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Abstract
Deepfake model misuse poses major security con-
cerns. Existing passive and active Deepfake detec-
tion methods both suffer from a lack of generaliz-
ability and robustness. In this study, we propose
a pluggable and efficient active model watermark-
ing framework for Deepfake detection. This ap-
proach facilitates the embedding of identification
watermarks across a variety of Deepfake genera-
tion models, enabling authorities to extract them
easily for detection purposes. Specifically, our
method leverages the universal convolutional struc-
ture in generative model decoders. It employs con-
volutional kernel sparsification for adaptive water-
mark embedding positioning and introduces con-
volutional kernel normalization to seamlessly inte-
grate watermark parameters with those of the gen-
erative model. For watermark extraction, we jointly
train a watermark extractor based on a Deepfake
detection model and use BCH encoding to identify
watermark images effectively. Finally, we apply
our approach to eight major types of Deepfake gen-
eration models. Experiments show our method suc-
cessfully detects Deepfakes with an average accu-
racy exceeding 94% even in heavy lossy channels.
This approach operates independently of the gener-
ation model’s training without affecting the origi-
nal model’s performance. Furthermore, our model
requires training a very limited number of param-
eters and is resilient against three major adaptive
attacks. The source code can be found at https:
//github.com/GuaiZao/Pluggable-Watermarking

1 Introduction
Deepfake technology has seen remarkable progress, the face
of one individual can be flawlessly swapped with another
from a distinct photograph. The potential misuse and ram-
pant proliferation of such Deepfakes have raised significant
societal concerns and have imperiled the credibility of online
media[Li et al., 2022]. Consequently, there’s an urgency for
face forgery detection techniques.

∗Co-corresponding authors

Primary Deepfake detection methods [Dong et al., 2022;
Schwarcz and Chellappa, 2021; Li et al., 2023] typically
identify Deepfake images by extracting biological features
and high-frequency artifacts within the image in a passive
way. However, when Deepfake images become more realistic
or undergo transmission via lossy channels, passive detection
may fail to detect them and thus have limited performance.
Furthermore, such passive detection methods lack adaptabil-
ity across various Deepfake models since they heavily rely
on training data and only show good detection results for the
Deepfake methods encountered during training [Shiohara and
Yamasaki, 2022]. Active watermarking has recently emerged
as a promising alternative. Such techniques introduce unique
markers or signals into the synthesized images, which can
then be extracted to identify images. However, existing active
watermarking methods primarily focus on using watermark
content to trace users linked to specific generative models
and are unsuitable for direct application in Deepfake detec-
tion. Several active watermarking methods [Wu et al., 2020;
Zhang et al., 2019] add watermarks either within the train-
ing dataset or in post-generation output images. Such meth-
ods introduce additional operational steps or independent net-
works, compromising the stealth of the watermark, which
causes the watermark to be easily removed [Fernandez et al.,
2023]. On the other hand, some methods are designed for
specific models, demanding a particular structure in the tar-
get generative model [Uchida et al., 2017; Yang et al., 2022;
Zhang et al., 2020; Yu et al., 2021b]. Furthermore, exist-
ing watermarking methods often require retraining or fine-
tuning of the original network when embedding watermarks.
In some cases, they even need to perform inference or train-
ing on individual samples. Given the need to detect the Deep-
fake images generated by a vast array of models, the compu-
tational cost is unacceptable. In conclusion, utilizing a wa-
termarking method of Deepfake models to detect Deepfake
images remains a pressing and unresolved problem.

In this work, we propose a pluggable active watermarking
framework that can simultaneously address the above chal-
lenges for Deepfake detection. To support different types
of Deepfake models, we observe that mainstream generative
models usually employ a form of convolution coupled with
upsampling in decoders to produce the final image from the
latent vector, despite the differences in latent vector struc-
tures. Based on this observation, we first introduce a wa-
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Figure 1: The pipeline of our framework.

termarking technique that manipulates the parameters within
the convolutional layer in the decoder. Our framework adap-
tively identifies redundant parameter positions via pruning
the parameters of pre-trained models and sparsifying the con-
volution kernels. Watermark parameters are then embedded
into these identified positions. This design ensures the qual-
ity of generation while remaining independent of the orig-
inal model’s training method. Given the diverse convolu-
tional kernel parameters, we design a normalization method
to embed parameter values, thereby guaranteeing stability
across various models and preventing gradient explosions.
To address efficiency, our framework solely focuses on train-
ing the substituted parameters. In addition, we incorporate
Bose–Chaudhuri–Hocquenghem (BCH) codes to improve the
accuracy and robustness of the watermark extraction.

