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Abstract

Parameter sharing is a common strategy in multi-
agent reinforcement learning (MARL) to make the
training more efficient and scalable. However, ap-
plying parameter sharing among agents indiscrim-
inately hinders the emergence of agents diversity
and degrades the final cooperative performance. To
better balance parameter sharing and agents diver-
sity, we propose a novel Agent-Driven Modular
Network (ADMN), where agents share a base net-
work consisting of multiple specialized modules,
and each agent has its own routing to connect these
modules. In ADMN, modules are shared among
agents to improve the training efficiency, while the
combination of different modules brings rich di-
versity. The agent routing at different time steps
is learned end-to-end to achieve a dynamic and
adaptive balance. Specifically, we also propose an
information-theoretical regularization between the
routing of agents and their behavior to further guar-
antee the identifiability of different routing. We
evaluated ADMN in challenging StarCraft micro-
management games and Google Research Football
games, and results demonstrate the superior perfor-
mance of ADMN, particularly in larger or hetero-
geneous cooperative tasks.

1 Introduction
Multi-agent reinforcement learning (MARL) has gained sub-
stantial attention in recent years, due to its applicability in ad-
dressing various real-world cooperative problems, including
cooperative games [Berner et al., 2019; Bard et al., 2020],
traffic control [Bazzan, 2009; Chu et al., 2019], and robot
fleet coordination [Cao et al., 2012; Hüttenrauch et al., 2019].
Nevertheless, effectively learning coordinated policies for
complex cooperative tasks remains challenging, as the algo-
rithm must explore the exponentially growing joint action-
state space with the increasing number of agents. To make the
training more efficient and scalable, recent MARL methods
[Peng et al., 2012; Wang et al., 2021a; Foerster et al., 2018;
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Figure 1: Agents specialized in remote attack fight with enemies
mastering melee attack. When two sides are far apart as shown in
(a), all agents conduct remote attacks, and parameter sharing can be
used to accelerate training. However, when facing melee attacks,
non-dominant agents need to behave diversely to distract enemies.
For example, one group draws fire, while the other group runs to
distant positions to maintain long-range attack advantage as shown
in (b,c). In this task, parameter sharing and agents diversity are re-
quired dynamically to achieve sophisticated cooperation.

Yu et al., 2021] predominantly employ parameter sharing,
where agents share their network parameters.

Parameter sharing indeed facilitates the training in MARL,
significantly reducing the total number of trainable param-
eters and making the training complexity tractable. More
importantly, this sharing allows for the reuse of experiences
by multiple agents. Although these merits make parame-
ter sharing popular in MARL, having all agents share the
same parameters also has negative effects [Li et al., 2021;
Hu et al., 2022]. In the real world, the completion of many
complex cooperative tasks requires for agents with different
abilities. However, fully-shared parameters may cause agents
to behave similarly, hindering the emergence of agents di-
versity, and limiting agents exploration capabilities, thereby
degrading the final cooperative performance.

To address the lack of diversity in naive parameter shar-
ing, there are researches encouraging no parameter sharing
or selective parameter sharing in MARL [Jiang and Lu, 2021;
Li et al., 2021; Christianos et al., 2021; Kim and Sung, 2023].
Instead of sharing parameters across all agents, these meth-
ods train individual policy networks or group-based networks
to encourage the diversity across agents or agent groups.
However, existing methods employ fixed parameter sharing
patterns for agents during cooperation, resulting in static
diversity that fails to adapt to dynamic cooperative tasks.
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Figure 2: Four parameter sharing mechanisms in MARL. Gray blocks are networks shared among agents, and colored blocks are unique to
each agent. At different time steps, compared to the fixed parameter sharing paradigm shown in (a, b, c), our proposed modular network
shown in (d) can choose parameter sharing or agents diversity dynamically by configuring different module connections.

Note that, in sophisticated multi-agent cooperation, agents
are adaptive to the environment changes, and can choose to
behave diversely or not dynamically, as shown in Figure 1.
Therefore, the question is how to balance the parameter shar-
ing and agents diversity dynamically and adaptively.

