (S̃h1b1 , S̃h2b2 , S̃h1b2 , S̃h2b1 ) by
combining human voices (h1 and h2) and background envi-
ronmental sounds (b1 and b2).

Using the synthetic speech samples, the input pairs (S̃h1b1 ,
S̃h2b2 ) are fed into the encoders Eh and Eb, respectively.
Through encoding, we obtain the human voice features and
background sound features [F̃h1

, F̃b1 ] and [F̃h2
, F̃b2 ]. As de-

picted in Figure 1(a), the background features are swapped,
yielding new features [F̃h1 , F̃b2 ] and [F̃h2 , F̃b1 ], which are
then inputted into the decoder Dmix to reconstruct S̃′

h1b2
and

S̃′
h2b1

. Consequently, the decoupling capability of Eh and Eb

is learned by minimizing the reconstruction loss L1 between
the decoded speeches (S̃′

h1b2
, S̃′

h2b1
) and the corresponding

synthetic speeches (S̃h1b2 , S̃h2b1 ) as follows:

L1 = ||S̃h1b2 − S̃
′

h1b2 ||
2 + ||S̃h2b1 − S̃

′

h2b1 ||
2,

S̃
′

h1b2 = Dmix([F̃h1
, F̃b2 ]), S̃

′

h2b1 = Dmix([F̃h2
, F̃b1 ]),

F̃h1 , F̃h2 = Eh(S̃h1b1 , S̃h2b2),

F̃b1 , F̃b2 = Eb(S̃h1h2
, S̃h2b2).

(1)

In this way, the strongly supervised information from the
synthetic speeches effectively guides the encoders Eh and Eb

towards acquiring the initial feature decoupling ability.

Self-supervised Real Speech Decoupling
The encoders Eh and Eb trained using synthetic speeches
exhibit poor generalization capability when applied to real
speeches. To address this issue, we introduce a self-
supervision technique using real speech data to enhance the
decoupling ability of the encoders Eh and Eb through a dual-
swapping operation, as depicted in Figure 1(b).

In the primary stage, real speech pairs (Sh1b1 , Sh2b2 ) gen-
erate a pair of hybrid outputs (S′

h1b1
, S′

h2b2
) by swapping the

background sound features Fb1 and Fb2 of the decoupled fea-
tures [Fh1

, Fb1 ] and [Fh2
, Fb2 ]. In the dual stage, the hybrid

outputs (S′
h1b1

, S′
h2b2

) are once again fed into the same en-
coders Eh and Eb to obtain decoupled features [F ′

h1
, F ′

b2
]

and [F ′
h2
, F ′

b1
]. Subsequently, we swap back the background

sound features F ′
b1

and F ′
b2

and decode the swapped features
[F ′

h1
, F ′

b1
] and [F ′

h2
, F ′

b2
] into S′′

h1b1
and S′′

h2b2
. As a result,

the supervised loss L2 between the decoded speeches (S′′
h1b1

and S′′
h2b2

) and the corresponding real speeches (Sh1b1 and
Sh2b2 ) is calculated as follows:

L2 = ||Sh1b1 − S′′
h1b1 ||

2 + ||Sh2b2 − S′′
h2b2 ||

2. (2)

The dual swap reconstruction minimization method em-
ployed in this paper offers a unique form of self-supervision.
Specifically, the swapping of background sound features back
and forth serves to promote the separability and modularity
of the resulting human voice and background sound features.
Consequently, this facilitates better decoupling ability for the
two encoders, Eh and Eb, on real speech samples.

During the training stage, the Synthetic Speech Guided De-
coupling and Self-supervised Real Speech Decoupling meth-
ods are integrated to train the entire framework, comprising
the two encoders, Eh and Eb, and the decoder, Dmix.

3.2 Enhanced Features Based Forgery Detection
Utilizing the decoupled feature Fh and Fb, the Discrimina-
tive Feature Enhancement module is designed to augment the
distinctive characteristics of both the human voice and back-
ground sounds. Subsequently, the Heterogeneous Graph At-
tention Network is employed to determine whether the input
speech S is forged.

Discriminative Feature Enhancement
As previously mentioned, human voices possess distinct char-
acteristics such as rate, timbre, intonation, and tone, which
are crucial for distinguishing the unique traits of specific indi-
viduals. These voice-specific features generally remain con-
sistent over time. Hence, we aggregate the human voice-
specific feature, denoted by Rh, by calculating the maximum
absolute value of Fh along the temporal dimension as fol-
lows:

Rh = maxt(abs(Fh)), (3)
where maxt() represents the calculation of the maximum
value along the temporal dimension.