In summary, 1) we propose a novel active model water-
marking framework for Deepfake detection. Our framework
is pluggable, operating independently of the original training
of the generative model; 2) we design convolutional kernel
sparsification and kernel normalization to embed watermarks
covertly without altering the original network performance;
3) our proposed framework is scalable, e.g., it can be effec-
tively deployed across eight major types of Deepfake genera-
tive models; 4) experimental results show our method’s abil-
ity to robustly embed and extract watermarks for Deepfake
detection while keeping the image quality.

2 Related Work
2.1 Deepfake Methods
Common Deepfake generation techniques include image syn-
thesis, face identity swap, facial reenactment, 3D modeling,
etc [Zhang, 2022; Dagar and Vishwakarma, 2022]. For in-
stance, StyleGAN [Karras et al., 2019], StyleGAN2 [Karras
et al., 2020], are comprehensive generative models. These
models manipulate the generation of facial images with vary-
ing styles, guided by the provided latent vectors. Stable Dif-
fusion Model (SDM) [Rombach et al., 2022] modifies input
image content by prompt information. For face identity swap,
SimSwap [Chen et al., 2020] and FaceShifter [Li et al., 2019]
separate attributes and arbitrary features and swap them from
source to target face. HifiFace [Wang et al., 2021] can gener-
ate a 3D shape-aware identity to control the face shape with
the geometric supervision from the 3D face reconstruction

method. For facial reenactment, FirstOrder [Siarohin et al.,
2019] uses a representation consisting of a set of learned key
points along with their local affine transformations to change
the facial attitude. LATS [Or-El et al., 2020] is a method of
modification of facial attributes that is based on StyleGAN2.
Despite the varied architectures and loss functions of these
models, our watermarking technique can effectively embed
and extract watermarks from each model.

2.2 Watermarks for Deepfake
Watermarks have multiple applications in defending against
Deepfake. For source samples of Deepfake, some mod-
els [Wang et al., 2022; Ruiz et al., 2020; Huang et al.,
2022] utilize adversarial watermarking to disrupt the gener-
ative ability, with the aim of protecting the input samples.
[Yu et al., 2021a] preserves the watermark in the training
data into the generated results through joint training. For
output samples of Deepfake, carrier watermarking RivaGAN
[Zhang et al., 2019] has already been applied to SDM. For
model watermarking, [Fernandez et al., 2023] uses a fine-
tuned decoder to set watermarking in SDM. [Nie et al., 2023;
Kim et al., 2020] incorporate the watermark into the latent
vectors, endowing them with semantic features to maintain
the quality of the model’s generative output. However, these
watermarked models are effective only for specific networks
or require specific structures, rendering them unsuitable for
the aforementioned Deepfake methods. In contrast, our ap-
proach exhibits strong generalizability.

3 Method
3.1 Pipeline Overview
The applicable scenario of our method lies in embedding
a watermark into the well-trained Deepfake model after its
training has been completed. The overall process of embed-
ding and detection is illustrated in Figure 1. The unique wa-
termark content is encoded using BCH and then embedded
into different Deepfake models that require regulation. Em-
bedding a watermark entails two primary phases. The first
one is to determine the position for embedding the water-
mark. We propose a pruning strategy to locate the positions
of redundant parameters in the well-trained model, which are
then used as the insertion points for the watermark. Second,
the watermark parameters are trained to ensure the model’s
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output aligns with that of the original network, all while bear-
ing the embedded watermark. The output from the water-
marked Deepfake model has active artifacts. Consequently,
a result of the watermarked Deepfake model disseminating
misleading information is easily detectable. When evaluat-
ing images, we cycle through all the extractors linked to the
published Deepfake models. If any extractor reveals the as-
sociated BCH-coded watermark content, it is inferred that the
image originated from that specific model. Otherwise, the
images are not generated by any watermarked model and are
subjected to further analysis. Subsequent sections provide a
detailed explanation of our method, covering watermark po-
sitioning, parameter training, and detection.

