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Abstract
Iterated prisoner’s dilemma (IPD) and its variants
are fundamental models for understanding the evo-
lution of cooperation in human society as well as
AI systems. In this paper, we focus on multichan-
nel IPD, and examine how an agent should behave
to obtain generally high payoffs under this setting.
We propose a novel strategy that chooses to cooper-
ate or defect by considering the difference in the cu-
mulative number of defections between two agents.
We show that our proposed strategy is nice, retalia-
tory, and forgiving. Moreover, we analyze the per-
formance of our proposed strategy across different
scenarios, including the self-play settings with and
without errors, as well as when facing various op-
ponent strategies. In particular, we show that our
proposed strategy is invincible and never loses to
any opponent strategy in terms of the expected pay-
off. Last but not least, we empirically validate the
evolutionary advantage of our strategy, and demon-
strate its potential to serve as a catalyst for cooper-
ation emergence.

1 Introduction
The Prisoner’s Dilemma (PD) and its variants thereof are
arguably the best-known concepts of game theory. They
model the situations where agents can gain significant ben-
efits from cooperation but each faces a temptation to free
ride (or defect), and are fundamental models for understand-
ing the evolution of cooperation. It is well-known that while
mutual defection is the unique Nash equilibrium in a single
play of PD, the folk theorems show that the iterated play
of PD enables and sustains the emergence of cooperation
[Mailath and Samuelson, 2006; Wang et al., 2022; Chu et
al., 2022]. This naturally raises a question which has at-
tracted much interest over the past decades—what a success-
ful strategy should be in the IPD [Nowak and Sigmund, 1992;
Press and Dyson, 2012; Wang and Lin, 2020; Baker, 2020;
Zhao et al., 2022].

∗Corresponding Author

For a strategy to be successful, a typical criterion since
the celebrated Axelord’s tournaments is that it can result in
generally high payoffs against other strategies [Axelrod and
Hamilton, 1981]. Numerous strategies have been put forth
towards this end (see reviews [Hilbe et al., 2018] and ref-
erences therein). However, on the downside, it has been
shown that there is no universally optimal strategy in terms of
evolutionary stability or robustness against indirect invasions
[Selten and Hammerstein, 1984; Farrell and Maskin, 1989;
Van Veelen, 2012; Garcı́a and van Veelen, 2016]. That
said, three principles have been identified to underlie various
successful strategies [Miller, 1985; Lerer and Peysakhovich,
2017]: (i) be nice, i.e. never be the first to defect, (ii) be
retaliatory, i.e. be able to retaliate when faced with an oppo-
nent’s defection, and (iii) be forgiving, i.e. be able to resume
cooperation after the opponent’s defection.

This paper addresses the above challenge focusing on a
notable recent development of the theory on IPD—the mul-
tichannel IPD. Donahue, Hauser, Nowak & Hilbe [2020] in-
troduced this concept to extend IPD in order to better reflect
real-world scenarios where agents can interact over multiple
games (or channels) concurrently; for example, scientists col-
laborate on several projects, and negotiation agents buy/sell
multiple products. In contrast to the traditional IPD, this mul-
tichannel extension enables agents to leverage their strategies
in one channel to influence the outcomes in another. A timely
example is the cooperation between Microsoft and OpenAI.
While these two organizations can compete directly in mul-
tiple markets, Microsoft offers the data center infrastructure
and cloud services to support OpenAI’s research and develop-
ment; in return, OpenAI’s large language models GPT-series
provide Microsoft with innovative tools that can be integrated
into various applications, like Copilot and Office apps. Con-
sequently, the multichannel IPD can increase agents’ bar-
gaining power to promote overall cooperation across multi-
ple channels. However, as one can expect, such an interde-
pendency across multiple channels also adds more complex-
ity to the design of a successful strategy, which exacerbates
the aforementioned challenge. In particular, as we shall show
in our preliminary experiments (Figure 1), the two existing
strategies for multichannel IPD, namely the multichannel-
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Win-Stay-Lose-Shift (WSLS) and Cooperate if Coordinated
(CIC) [Donahue et al., 2020], are nice and forgiving though,
they cannot sufficiently retaliate; specifically, they are vul-
nerable to long-lasting exploitation from the always defecting
(ALLD) strategy, and can lose to other common strategies.

In light of this gap, this paper proposes a new, successful
strategy for multichannel IPD, which is abbreviated as MC-
SUC for simplicity. Our proposed strategy tracks the cumula-
tive number of times each agent has defected across all chan-
nels; then it responds with (i) full cooperation in all channels,
(ii) partial cooperation in a single channel, or (iii) full defec-
tion in all channels. The rationale behind our strategy is as
follows: if so far an agent’s opponent has defected less often
than the agent itself, the agent may choose to fully cooperate.
On the contrary, if an agent’s opponent has defected more
frequently, surpassing certain tolerance thresholds, the agent
may choose to defect partially in some channels or even com-
pletely in all channels. We show that MCSUC, embodying
the concept of cumulative reciprocity [Li et al., 2022], inher-
ently adheres to the three principles of niceness, retaliation,
and forgiveness.