In this paper, to deal with the dilemma between parameter
sharing and agents diversity, and adapt to the dynamic envi-
ronment or different cooperative tasks, we propose a novel
framework called Agent-Driven Modular Network (ADMN).
In ADMN, a modular network is introduced into the agent ar-
chitecture, consisting of different specialized modules. Dur-
ing training, these modules are shared among agents to de-
crease the training complexity, while different routing, i.e.,
the connecting weights across different modules bring rich di-
versity. At each time step, the agent configures its routing ac-
cording to its own observation and identity, which is learned
end to end and achieves a dynamic and flexible balance,
without relying on human prior knowledge. Specifically, to
further guarantee the identification of different routing, an
information-theoretical regularization between the routing of
agents and their behavior is also proposed under ADMN.

We evaluated ADMN in StarCraft Multi-Agent Challenge
(SMAC) [Samvelyan et al., 2019] and Google Research Foot-
ball (GRF) [Kurach et al., 2020]. Compared to baselines,
results demonstrate superior performance of our method in
challenging cooperative tasks, especially in larger or hetero-
geneous cooperative tasks. And visualization of agents’ rout-
ing across various tasks or time steps underscores the flexi-
bility and reasonability of learned routing policies in ADMN.

2 Related Work
To make the training in MARL efficient and scalable, many
methods adopt naive parameter sharing framework, includ-
ing value-based MARL methods [Rashid et al., 2020; Iqbal
et al., 2021; Xu et al., 2023b] and policy-based methods
[Lowe et al., 2017; Zhou et al., 2020; Zhang et al., 2021b;
Xu et al., 2023a], where all agents share the same value net-
work or policy network, as shown in Figure 2(a). However,
naive parameter sharing hinders the diversity of agents and
limits the emergence of sophisticated coordinated policies.
To encourage the diversity across agents or agent groups, re-
cent approaches introduce no parameter sharing or selective
parameter sharing as shown in Figure 2(b,c). For example,

EOI [Jiang and Lu, 2021] avoids parameter sharing to pre-
vent similar agent behaviors, CDS [Li et al., 2021] fosters
individual diversity with agent-specific heads in addition to a
sharing network, and SePS [Christianos et al., 2021] divides
agents into groups with shared network parameters before
training. Although these methods produce diverse agent poli-
cies, the introduction of agent-based or group-based networks
decreases the method’s scalability, whose size of training pa-
rameters still increases with the number of agents. More im-
portantly, the diversity introduced in existing works is static,
which encourages fixed parameter sharing patterns during co-
operation, and cannot adapt to dynamic cooperative tasks. In
contrast, the size of ADMN will not increase with the number
of agents. Furthermore, as shown in Figure 2(d), the diversity
in ADMN comes from the combination of different modules,
which is varying at different time steps and learned end to end
to achieve a dynamic and adaptive parameter sharing.

Another approach to balance efficiency and diversity in
MARL is task decomposition, where the whole task is di-
vided into subtasks, and agents are assigned to different
sub-groups for various subtasks [Wooldridge et al., 2000;
DeLoach and Garcia-Ojeda, 2010; Lhaksmana et al., 2018].
For example, RODE [Wang et al., 2021b] proposes to de-
compose the whole task based on the decomposition of the
joint-action space, where each subtask contains partial ac-
tions. However, this division is limited to specific environ-
ments, and does not apply to tasks where basic actions are
needed in each subtask. More recently, LDSA [Yang et al.,
2022] is proposed to learn the task decomposition and agents
assignment, by learning the subtask encoder and the agent tra-
jectory encoder. Although the task decomposition in LDSA is
learnable, it still needs human prior knowledge to help design
the algorithm, such as the decision of the number of subtasks.
On the contrary, in ADMN, the efficiency and diversity are
balanced using the modular network, where the sharing of
the modular knowledge across agents is learned end to end,
without introducing any task-related human prior knowledge.