3.2 Obtaining the Watermark Position
Generative models usually encode semantic content into la-
tent space vectors, which are then converted into images. Dif-
ferent generative models obtain latent space vectors in dif-
ferent ways. For example, in autoencoders (AEs), the latent
space is derived from the encoder. In generative adversar-
ial networks (GANs) [Goodfellow et al., 2014] and Diffusion
models [Cao et al., 2022], it comes from a Gaussian distri-
bution, as well as the prompt embedding in some language
models. Regardless of the source, the fundamental method
by which these models transform latent space vectors into
images is consistent, mainly utilizing a decoder. This process
entails the conversion of a latent content vector into an image
via upsampling and convolutional layers. Considering our
goal to introduce a scalable watermark independent of image
content, the optimal stage for embedding this watermark is
the decoder. In the decoder, the core of the image generation
comes from the upsampling layer and convolutional layer (or
transpose convolutional layer). We design a convolution ker-
nel sparsification method to nullify the minimal contribution
convolutional kernels in the decoder. These nullified loca-
tions are then leveraged for watermark embedding. We out-
line three major upsample blocks in the decoder. Based on
these structures, we offer varied sparsification strategies and
embedding layer options as shown in Figure 2.

Case 1. Regular Upsampling Blocks
Each regular upsampling block includes the upsampling
layer, convolutional layer, activation layer, and normalization
layer. We aim to introduce watermarks as minimal pertur-
bations without altering the original image content. Conse-
quently, the mean and standard deviation parameters of the
Norm layer must remain nearly consistent before and after
embedding. Thus, our operations are confined to the con-
volutional layer. We design a trainable convolution kernel
mask as a pruning operation that removes redundant param-
eters from the convolutional kernel. If a bias exists in the
convolution, a corresponding mask is also trained to identify
redundant positions. We take the original output I of the net-
work as a reference, minimize the mask, and make the output
IM through the masked convolution layers almost the same
as the original output. Although different generative networks
are trained on distinct datasets, we can select a specific dataset
independently to generate the output. Though the quality of
I might degrade, our focus lies in the difference between IM
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Figure 2: Three major upsample blocks in the decoder.

and I . We use mean squared error (MSE) and perceptual loss
[Johnson et al., 2016] to measure the difference in output. we
define K ∈ Rq×p×m×n as the original convolution kernel,
MK ∈ Rq×p is the mask of convolution kernel and MB ∈ Rq

is the mask of bias. Therefore, the loss is defined as follows.

LM = αLMSE(I, I
M ) + βLPer(I, I

M ) + γ(MK +MB)
(1)

Where α, β and γ are hyperparameters. Notice that with cer-
tain network structures that do not operate sequentially, such
as ResBlock [He et al., 2016] or UNet [Ronneberger et al.,
2015], our approach remains effective. Since each branch
still uses the regular upsampling blocks and the convolution
operation satisfies the distributive law, adding watermark pa-
rameters in each branch is equivalent to adding a watermark
in a single structure.

Case 2. Modulated Convolution
The method represented by StyleGAN2, which embeds se-
mantic vectors into the convolution kernels of each layer us-
ing modulated convolution [Karras et al., 2020], aligns with
Case 1. Yet, a trainable convolution kernel mask needs to
be added to the convolution kernel after semantic vector em-
bedding. This strategy ensures that the sparsified convolution
kernel preserves the expression of the semantic vector.

Case 3. Adaptive Normalization
Certain methods [Huang and Belongie, 2017; Park et al.,
2019] embed semantic vectors into the normalization layer.
Generally, Adaptive Norm will perform the following trans-
formation on the intermediate results:

AdN(x, y) = σ(y) · x− µ(x)

σ(x)
+ µ(y) (2)

Where µ(·) and σ(·) are the mean and standard deviation, x
is the input of the parameters, and the results are related to
the semantic vector y. Given the diverse adaptations of the
normalization layer, we choose not to prune it to ensure the
generation quality. Then, the convolution kernel operations
remain consistent with Case 1.

Choices of Embedding Layers
Previous work [Karras et al., 2019] has established that the
larger the size generated by the upsampling layer, the finer the
content generated. Given our objective to minimize the dam-
age to the image content, our watermark, similar to the dis-
turbance, should be fine-grained. Given our objective to min-
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imize the damage to the image content, our watermark, sim-
ilar to the disturbance, should only change the fine-grained
features of target images. Therefore, we traverse to choose
the convolution layers from the last output layer forwards.
Experiments have shown that embedding at max as 64*64 is
suitable with a relatively small impact on the quality of gen-
eration. There is no limit to the number of embedding layers,
but experiments have shown that 3-8 layers can meet the re-
quirements in a normal decoder. Too many embedding layers
may also compromise both the network’s output quality and
the convergence speed of the watermark.