In contrast to prominent human voices, background en-
vironmental sounds are typically diverse and noisy, lacking
fixed patterns or characteristics. Consequently, we employ
spectral-aggregation to combine the continuity-related back-
ground feature, represented by Rb, by calculating the maxi-
mum absolute value of Fb along the spectral dimension using
the following equation:

Rb = maxs(abs(Fb)), (4)

where maxs() denotes the calculation of the maximum value
along the spectral dimension.

Heterogeneous Attention Based Identification
Utilizing the aggregated features Rh and Rb, the fully-
connected graphs Gs and Gt are formed by connecting nodes
within the node groups {gks }Kk=1 and {gk′

t }K′

k′=1. The nodes
gks and gk

′

t are extracted from the voice-specific features Rh

and enhanced background feature Rb as follows:

gks = Rh[k], k ∈ {1, 2, ...,K},

gk
′

t = Rb[k
′], k′ ∈ {1, 2, ...,K ′},

(5)

where, K and K ′ denote the width of Rh and height of Rb,
respectively. Rh[k] and Rb[k

′] represent the k-th vector of Rh

along the width dimension and the k′-th vector of Rb along
the height dimension. Please refer to Figure 1(c) for an illus-
trative example.
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Method / Dataset Features FoR ASVspoof2019LA
ACC EER ACC Min-tDCF EER

LCNN [Wang and Yamagishi, 2021] cqtspec 84.32 % 14.24 % 91.22 % 0.1742 6.35 %
LCNN-Attention [Lavrentyeva et al., 2017] cqtspec 84.34 % 14.22 % 87.89 % 0.1781 6.76 %

LCNN-LSTM [Lavrentyeva et al., 2019] cqtspec 85.90 % 8.78 % 87.74 % 0.1135 6.23 %
LSTM [Zhang et al., 2021a] cqtspec 86.60 % 7.87 % 84.12 % 0.1271 7.16 %

Mesolnception [Szegedy et al., 2015] logspec 80.99 % 18.91 % 79.97 % 0.2386 10.02 %
MesoNet [Afchar et al., 2018] cqtspec 81.82 % 19.83 % 83.15 % 0.2192 7.42 %

ResNet18 [Zhang et al., 2021b] cqtspec 86.77 % 9.07 % 92.45 % 0.1403 6.55 %
Transformer [Zhang et al., 2021c] cqtspec 83.22 % 16.29 % 91.04 % 0.1291 7.50 %
CRNNSpoof [Chintha et al., 2020] raw waveform 85.55 % 14.12 % 78.21 % 0.3126 15.66 %

RawNet2 [Tak et al., 2021b] raw waveform 87.37 % 7.71 % 93.13 % 0.1322 4.35 %
RawGAT-ST [Tak et al., 2021a] raw waveform 89.81 % 7.21 % 94.07 % 0.0443 1.39 %

AASIST [Jung et al., 2022] raw waveform 86.56 % 12.54 % 95.18 % 0.0347 1.13 %
DEEM (Ours) raw waveform 95.27 % 4.19 % 96.22 % 0.0287 1.07 %

Table 1: Comparison experiment between the proposed DEEM and twelve existing methods on two widely-used datasets. ‘ACC’ and ‘EER’
denote the accuracy and equal error rate, respectively. Min-tDCF [Todisco et al., 2019] is a metric that reflects the rate at which real speech
samples are classified as forged samples. The best performance is indicated in bold.

Subsequently, the graphs Gs and Gt are merged to form the
heterogeneous speech graph Gst by connecting all the nodes
between the two graphs. Using Gst as input, a widely em-
ployed Heterogeneous Graph Attention Network is employed
to extract discernible features for speech forgery detection.
The well-known Cross-Entropy loss function is utilized to
supervise the learning process of the Heterogeneous Graph
Attention Network.

4 Experiments
In the experiment section, we begin by providing a con-
cise overview of the dataset, parameters, and settings. Sub-
sequently, we perform a comparative analysis between the
proposed DEEM method and several state-of-the-art (SOTA)
techniques. Furthermore, a comprehensive ablation study is
conducted on various components to validate the efficacy of
the proposed discriminative feature decoupling enhancement
framework for speech forgery detection.