3 Preliminary
3.1 Problem Formulation
Multi-agent reinforcement learning is the extension of
reinforcement learning to help address multi-agent se-
quential decision problems, especially cooperation games,
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which is usually modeled as Dec-POMDP, i.e., G =
⟨S,U,A, P,R, Z,O, n, γ⟩ [Zhang et al., 2021a]. S is the
state space of the environment. At each time step t, every
agent u ∈ U ≡ {1, . . . , n} chooses an action au ∈ A which
forms the joint action a ∈ A ≡ An. P is the state transi-
tion function which maps the current state s and the joint ac-
tion a to the next state s′, i.e., P (s′|s,a) : S × A × S →
[0, 1]. All agents receive a shared reward r ∈ R accord-
ing to the reward function R(s,a) : S × A → R and
γ ∈ [0, 1) is the discount factor. In a partially observable
setting, each agent does not have access to the full state
and instead samples observations ou ∈ O according to ob-
servation function Z(s, u) : S × U → O. The action-
observation history for an agent u is τu ∈ T ≡ (O × A)∗,
on which it conditions its policy πu(au|τu) : T ×A → [0, 1].
The joint action-value function is defined as Qπ(st,at) =
Est+1:∞,at+1:∞

[∑∞
k=0 γ

krt+k|st,at

]
, where π is the joint

policy. The object of MARL is to find the joint policy π to
maximize the expected sum of the discounted team reward.

3.2 Centralized Training and Decentralized
Execution

To address the non-stationary issue and the scalability prob-
lem in cooperative MARL [Tan, 1993; Matignon et al.,
2012], existing cooperative MARL algorithms mainly adopt
the centralized training and decentralized execution (CTDE)
paradigm. CTDE means during training, the algorithm has
access to the full state and the action-observation histories
of all agents, while during execution each agent makes de-
cisions conditioned on its own local history. In this paper,
we also adopt the CTDE paradigm, and base our method on
the popular value-based CTDE method QMIX [Rashid et al.,
2018]. QMIX tries to factor the joint-action value Qtot into a
monotonic nonlinear combination of individual utilities Qu,
where the individual utility is learned via a utility network. A
mixer network with nonnegative weights is used for combin-
ing agents’ utilities. The nonnegativity in the mixer network
ensures that ∂Qtot(s,a)

∂Qu(τu,au)
≥ 0, which guarantees Individual-

Global-Max (IGM) Condition [Son et al., 2019], i.e. the opti-
mal joint actions across agents are equivalent to the collection
of individual optimal actions of each agent. QMIX is effec-
tive since the maximization can be performed in O(n|A|) as
opposed to O(|A|n), and during execution, each agent can in-
dependently make decisions by its own utility network with-
out any global information since IGM condition is satisfied.
More details will be provided in Appendix.

4 Method
In ADMN, there is a base modular network consisting of mul-
tiple modules that can be shared by agents, and a routing net-
work used by each agent to generate its routing, i.e., connect-
ing weights across modules at each time step. In particular,
to enhance the identification of different routing, a mutual
information regularization between the routing and the be-
havior of the agent is further proposed. In the following, we
will present the network architecture of ADMN and elaborate
on the mutual information regularization. The framework of
ADMN is provided in Figure 3.

Agent-v
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Figure 3: ADMN consists of a base modular network shown at the
left center, and a routing network at the right center with the input
of the agent identity and observation. Different color slices are re-
lated to routing paths of different agents. The mutual information
regularization is shown on the top right to strengthen the influence
of different agents routing on the agent observation transitions.

4.1 Routing Network
As depicted in Figure 3, the model of ADMN consists of
a base modular network, and a routing network, where the
latter assists each agent to configure the module connec-
tions in adjacent layers. Specifically, we employ soft in-
stead of hard modularization, where the routing network out-
puts probabilities to weight the modules instead of determin-
ing discrete routing paths, and is trained with the base net-
work together. As discussed in [Rosenbaum et al., 2019;
Yang et al., 2020], the joint optimization of the hard routing
network and the base network is unstable, and hard modular-
ization introduces higher variation along with the exploration
in the environment.