3.3 Training the Watermark Parameters
Embedding Watermark into Convolution
The pruning operation mentioned previously outputs the pa-
rameters of the original network and a mask, which are set as
constants during this phase. We embed the watermark infor-
mation into the positions of the mask. The process is shown
in Figure 3. Here we define a trainable watermark convolu-
tion kernel KR of the same size as the original kernel. We use
FC (Fully Connected) layers E to transfer the watermark F to
the embedding vector. AdaIN [Huang and Belongie, 2017] is
used to embed the watermark into KR, where the embedding
vector is the style vector for AdaIN. If the original convolu-
tion has a bias, we also add the watermark embedding into
bias redundant positions. As a result, the watermarking con-
volution kernel is:

K ′ = K ·MK +AdaIN(KR, E(F )) · (1−MK) (3)

Given that the sizes of the convolution kernel parameters in

the original network vary, the range of variations in the water-
mark convolution kernel may not match the original, which
could potentially lead to gradient explosion during training.
We utilize normalization to unify the new watermark convo-
lution kernel and the original convolution kernel. Now we
have µ(K), σ(K), µ(K ′) and σ(K ′), the normalized kernel
K ′′ is :

K ′′ = σ(K) · K
′ − µ(K ′)

σ(K ′)
+ µ(K) (4)

Note that in Case 2., the value of mean and standard devia-
tion is affected by semantic vectors. µ(K), σ(K) in Case 2
are calculated from the original kernel. It ensures the stability
of the watermark embedding and prevents gradient explosion.
The normalization operation not only standardizes the water-
mark parameters but also alters the original parameters. To
ensure that the original parameters are not modified, the final
watermark convolution kernel is shown as:

Kw = K ·MK +K ′′ · (1−MK) (5)

For the Adaptive Norm mentioned in Case 3, however, the
parameters of the Norm layer will disrupt the transmission of
the watermark in the convolution kernel through the network.
Therefore, we add a trainable parameter to the result of the
adaptive norm layer. Since this disturbance is additive and
independent of the semantic vector, it keeps the additive result
of the watermark in the Norm layer. Similar to the pruning
stage, in order to ensure output consistency, we use perceptual
loss, MSE, and total variation loss compared with the original
output of the network to control image quality.

Training Watermarking Network
While training the watermark parameters, we also jointly
train a watermark extractor. Here we use Xception [Chollet,
2017] and the pre-trained Deepfake detection model [Rössler
et al., 2018] as the watermark extractor. The advantage of the
Deepfake detection model lies in its ability to identify subtle
nuances and artificial inconsistencies within an image. This
trait aligns perfectly with watermark detection, as both in-
volve identifying deliberate distortions or details within the
image that may not be easily discernible to the human eye.
We replace the final output of the Xception classification
model to make the output dimension consistent with the wa-
termark F . We use binary cross-entropy loss LB to measure
the difference between the embedded watermark and the out-
put of the watermark extractor. For the input to the watermark
extractor, we adopt the image enhancement module in Hidden
[Zhu et al., 2018] to enhance the robustness of watermark ex-
traction. We directly use compression methods to replace the
random bit selection method for JPEG in Hidden. We define
IF as the output of the watermark embedded network, and
F̂ is the watermark prediction from Xception. The training
process is shown in Figure 4 and the final training loss is:

L =αLMSE(I, I
F ) + θLTV (I

M ) + βLPer(I, I
F )

+ γ(− 1

N

N∑
i=1

[Fi log F̂i + (1− Fi) log(1− F̂i)])
(6)