4.1 Datasets
Synthetic Speech Dataset. In this study, an auxiliary syn-
thetic dataset is employed to achieve the decoupling of speech
features. Specifically, we utilize publicly available datasets,
namely LibriSpeech ASR [Panayotov et al., 2015] and Non-
speech [Hu and Wang, 2010], to generate synthetic speech
samples consisting of foreground human voices and back-
ground environmental sounds. These speech samples are ac-
companied by meticulous annotations, facilitating the decou-
pling of human voice feature and background sound feature
during the training process.

• The LibriSpeech ASR corpus is a substantial and
meticulously curated English speech dataset sourced
from LibriVox audiobooks. With approximately 1000
hours of precisely segmented and aligned speech data, it
serves as an optimal auxiliary dataset for the purposes of
this study.

• Nonspeech is a collection of 100 diverse environmental
audio recordings that enhance the noise set used in this
study. Encompassing a wide range of real-life scenarios,
it offers a rich assortment of background sound sources
essential for our research.

Based on the selected foreground dataset, the LibriSpeech
ASR corpus, consisting of Nh data, and the background
dataset, Nonspeech, consisting of Nb data, we employ a fixed
window size, denoted as w, to crop the audio data. The win-
dow’s position within the audio data is determined using a
random variable p, ranging from 0 to L − w, where L rep-
resents the length of the audio data. Additionally, we intro-
duce another random variable v that takes values between 0
and 1 to control the intensity of the background sound during
the audio stacking process. Consequently, by combining any
foreground human voice hi with a corresponding background
environmental sound bj , we generate a new mixed speech de-
noted as S̃hibj .

This methodology enables the creation of Nh ×Nb mixed
audio samples by leveraging Nh foreground and Nb back-
ground audio samples, thereby enhancing the diversity of the
dataset and fulfilling the training requirements.

Speech Forgery Benchmark Dataset. In the experimental
section, this study utilizes two representative speech forgery
detection datasets to evaluate the performance of the pro-
posed algorithm.

• FoR [Reimao and Tzerpos, 2019] comprises an exten-
sive collection of over 87, 000 synthetic speeches gen-
erated by advanced deep learning systems, along with
over 111, 000 real speeches sourced from diverse ori-
gins. Synthetic speech that closely resembles genuine
speech is generated using cutting-edge techniques such
as DeepVoice3 and Google Wavenet. The dataset en-
hances diversity and generalization capabilities by in-
corporating various speech sources, speakers, record-
ing devices, environments, and accents. In this paper,
the experiments utilize the standard version of the FoR
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Method A07 A08 A09 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19
RawGAT-ST 1.19 0.33 0.03 1.54 0.41 1.54 0.14 0.14 1.03 0.67 1.44 3.22 0.62

AASIST 0.80 0.44 0.00 1.06 0.31 0.91 0.10 0.14 0.65 0.72 1.52 3.40 0.62
DEEM (Ours) 0.06 0.37 0.04 0.39 0.17 0.33 0.26 0.06 0.24 1.16 1.55 2.71 1.40

Table 2: Equal error rate (%) comparison between the DEEM method and two top SOTA methods (RawGAT-ST [Tak et al., 2021a] and
AASIST [Jung et al., 2022]) on various unknown forgery categories in ASVspoof2019LA dataset.

dataset. It is worth noting that the standard version ex-
hibits an uneven distribution of audio sample lengths,
which presents a significant challenge.

• ASVspoof 2019 LA [Todisco et al., 2019] serves as a
dataset specifically designed for ASV anti-spoofing pur-
poses. It encompasses both real and synthetic speech,
produced using 17 TTS (Text-to-Speech) and VC (Voice
Conversion) algorithms. The training and development
stages involve six known attacks, while the evaluation
phase incorporates 11 unknown attacks. Notably, the
ASVSpoof2019LA dataset stands out for encompassing
a wide array of complex spoofing algorithms in speech
synthesis and voice conversion, thereby posing unique
challenges for audio spoofing detection.

4.2 Parameters and Experiment Settings
The proposed DEEM model is implemented in PyTorch and
evaluated on an NVIDIA Tesla V100 GPU. The decou-
pling module of DEEM utilizes two encoders that undergo
pre-training with the swapping decoupling strategy. Subse-
quently, these parameters are frozen during the training of
the DEEM model. To ensure consistency, all audio datasets
are processed uniformly, with each sample limited to a du-
ration of 4 seconds. Audio clips exceeding this duration are
truncated, while shorter clips are padded with silence. In the
decoupled training phase, a learning rate adjustment strategy
is employed, with an initial learning rate set to 0.0001. If the
loss value does not exhibit a significant reduction after five
consecutive training iterations, the learning rate is decreased.
The Adam optimizer is utilized, and the training process is
carried out for 150 epochs, employing the mean squared error
(MSE) loss function. In the subsequent classification training
phase, the same learning rate and optimizer settings are ap-
plied. The training is performed for 160 epochs, employing
the cross-entropy loss function.