To learn the routing of agents with desired properties, we
encode the routing in a stochastic embedding space, and the
routing of agent u, denoted as, pu ∈ Rdim, is drawn from
a multivariate Gaussian distribution, N(µpu

, σpu
). At each

time step t, the inputs of the routing network contain the agent
identity zu, which is a one-hot vector representing each agent,
and the current observation of the agent otu to adapt the rout-
ing to the dynamic environment. First, the observation un-
dergoes processing through a one-layer MLP and a GRU unit
to obtain its representation, f(otu) ∈ RD, and the identity is
processed by a one-layer MLP and obtain h(zu) ∈ RD. Then
ptu is calculated based on the representation of its observa-
tion and identity. Assuming there are L module layers with
each layer m modules, the output dimension of the routing
network is dim = (L − 1) × m × m + m (the last m rep-
resents the weights of the modules in the last module layer).
The output of the routing network for agent u is:

(µt
pu
, σt

pu
) = G(ReLU(f(otu) · h(zu))),

ptu ∼ N(µt
pu
, σt

pu
),

(1)
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where G is the parameters of fully-connected layers. Then
the routing vector ptu is subsequently spilt into the connection
weights of different modules in adjacent layers. Addition-
ally, a softmax function is applied to normalize the weights
pointed to the same module, that is:

p̂l;ti,j;u =
exp(pl;ti,j;u)∑m
j=1 exp(p

l;t
i,j;u)

, (2)

where p̂l;ti,j;u is the probability weighting the contribution of
the jth module in the l layer to the ith module in the l + 1
layer, utilized by agent u at time step t. With Eq. 1 and Eq. 2,
we can obtain weights connecting modules in adjacent layers
for each agent at each time step.

4.2 Base Modular Network
As mentioned above, the base modular network contains L
layers, each with m modules, and connecting weights of mod-
ules are generated by the routing network. We denote the in-
put for the jth module in the l layer is a d-dimensional feature
gl;tj;u ∈ Rd, then the input feature for the ith module in the l+1
layer can be expressed as:

gl+1;t
i;u =

m∑
j=1

p̂l;ti,j;u

(
ReLU(W l

jg
l;t
j;u)

)
, (3)

where W l
j represents the parameters of the jth module in the

l layer. And the output of local utility function of agent u is:

Qt
u = F

 m∑
j=1

p̂L;t
j;u(ReLU(WL

j gL;t
j;u))

 , (4)

where F is the parameter of the last layer MLP in the lo-
cal utility function network, and p̂Lj represents the weights
of module outputs in the L layer to the last layer MLP in
the local utility function network. With Eq. 3 and Eq. 4, we
can calculate the weighted sum of different module outputs
by the probabilities produced by the routing network. Con-
sequently, driven by the observation and the identity of each
agent, the inputs of different agents will flow into similar or
different forward paths, yielding corresponding outputs, i.e.,
their action-value utilities Qu.

4.3 Mutual Information Regularization
In ADMN, we want agents with different routing paths to
generate diverse behavior and prevent different routing from
collapsing into similar behavior. To further strengthen the in-
fluence of different routing, we introduce an auxiliary objec-
tive to maximize the mutual information between the routing
ptu and the agent’s behavior.

As discussed in [Eysenbach et al., 2018], different actions
may yield similar effects on the environment and are indis-
tinguishable, like different force values applied by a robotic
to grasp a cup which does not move. In this paper, to enable
the identification of routing based on the agent’s behavior,
and make the influence of the routing visible, we associate
the agent routing with observable agent observation transi-
tions rather than agent actions. Concretely, we introduce a

conditional mutual information restriction between the agent
routing and its next observation conditioned on the current
observation of the agent, which is:

I(ptu; o
t+1
u |otu) = H(ptu|otu)−H(ptu|ot+1

u , otu)

= H(ot+1
u |otu)−H(ot+1

u |ptu, otu)
= ED

[
log p(ot+1

u |ptu, otu)− log p(ot+1
u |otu)

]
,

(5)
where D is the replay buffer.