However, not all the extractors are suitable for the Xcep-
tion pre-trained model since not all artifacts generated by
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Deepfake models can be detected by Xception. Its perfor-
mance in detecting artifacts depends heavily on its training
regimen. If the model hasn’t been exposed to certain kinds of
artifacts during training or if it’s trained on a limited dataset,
its efficacy in detecting those specific artifacts in the wild can
be compromised. To handle it, we utilize a pre-trained wa-
termark extractor to help the training model converge faster.
While each Deepfake model traditionally aligns with a spe-
cific Xception watermark extractor, our methodology allows
for shared watermark extractors in certain situations, thereby
reducing computational overhead. For instance, the water-
mark extractor can be shared across various models or differ-
ent versions of a model if they have the same decoder struc-
ture. Even for different models with similar decoder struc-
tures (For example, the decoder is all composed of simple
upsampling blocks), they can still share the same extractor.
To enable the extractor sharing, once training for a single wa-
termarked model is completed, we maintain the watermark
extractor’s parameters while only training the embedding pa-
rameters in other watermarked models. Such a training strat-
egy enhances the scalability of our method.

3.4 Watermark Detection
The well-trained watermark extractor can extract watermark
information from test images. We match the extracted in-
formation with the watermark embedded into the model. If
they are matched, it’s confirmed as a generated image. Oth-
erwise, it’s considered a real image or an image generated by
a non-watermarked model, ready for further detection meth-
ods. A pivotal observation is that watermark content extracted
from natural images without significant watermark features
adheres to a Bernoulli distribution with p = 0.5. The likeli-
hood of extracting a sequence that conforms to some specific
coding from natural images is extremely low. Therefore, dur-
ing the process of embedding the watermark, we utilize BCH
encoding to encode the watermark content, facilitating image
detection based on watermark content distribution. Moreover,
given the potential for lossy transformations of generated im-
ages during public transmission, errors in watermark extrac-
tion can arise. The BCH encoding also offers the added ad-
vantage of correcting certain errors.

Specifically, we group the watermark content into sets of 7
bits each, where each group is BCH(7,3,1). Let encoded wa-
termark F l = {B1, B2, ..., Bn}, B is a group of BCH code.
The advantage of group BCH is: 1) Compared to perform-
ing BCH encoding on the entire content, it offers higher en-
coding efficiency. Each group of content can correct 1-bit
errors, which enhances the extraction robustness. 2) In the
entire coding space, assuming the watermark bits extracted
from natural images are independent and follow a Bernoulli
distribution, the probability of constructing a valid coding
group is (24/27)n. Given the extremely low probability, it
can serve as the foundation for classification. When detect-
ing watermark images generated by different types of mod-
els, due to the unique watermark features, they will also not
conform to BCH encoding. We determined that if more than
{B1, B2, ..., Bk}, (n ≥ k) groups cannot be correctly de-
coded, it is considered a natural image. Watermarked images
will also experience BCH decoding failures when transmit-

Detection
Methods

Real
(TPR)

Fake with
Watermark

(TNR)

Lossy Processing (TNR)

Blur Compress Random Crop Resize

4 12 60 80 0.6 0.8 0.6 0.8
Arrtibuting

(StyleGAN2) 1 1 0.940 0.960 0.980 0.960 0.960 0.960 0.980 0.980

ArtificalGAN
(StyleGAN2) 1 1 1 1 1 1 0.000 0.000 1 1

StableSignature
(SDM-img2img) 1 1 0.999 0.999 1 1 1 1 1 1

Invisible
(All) 1 0.692 0.074 0.058 0 0.028 0.002 0.002 0.002 0.002

Ours
(SimSwap) 1 1 1 1 0.998 0.999 0.998 1 0.892 1

Ours
(FirstOrder) 1 1 1 1 0.994 0.999 0.998 0.998 0.557 0.999

Ours
(HifiFace) 1 0.984 0.990 0.991 0.954 0.976 0.957 0.976 0.870 0.981

Ours
(SDM-img2img) 1 0.998 0.998 0.998 0.921 0.997 0.974 0.995 0.877 0.985

Ours
(StyleGAN) 1 1 0.950 0.984 0.727 0.918 1 1 0.902 1

Ours
(FaceShifter) 1 0.990 0.928 0.908 0.688 0.878 0.683 0.848 0.697 0.947

Ours
(LATS) 1 0.999 0.993 0.993 0.849 0.897 0.995 0.999 0.938 0.998

Ours
(StyleGAN2) 1 0.977 0.965 0.966 0.945 0.964 0.904 0.970 0.939 0.971

Table 1: Detection accuracy comparison with other watermarking
methods.