The feature extractor utilized in this study is the same as the
feature extractor employed in RawNet2 [Tak et al., 2021b].
This feature extractor is responsible for converting the origi-
nal audio into shallow features to be used in subsequent de-
coupling operations. The decoupling encoders encompass
two identical residual sequence blocks. Each sub-encoder
consists of six cascaded Residual blocks, facilitating the de-
coupling of the human voice and background environment
sound features. The decoder involved in the decoupling train-
ing phase comprises two linear layers along with a middle
deconvolution layer.

The metrics we adopted include Accuracy (ACC), Equal
error rate (ERR), and Min-tDCF [Todisco et al., 2019]. Min-
tDCF is the minimum tandem detection cost function, which
reflects the rate at which real speech samples are classified

as forged samples. Due to the lack of relevant data for auto-
matic speaker verification in the FoR dataset, it is impossible
to calculate the corresponding Min-tDCF metric, Min-tDCF
can only be tested on the ASVspoof2019LA dataset.

4.3 Performance Comparison with SOTA
In this section, we conduct a comparative analysis of twelve
commonly used methods in the field of speech forgery detec-
tion on the FoR dataset and the ASVSpoof2019LA dataset.
As illustrated in Table 1, the proposed DEEM algorithm
demonstrates superior performance across all metrics.

On the FoR dataset, the DEEM algorithm achieves an
Equal Error Rate (EER) index of 4.19%, which is lower
than the other algorithms, and the Accuracy (ACC) index at-
tains the highest value of 95.27%, while the ACC index of
the other algorithms is all below 90%. Furthermore, on the
ASVSpoof2019LA dataset, the DEEM algorithm achieves
an ACC of 96.22%, an EER index of 1.07%, and a min-
tDCF value of 0.0287. In comparison to other algorithms,
its performance on this dataset is even more remarkable.
Hence, the DEEM algorithm proposed in this paper exhibits
the best overall performance and possesses evident advan-
tages in handling the uneven time length distribution of FoR
data and the presence of multiple complex spoofing types in
ASVSpoof2019LA.

Additionally, we conduct more detailed performance tests
on various unknown categories within the ASVSpoof2019LA
dataset and compare the proposed DEEM method with the
current mainstream methods displaying excellent perfor-
mance. As depicted in Table 2, the DEEM approach out-
performs the RawGAT-ST and AASIST methods in most
categories. Notably, in categories A07, A10, A11, A12,
A14, A15, and A18, the proposed method significantly sur-
passes the other two approaches. Moreover, in categories
A08, A09, A13, and A17, the performance of the proposed
method is comparable to that of the other two methods, indi-
cating the robustness of the proposed approach in these cate-
gories. Finally, in the A16 and A19 categories, although the
performance of the proposed method is slightly inferior to
RawGAT-ST and AASIST, the difference is not substantial.
These two categories involve waveform splicing and filtering,
where the proposed DEEM algorithm may not be as effective
due to its decoupling design, which primarily aims to address
the fusion of foreground and background sounds. Therefore,
further in-depth research is required to improve the perfor-
mance in these areas.

After analyzing on different forgery categories of
ASVSpoof2019LA dataset, it becomes evident that the pro-
posed DEEM method effectively detects vocoder and GAN
spoofing types, along with their diverse variations.
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Operation FoR ASVspoof2019LA
ACC EER ACC EER Min-tDCF

As(Fh) +As(Fb) 80.71% 9.34% 89.39% 6.61% 0.1832
At(Fh) +At(Fb) 77.94% 18.98% 78.15% 11.08% 0.3706
At(Fh) +As(Fh) 90.25% 7.34% 94.39% 2.60% 0.0786
At(Fb) +As(Fb) 85.32% 8.94% 92.71% 4.88% 0.1806
At(Fb) +As(Fh) 77.45% 16.22% 92.58% 5.68% 0.1765
At(Fh) +As(Fb) 95.27% 4.19% 96.22% 1.07% 0.0287

Table 3: Results of the ablation study on different feature aggre-
gation strategies. Aggregating features of human voice feature Fh

and background feature Fb along the temporal-dimension At() and
spectral-dimension As().