Since the probabilities p(ot+1
u |ptu, otu) and p(ot+1

u |otu)
are unknown, we introduce the variational distribution
qξ(o

t+1
u |ptu, otu) and qζ(o

t+1
u |otu) parameterized by ξ and ζ

as a proxy, obtaining an approximation of the optimization
objective:

I(ptu; o
t+1
u |otu) ≈ ED

[
log qξ(o

t+1
u |ptu, otu)− log qζ(o

t+1
u |otu)

]
.

(6)
To affect the training of all parameters in the agent network,
we derive an auxiliary reward to optimize the above objective:

rIt = Eu

[
log qξ(o

t+1
u |ptu, otu)− log qζ(o

t+1
u |otu)

]
, (7)

which will be combined with the extrinsic reward to guide
agents training. More details are discussed in Appendix.

4.4 Overall Learning Objective
In this section, we introduce the overall learning objective of
ADMN. Specifically, we add the auxiliary reward discussed
in Eq. 7 to the extrinsic environmental rewards r, and uti-
lize the following temporal-difference (TD) loss [Sutton and
Barto, 2018] to optimize the model parameters in ADMN:

LTD =
(
ytott −Qtot(τt,at)

)2
, (8)

where Qtot is the output of the mixing network with the in-
put of the utility of each agent Qt

u, calculated in Eq. 4. And
ytott = r̂t + γQ̂tot

(
τt+1, argmaxat+1

Qtot (τt+1,at+1)
)

,
where r̂t is the combination reward of the auxiliary reward
rIt and the environment reward rt with combination weight
β, and Q̂tot is the target network periodically copied from
Qtot for stable training as proposed in [Mnih et al., 2015].
The action input to the target network is chosen by Qtot as
advised by [Van Hasselt et al., 2016].

5 Experiments
We conduct experiments to answer the following questions:
1) Is ADMN more effective in balancing efficiency and di-
versity in complex cooperative tasks? 2) How does each por-
tion contribute to ADMN, such as the design of the modular
network, and the information-theoretical regularization? 3) Is
the routing learned by each agent dynamic and reasonable? 4)
What is the influence of different routing on the agent behav-
ior? In the following, we will first introduce the environment
used for evaluating our method and the baseline methods for
comparison, then answer the questions above one by one.

5.1 Experimental Setup
We evaluate ADMN and baselines in the challenging Star-
Craft II micromanagement tasks (SMAC) and the Google
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Figure 4: Training curves of different methods in SMAC tasks. In tasks with a larger number of homogeneous agents (27m vs 30m) or
heterogeneous agents (1c3s8z vs 1c3s9z), ADMN outperforms naive parameter sharing or no parameter sharing methods, highlighting the
efficacy of its dynamic balance between efficiency and diversity across tasks with different requirements of agent diversity.

Research Football (GRF). The task in SMAC is a two-team
battle game, where the algorithm needs to guide controlled
alley agents to eliminate all enemy units in the other team.
GRF provides an environment where agents are trained to
play football in a physics-based 3D simulation. We evalu-
ated our method on 3 challenging GRF offensive scenarios,
academy 3 vs 1 with keeper, academy counterattack easy,
and academy counterattack hard, where agents need to co-
ordinate to organize the offense in different initial positions.
Different from the dense rewards setting in SMAC, agents in
GRF will only be rewarded when scoring goals.