Detection
Methods

Real
(TPR)

Fake
without

Watermark
(TNR)

Fake
with

Watermark
(TNR)

Lossy Processing (TNR)

Blur Compress Random Crop Resize

4 12 60 80 0.6 0.8 0.6 0.8

Seferbekov 0.011 0.137 0.149 0.066 0.083 0.162 0.144 0.091 0.148 0.105 0.118
WS-DAN 0.689 0.473 0.486 0.709 0.724 0.584 0.568 0.366 0.476 0.519 0.493

LR 0.738 0.822 0.828 0.839 0.849 0.807 0.814 0.486 0.860 0.831 0.809
Xception 0.261 0.386 0.391 0.523 0.524 0.116 0.262 0.287 0.436 0.241 0.240

F3net 0.179 0.355 0.488 0.530 0.515 0.204 0.346 0.353 0.578 0.356 0.380
Ict-no-ref 0.483 0.525 0.533 0.507 0.509 0.531 0.529 0.421 0.526 0.530 0.534

Ours(Average) 1 / 0.994 0.978 0.980 0.885 0.954 0.938 0.973 0.834 0.985

Table 2: Detection accuracy comparison with other Deepfake detec-
tion methods.

ted through lossy channels. Therefore, we define a tolerance
range based on the watermark content. There are l bits to
compare with the input watermark content. If more than τ
bits are mismatched, we conclude that the image was not gen-
erated by any of the models. Images that satisfy the above
two criteria are considered to be real. In our experiment, the
watermark sequence l is 64, hence n = 9, k = 5 ,τ = 16.

4 Experiment
We first present our datasets and experiment settings. Fol-
lowing, we compare our active Deepfake detection method
to other detection methods on detection accuracy and image
quality for different Deepfake generation models. Moreover,
we systemically conduct an ablation study. Finally, we exam-
ine the watermark’s resistance to intentional tampering.

4.1 Datasets and Experiment Settings
In our experiments, we select 8 popular Deepfake generation
models as the original model awaiting watermark embedding.
Among them, SimSwap, FisrtOrder, HifiFace, and SDM-
img2img use regular upsamples, FaceShifter and StyleGAN
use adaptive norm, and LATS and StyleGAN2 use modulated
convolution in the decoder. In the training process, since Sim-
swap, FaceShifter, FirstOrder, HifiFace, SDM-img2img, and
LATS need face images as inputs, we use the CelebA [Liu
et al., 2015] dataset to train the watermark of these Deep-
fake models. For StyleGAN and StyleGAN2, we train these
models by random style vectors, and the number of vectors is
the same as in CelebA images. In the evaluation process, we
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randomly select 3000 images in FFHQ [Karras et al., 2019]
for positive samples,. For negative samples, each Deepfake
model generates 3000 images. Specifically, the inputs of the
above six models, whose inputs are images, are the positive
samples. For the other two models, we randomly generate
negative samples by 3000 style vectors which are not con-
tained in the training process. Due to the similarity of up-
sample blocks in the SimSwap, FirstOrder, and HifiFace’s
decoders, we found that they can share the same watermark
extractor. Hence, the evaluation results for the three methods
come from one shared extractor. For the remaining five Deep-
fake models, due to their more complex structures, we train
separate watermark extractors for evaluation. We train the
mask for about 1e5 iterations with batchsize 32 and learning
rate 1e-2. We train the watermarked models about 5e7 itera-
tions with batch size 32, learning rate 1e-7 for watermarked
parameters, and learning rate 1e-5 for the extractor.

4.2 Comparison Results

Comparison Methods
We selected six popular passive detection methods and four
active watermark defense methods for comparison. Passive
detection methods include two leading detection methods in
the frequency domain, including Local Relation (LR) [Chen
et al., 2021] and F3net [Qian et al., 2020], top two detection
methods in DFDC [Dolhansky et al., 2020], including Sefer-
bekov [Seferbekov, 2021] and WS-DAN [Jing et al., 2021],
basic model Xception and anomaly detection ICT [Dong et
al., 2022]. Four active methods include three model wa-
termarking methods Attributing [Nie et al., 2023], Artifical-
GAN [Yu et al., 2021a] and Stable Signature [Fernandez et
al., 2023], and carrier watermarking method Invisible [Zhang
et al., 2019]. To align with our criteria, we also consider it as
a watermarked image if the watermark has a mismatch rate of
less than 1/4 length (16 bits).