The remarkable performance of the DEEM in forged
speech detection tasks can be attributed to its design of
deep feature decoupling. By separating the foreground and
background sounds and eliminating redundant interference,
DEEM can accurately capture and aggregate discriminative
information for forged speech detection tasks, thus substan-
tially enhancing the detection accuracy.

4.4 Ablation Study
In order to validate the efficacy of our significant contribu-
tion, namely the decoupled and enhanced features, several
ablation studies were performed. These studies investigate
various feature aggregation strategies and different back-end
classifiers.

Feature Aggregation Strategy
For the decoupled human voice feature Fh and background
environmental sound feature Fb, we employ temporal- and
spectral-dimension aggregation strategies to extract human
voice-specific features and background continuity-related
features from the background sound, respectively.

To verify the effectiveness and rationality of our aggrega-
tion strategy, we compare different combinations of aggregat-
ing features Fh and Fb along various dimensions. The results
obtained with different aggregation strategies for Fh and Fb

are given in Table 3. In this context, At() and As() repre-
sent the aggregation feature along the temporal- and spectral-
dimensions, respectively.

From the results presented in Table 3, we observe that
the combination At(Fh) + As(Fb) achieves the best per-
formance, which confirms the effectiveness of our proposed
feature enhancement strategy. Additionally, we note that
At(Fh)+As(Fh) achieves the second-best performance, sug-
gesting that prominent human voice plays a vital role in
speech forgery detection.

Another significant finding is that the aggregation opera-
tion At(Fb) + As(Fh) yields the poorest performance, as
it employs the opposite aggregation operation. This finding
further confirms that aggregating voice-specific features in
the temporal dimension, coupled with aggregating continuity-
related background sound features in the spectral dimension,
represents the optimal operation for speech forgery detection.

Effectiveness of Decoupled and Enhanced Features
To assess the efficacy of the decoupled and enhanced fea-
tures, we employed them as input features for several exist-

Method FoR ASVspoof2019LA
ACC EER ACC EER Min-tDCF

LCNN +10.45% -10.78% +4.21% -0.25% -0.0284
RawNet2 +4.32% -4.29% +2.36% -0.46% -0.0008

RawGAT-ST +4.56% -3.04% +1.27% -0.04% -0.0026
AASIST +8.71% -8.35% +1.04% -0.07% -0.0062

Table 4: The impact of employing our decoupled and enhanced fea-
tures to replace the original mixed embedding in existing methods.

ing methods, namely LCNN [Wang and Yamagishi, 2021],
RawNet2 [Tak et al., 2021b], RawGAT-ST [Tak et al.,
2021a], and AASIST [Jung et al., 2022]. The performance
differences between these methods using mixed deep features
and the decoupled and enhanced features are summarized in
Table 4.

It can be observed that LCNN exhibited the most substan-
tial improvement on the FoR dataset, with an increase in ac-
curacy (ACC) by 10.45% and a decrease in equal error rate
(EER) by 10.78%. Other methods also demonstrated some
level of improvement. Likewise, in the evaluation of the
ASVSpoof2019LA dataset, the employment of deep decou-
pling features resulted in enhanced EER and minimum tan-
dem detection cost function (Min-tDCF) performance across
the methods. LCNN achieved a reduction in the EER by
0.25%, while the Min-tDCF reduced by 0.0284%. RawGAT-
ST and AASIST also exhibited a certain degree of reduction
in EER and Min-tDCF indicators. These results suggest that
the decoupled and enhanced feature exhibits broad general-
ization capabilities across different classifiers.

5 Conclusion

In this paper, we propose a Discriminative fEature dEcou-
pling enhanceMent framework (DEEM) for speech forgery
detection. DEEM effectively separates speech into two dis-
tinct feature maps: the human voice feature map and the
background sound feature map, using a swapping decoupling
strategy. By applying temporal dimension aggregation on the
human voice feature map and spectral-dimension aggregation
on the background sound feature map, we enhance the voice-
specific features and continuity-related background features,
respectively. These enhanced features are integrated into a
fully-connected heterogeneous graph, and a heterogeneous
graph attention network is employed to extract forgery fea-
tures for speech detection. Experimental results demonstrate
that DEEM achieves significant accuracy improvement. In
future research, we will prioritize the investigation of diverse
distinctive features for multimedia forgery detection.
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