To evaluate the effectiveness of ADMN, firstly, we com-
pare it with current state-of-the-art methods that focus on
the parameter sharing issue. We provide the results of
QMIX [Rashid et al., 2018], which adopts naive parame-
ter sharing mechanism, CDS [Li et al., 2021], which incor-
porates agent diversity with individual network heads, and
SePS, which utilizes selective parameter sharing by group-
ing agents before cooperative learning. Specially, we mi-
grate SePS from the policy-based algorithm to the value-
based algorithm named SePS-V for a fair comparison, and
provide the comparison among policy-based algorithms in
Appendix. Additionally, we also provide the comparison with
methods related to task decomposition. Specifically, we com-
pare with RODE [Wang et al., 2021b], which decomposes
the task according to the division of the action space, and
LDSA [Yang et al., 2022], which first learns several sub-
task representations, then assigns agents to the subtask ac-
cording to learned agent representation. Results of the base-
lines we compare with are obtained using the publicly avail-
able code released by their authors. Referring to existing
MARL methods [Samvelyan et al., 2019; Wang et al., 2021b;
Li et al., 2021], each algorithm is evaluated using 5 indepen-
dent training runs with different random seeds, and the result-

ing plots include the median performance shown in dark color
as well as the 25%-75% percentiles shown in the shaded area.

We conduct the experiment of ADMN with the setting that
the number of module layers L is 2, the number of modules
in each layer m is 2, and each module outputs a d = 32 repre-
sentation. And β weighing the environment rewards and the
auxiliary rewards is 0.05. More details about the environment
and training are provided in Appendix.

5.2 Performance on SMAC

To evaluate the balance of ADMN between efficiency and
diversity, we evaluate ADMN and baselines in homoge-
neous SMAC maps with varying numbers of agents, as
well as heterogeneous maps with different numbers of unit
types. In homogeneous tasks, necessary parameter shar-
ing is crucial for training efficiency, while in heteroge-
neous tasks, necessary diversity is essential to achieve so-
phisticated coordination. Results are shown in Figure 4,
where in larger homogeneous or more heterogeneous coop-
erative tasks, such as 27m vs 30m and 1c3s8z vs 1c3s9z,
ADMN outperforms both naive parameter sharing methods
like QMIX, and diversity-based methods like CDS or SePS-
V. This comparison highlights that, a dynamic and adaptive
balance is effective both for tasks that demand training ef-
ficiency and for tasks that require diverse agent capabilities.
Besides, we found that CDS exhibits better performance in
small-scale homogeneous cooperative tasks but falls short in
larger tasks. This result justifies that such fixed diversity pat-
tern with individual networks may sacrifice the efficiency of
parameter sharing, and is inefficient when scaled to tasks with
a large number of agents. Results on other hard SMAC tasks
are provided in Appendix, where ADMN is still comparable
or even better than baselines.
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Figure 5: The training performance of various methods in GRF tasks. The consistently superior performance of ADMN underscores its
effectiveness in enabling agents to strike an advanced balance, facilitating the discovery of sophisticated and coordinated policies.
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Figure 6: Ablation studies of the design in the routing network and base modular network in task 7sz and academy counterattack easy.

5.3 Performance on GRF
We further compare ADMN with baselines in challenging
football games GRF, and results are presented in Figure 5.
In Figure 5, ADMN consistently outperforms baselines in
these three scenarios. Considering that tasks in GRF are in a
sparse-reward setting and ask for more sophisticated coordi-
nation, ADMN’s superior performance underscores its effec-
tiveness in striking a more efficient balance, enabling agents
to discover advanced coordinated policies. Besides, we notice
that task decomposition methods like RODE, which performs
relatively better in SMAC tasks, do not fare as well in GRF
tasks. We posit that this phenomenon arises because RODE
decomposes the entire task based on the decomposition of the
action space, which is beneficial for SMAC tasks but does
not apply to others. On the contrary, without introducing any
task-related prior knowledge, ADMN finds an adaptive trade-
off between the efficiency and diversity in multiple tasks in
an end-to-end manner.