Detection Accuracy
To validate the accuracy of Deepfake detection and show the
robustness and generalizability of our framework, we analyze
detection results across various image conditions. These in-
clude original images, JPEG compressed images (compres-
sion ratios of 0.6 and 0.8), randomly cropped images (retain-
ing 0.6 and 0.8 of the original size), scaled images (scaling
ratios of 0.6 and 0.8), and Gaussian blurred images (kernel
size=5, σ ∈ [4, 12]). We then compare the True Positive
Rate (TPR) and True Negative Rate (TNR) of our method
with those of active watermarking and passive Deepfake de-
tection methods. Table 1 demonstrates that our method paral-
lels the performance of specific watermarking methods while
exhibiting greater generalizability. Additionally, we outper-
form the generalized watermarking method named Invisible
in terms of accuracy rate. Table 2 reveals that our method sig-
nificantly enhances detection accuracy compared to passive
detection methods. Moreover, the active artifacts introduced
by our method improve the detection performance of passive
detectors, contributing to a more comprehensive evaluation
by supervisors.

Watermarking Methods PSNR ↑ SSIM ↑
Arrtibuting 27.243 0.936
ArtificalGAN 33.591 0.932
Stable Signature 29.250 0.917
Ours 31.284 0.919

Table 3: Image quality comparisons.

Image Quality
We present our watermarking results demo in Figure 5. The
results show that our method does not modify the content and
structure of the original image. In addition, we compared our
method with three state-of-the-art model watermarking meth-
ods, and the results are shown in Table 3. We chose SSIM
[Wang et al., 2004] and PSNR as image quality metrics. The
higher the two metrics are, the better the image quality is.
The results show that our method is comparable to their re-
sults. Our method has lower SSIM because the disturbances
in AdN lead to a decrease in image quality. However, the
SSIM is within acceptable range.

4.3 Ablation Study
The Influence of Different Watermark Lengths
Figure 6 shows the influence of watermark length on the bit
extraction accuracy. There is a decline in accuracy for wa-
termarks of length 96 and beyond. In addition, longer water-
marks require more training time and usually will not fully
converge. Therefore, we opt to use a length of 64 bits.

The Influence of Different Convolution Layers Choices
Figure 7 presents the influence of different upsample num-
bers on the output image quality and the extraction accu-
racy for embedded watermarks. We first explain how we
calculate the upsample numbers. We consider the theoret-
ical scenario, assuming the output size of the image is a2,
where the final layer comprises two convolutional kernels
[3, x, k, k], [x, 2x, k, k]. x represents the base channels of the
feature map F ∈ Rx×a×a, and k is the size of a single con-
volutional kernel. Then, F ∈ R2ix×a/2i×a/2i in upsample
i needs a convolution size of [2ix, 2i+1x, k, k]. As a result,
the accumulated parameter size is p = k2

∑n
i=0 2

2i+1x2, and
i corresponds to the x-axis in Figure 7. The blue line in the
figure shows that embedding fewer parameters results in a
decrease in bit extraction accuracy. Thus, if more parameters
are chosen, the image quality deteriorates, and thus we cannot
extract the watermark. The red line shows that excessive pa-
rameters cause the output image to collapse. Therefore, con-
trolling the parameters within a certain range ensures both
model performance and the embedding of an effective wa-
termark. Table 4 displays the instantiation of the upsamples
numbers, layers numbers, and size of watermarking parame-
ters we choose in each model. Generally, we select i = 1.
However, there are some exceptions. For instance, since Hi-
fiFace has few parameters in each layer, we choose more lay-
ers and upsamples to embed the watermark. SDM has many
layers and parameters in each upsample. For StyleGan, the
more AdN layers we select, the worse image quality we get.
Therefore, we set i = 0 for them. Overall, we only need
to train a small number of parameters to embed the water-
mark. Compared to training or finetuning the whole network
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Original

Watermarked

SimSwap FirstOrder HifiFace SDM-img2img StyleGAN FaceShifter LATS StyleGAN2

Figure 5: Our watermarking demos.

Figure 6: Trade-off between
the embedded watermark length
and extraction accuracy.

Figure 7: The influence of the
embedding layer numbers on bit
accuracy and image quality.

like most existing watermarking methods, our training effi-
ciency is significantly improved. In addition, we show the
average pruning rate of parameters. These values can ensure
LPer(I, I

M ) ≤ 0.8 after pruning.

4.4 Adaptive Attack
To examine the watermark’s resistance to intentional tamper-
ing, we consider three representative adaptive attacks.

Replay Injection Attack
Attackers use the output of the watermarking generation
model as the input to another watermarked model in order
to confuse the watermark. Our watermarking method is nat-
urally resistant to this attack since we embed the watermark
at the final output layer, and the replayed watermark injected
by the attacker will be lost at the encoding layer that only
encodes the image content.

Pruning Attack
Attackers can remove the watermark parameters using the
pruning method described in Section 3.2. To defend the at-
tack, we introduce parameter confusion. This operation in-
troduces perturbation ϵ ∈ Rq×p×m×n into the kernel param-
eters to hide the precise location of the watermark parame-
ters. To prevent perturbations from altering the outputs of
convolutions, we can split a single convolution operation into
two parallel convolutions, utilizing the commutative and as-
sociative properties of convolution. For input x, the original
watermarking convolution output is y = x ∗ Kw. After pa-
rameter confusion, it becomes y = x ∗ (Kw + ϵ) + x ∗ (−ϵ).
We performed a proof of concept of the pruning attack on
SimSwap. Even when 50% of the parameters are pruned, our

Methods Upsample
Numbers (i)

Layer
Numbers

Parameter
Size

Pruning
Rate

Ours Simswap 1 3 378,048 0.560
Ours FirstOrder 1 5 2,368,704 0.496
Ours HifiFace 2 12 356,688 0.431

Ours SDM-Img2Img 0 8 1,330,560 0.747
Ours StyleGAN 0 5 5,248 0.386
Ours FaceShifter 1 8 154,368 0.636

Ours LATS 1 5 61,632 0.378
Ours StyleGAN2 1 3 442,572 0.363

Table 4: Watermarking choice of each model.

watermarking method with parameter confusion achieves the
same detection accuracy as the original model.

Image Reconstruction Attack
Attackers might use image reconstruction to remove water-
mark noise. However, our minimal and robust perturbations
complicate their ability to find a precise filter that removes
the watermark without changing the image content. We eval-
uate our method against a representative image reconstruc-
tion attack [Nie et al., 2022]. While the attack removes the
watermark, it significantly distorts the reconstructed image
compared to the original. For example, the SSIM between
the purified image and the watermarked image is 0.28 on av-
erage, while it is 0.49 with the original image.

5 Conclusion
To address generalizability and robustness in Deepfake detec-
tion, we propose an efficient, pluggable watermarking frame-
work. Specifically, by deploying convolution kernel sparsifi-
cation and normalization, we seamlessly embed watermarks,
capitalizing on the ubiquitous nature of convolutions present
in the Deepfake model decoders. Unique in its design, our
approach is independent of the original model training, gen-
erating active artifacts that bolster detection efficacy while
keeping image quality. Extensive experiments demonstrate
our method’s adaptability across various Deepfake models
while preserving high accuracy even in lossy environments.
Furthermore, ablation studies and adaptive attacks verify that
our method is efficient with minimal training parameters and
is resistant to adaptive attacks. In summary, our watermark-
ing framework enhances Deepfake detection robustness and
charts a promising path for future advancements.
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Luisa Verdoliva, Christian Riess, Justus Thies, and
Matthias Nießner. Faceforensics: A large-scale video
dataset for forgery detection in human faces. arXiv
preprint arXiv:1803.09179, 2018.

[Ruiz et al., 2020] Nataniel Ruiz, Sarah Adel Bargal, and
Stan Sclaroff. Disrupting deepfakes: Adversarial attacks
against conditional image translation networks and facial
manipulation systems. In Computer Vision–ECCV 2020
Workshops, pages 236–251. Springer, 2020.

[Schwarcz and Chellappa, 2021] Steven Schwarcz and
Rama Chellappa. Finding facial forgery artifacts with
parts-based detectors. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pages 933–942, 2021.

[Seferbekov, 2021] Selim Seferbekov. Deepfake detec-
tion (dfdc) solution. https://github.com/selimsef/dfdc
deepfake challenge, 2021.

[Shiohara and Yamasaki, 2022] Kaede Shiohara and Toshi-
hiko Yamasaki. Detecting deepfakes with self-blended
images. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 18720–
18729, 2022.

[Siarohin et al., 2019] Aliaksandr Siarohin, Stéphane Lath-
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