5.4 Ablation Studies
To investigate the significance of different portions in
ADMN, we conduct ablation studies. First, considering that
the introduction of the modular network enlarges the size of
the agent network, we present the results of QMIX Large,
i.e., QMIX with similar size of the agent network in ADMN.
Then for the routing network, we ablate the mutual infor-
mation regularization in ADMN (ADMN No MI). Addition-
ally, we ablate the input of the routing network, namely the
agent observation and identity and obtain ADMN no obs and
ADMN no id. Figure 6(a) illustrates the comparison of dif-
ferent ablations in SMAC task 7sz. Results indicate that the
performance gains from increasing the network parameters

are limited. Besides, the mutual information regularization
indeed impacts the learning efficiency. Furthermore, note that
both ADMN no obs and ADMN no id perform worse than
ADMN, highlighting the importance of both identity and ob-
servation for the routing network in this SMAC task.

Besides, we conduct ablation studies on the base mod-
ular network design in ADMN. ADMN utilizes a modu-
lar network with 2 layers, and each layer has 2 modules
with 32 neural units. We varied the network depth by re-
placing the number of layers with 1 (ADMN Layer 1) and
4 (ADMN Layer 4). Additionally, we explored configu-
rations with 4 modules in each layer, featuring either 16
units (ADMN Module 4, maintaining the same unit count as
ADMN) or 32 units (ADMN Wider). Figure 6(b) reveals that
all ablations outperform the baseline QMIX. However, unlike
modular networks with shallow layers, the deeper modular
network (ADMN Layer 4) is a little hard to train. Further-
more, ADMN Module 4, the algorithm with a smaller num-
ber of unit sizes, is inferior to ADMN Wider and ADMN,
illustrating that the unit size in each module is crucial for en-
suring adequate module specialization.

We extend above ablation studies to the GRF task
academy counterattack easy in Figure 6(c, d). Similarly, re-
sults show that naively increasing the network parameters can
not improve the performance effectively, and mutual informa-
tion regularization is important. Notably, in the routing net-
work, the absence of agent observation has a more adverse
impact on performance than the absence of agent identity.
This underscores the heightened importance of observation
input for adaptive coordination in such dynamic tasks. In
the design of the base modular network in the GRF environ-
ment, considering tasks in GRF are based on physics engine
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Agent 4

7sz, 𝑡=0 10m_vs_11m,  𝑡=0 10m_vs_11m, 𝑡=5 10m_vs_11m, 𝑡=28

Agent 4

Agent 6
Agent 5Agent 8

Agent 6 Agent 8

Agent 5

Figure 7: The visualization of agents’ positions and health (top row)
and their related routing embedding via t-SNE (bottom row). The
first column illustrates the visualization in heterogeneous task 7sz,
where ADMN learns to distinguish agents by their positions and unit
types. The last 3 columns showcase the visualization in homoge-
neous task 10m vs 11m at different time steps, where the routing is
dynamically related to the agents’ position (t=5) and health (t=28).

and own more complex observation and action space, ADMN
is relatively sensitive. While most ablations improve perfor-
mance compared to QMIX, increased oscillation is observed,
and a deeper modular network contributes minimally. More
ablation studies are provided in Appendix.

5.5 Visualization of Routing
We analyze agents routing and visualize the probability pu
of each agent via t-SNE [Van der Maaten and Hinton, 2008].
Results are presented in Figure 7. The first column depicts
initial positions and learned routing embedding of agents in
task 7sz. The last three columns show the states and t-SNE
of routing samples about agents in 10m vs 11m at different
time steps. Notably, colored circles in snapshots represent
agents controlled by ADMN, green bars depict the health of
controlled agents at different time steps, and black circles rep-
resent the enemies controlled by the environment.

In task 7sz, circles in red and blue represent two unit
types (zealot and stalker) separately. Results demonstrate
that ADMN enables agents to learn distinct routing policies
based on their unit type. In homogeneous task 10m vs 11m,
when t is 0, our controlled agents gather together, and ADMN
learns 10 separate clusters one for each agent. When t is 5,
agents adopt a loose formation to gain a larger attack range,
with routing policies of agents in close positions visually con-
verging. When t is 28, with the battle goes on, agents vary
in health and positions. Notably, routing of died agents is
mixed. For surviving agents, routing embedding of healthier
agents, like agents 4 and 6, is close yet distinct from agents
with closer positions but lower health values. This observa-
tion indicates that ADMN learns to categorize agents based
on both position and health, facilitating adaptable parameter
sharing. The visualization of agents’ routing at different time
steps or tasks justifies that ADMN adeptly generates dynamic
and reasonable routing for agents based on their conditions.

In addition to visualizing agents’ routing, we aim to fur-
ther investigate the impact of different routing strategies on
agents. Considering that ADMN employs a soft routing
paradigm with an infinite number of possible routing, we
sample a subset and analyze their influence. Figure 8 illus-
trates examples of routing focusing more on the left branch

Both branches The left branch The right branch

The t-SNE results of observation transitions Average change in enemy health

Average change in ally distance

Figure 8: The visualization depicts the impact of agents’ routing on
agent observation transitions. Distinct routing leads to varied obser-
vation transitions, promoting diverse behaviors exhibited by agents.

(blue), the right branch (orange) and both branches (green).
Note that the mutual information regularization in Eq. 5 en-
courages the relation of the routing and the observation transi-
tion of agents, hence we present the t-SNE results of observa-
tion changes in consecutive time steps of agents in the bottom
left in Figure 8. The visualization reveals that distinct routing
results in different observation transition distributions.

To delve deeper into the detailed influence of different rout-
ing, we plot the average change in observation related to
these three routing on the right of Figure 8. Results indi-
cate that the routing focusing on both branches has no impact
on the agent observation, which might be adopted by dead
agents. Besides, left-branch-focused routing reduces the dis-
tance between the agent and its allies, and increases the ob-
served health of enemies. Given the partial observability of
agents, the rise in enemies’ health signals increased chances
of agent-enemy encounters, where enemies become visible
with positive health values instead of zero. And this rout-
ing may lead to behaviors resembling support for attacked
allies. Conversely, right-branch-focused routing enlarges the
distance to both allies and enemies, considering the changes
in enemy health are nearly opposite to the left branch, sug-
gesting behaviors akin to recuperation away from the battle-
field. The visualization in Figure 8 illustrates the nuanced
influence of different routing on agents, contributing to the
enrichment of behavioral diversity.

6 Conclusion
In this paper, we introduce ADMN, a novel framework in-
corporating an agent-driven modular network to address the
challenge of balancing training efficiency and agent diversity
in multi-agent cooperation. ADMN enables agents to dynam-
ically configure similar or distinct module routings in an end-
to-end manner, offering adaptability to diverse cooperative
tasks and dynamic environments. And the mutual informa-
tion regularization within ADMN enhances the identification
of different routing strategies. While ADMN demonstrates
superior performance in challenging cooperative tasks, the in-
terpretability of the learned modules remains an area for im-
provement. Future work will focus on investigating the spe-
cific roles and analyzing the importance of different modules
in ADMN for enhanced practical applications.
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Tamer Başar. Multi-agent reinforcement learning: A se-
lective overview of theories and algorithms. Handbook
of Reinforcement Learning and Control, pages 321–384,
2021.

[Zhang et al., 2021b] Tianhao Zhang, Yueheng Li, Chen
Wang, Guangming Xie, and Zongqing Lu. Fop: Factoriz-
ing optimal joint policy of maximum-entropy multi-agent
reinforcement learning. In International Conference on
Machine Learning, pages 12491–12500. PMLR, 2021.

[Zhou et al., 2020] Meng Zhou, Ziyu Liu, Pengwei Sui, Yix-
uan Li, and Yuk Ying Chung. Learning implicit credit as-
signment for cooperative multi-agent reinforcement learn-
ing. Advances in neural information processing systems,
33:11853–11864, 2020.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

310


	Introduction
	Related Work
	Preliminary
	Problem Formulation
	Centralized Training and Decentralized Execution

	Method
	Routing Network
	Base Modular Network
	Mutual Information Regularization
	Overall Learning Objective

	Experiments
	Experimental Setup
	Performance on SMAC
	Performance on GRF
	Ablation Studies
	Visualization of Routing

	Conclusion