To better understand the successfulness of MCSUC in the
sense that whether it leads to generally high payoffs, we the-
oretically analyze its performance and stability under vari-
ous scenarios. We show that if both agents adopt MCSUC
(i.e. under the self-play setting), complete cooperation across
all channels is achieved in the absence of any ‘trembling
hand’ errors (Theorem 1); even when such errors are present,
agents’ expected cooperation rate and expected payoffs are
nearly optimal (Proposition 1). We also show that when
playing against the ALLD strategy, MCSUC readily retali-
ates and effectively avoids long-time exploitation (Theorem
2), as opposed to the existing strategies multichannel-WSLS
and CIC. In contrast, when playing against the always cooper-
ating (ALLC) strategy, MCSUC resists the temptation to ex-
ploit the opponent (Theorem 3). Additionally, we then show
that under certain conditions, MCSUC is fair and is able to
ensure the same expected payoff as that of any opponent strat-
egy (Theorem 4). Perhaps most interestingly, we show that
MCSUC is invincible in the sense that its resulting expected
payoff is always equal to or greater than that of any oppo-
nent strategy, regardless of the presence of errors (Theorem
5 and Corollary 1). Put differently, this ensures that MC-
SUC will never lose to any opponent strategy and sometimes
even outperform in terms of the expected payoff. Last but not
least, we show that under the self-play setting, MCSUC is a
Nash equilibrium strategy as well as a subgame perfect equi-
librium strategy in the absence of errors (Theorem 6), and is
an approximate Nash equilibrium strategy given a sufficiently
small error rate (Theorem 7). In other words, MCSUC is sta-
ble under the self-play setting.

The above theoretical analyses consider games in which
agents do not change their strategies. This kind of analysis
is useful to explore a strategy’s basic properties, but it does
not take into account if agents have an incentive to adopt
these strategies in the first place [Nowak and Sigmund, 1992].
To explore this latter question, we complement our theoreti-
cal analysis with two sets of evolutionary experiments: two-
strategy populations as well as three-strategy populations,

and let agents’ strategies evolve. In each two-strategy pop-
ulation, we consider MCSUC and one of the ten strategies:
multichannel-WSLS, CIC, ALLC, ALLD, Tit-for-Tat (TFT)
[Axelrod and Hamilton, 1981], Generous Tit-for-Tat (GTFT)
[Nowak and Sigmund, 1992], HardMajority [Mittal and Deb,
2009], the cumulative reciprocal strategy (CURE) [Li et al.,
2022], and the extortion as well as generous strategy [Press
and Dyson, 2012]. While multichannel-WSLS and CIC were
tailored for multichannel IPD, the rest were originally de-
signed for traditional IPD. Thus, for comparison, we extend
them to our setting by applying them to each channel. The
population dynamics illustrate that MCSUC successfully in-
vades nine out of the ten strategies, and thus is evolution-
arily more advantaged than those nine strategies. The only
exception that our strategy fails to invade is the ALLC strat-
egy. However, such a failure to invade the ALLC strategy
in evolutionary populations is common for IPD [Axelrod and
Hamilton, 1981; Nowak and Sigmund, 1993], and the ALLC
strategy itself is highly susceptible to the ALLD strategy. Mo-
tivated by this, we then consider the three-strategy population
where initially there co-exist MCSUC, the ALLC strategy,
and the ALLD strategy. We observe that over time, the pres-
ence of our strategy leads to the near disappearance of the
ALLD strategy and the stable co-existence of MCSUC and
the ALLC strategy. In other words, our strategy can protect
the ALLC strategy from exploitation, thereby promoting and
sustaining cooperation in evolutionary populations.

To summarize, our key contributions are as follows:

• Empirical analyses of the limitations of multichannel-
WSLS and CIC, illustrating that they are vulnerable to
long-lasting exploitation and can lose to multiple com-
mon strategies.

• A novel, nice, retaliatory, forgiving, and invincible strat-
egy MCSUC for the multichannel IPD, and theoretical
analyses that validate its successfulness and stability un-
der multiple scenarios.

• Evolutionary experiments with two-strategy and three-
strategy populations, demonstrating MCSUC’s evolu-
tionary advantage over nine other strategies, and its ca-
pability to promote and sustain cooperation in evolution-
ary populations.

2 Related Work
Cooperation in IPD and the variants thereof has attracted
much interest in multiple areas, ranging from multi-agent sys-
tems to game theory and computational social science [Vinit-
sky et al., 2023; Foerster et al., 2018; Leibo et al., 2017;
Lu et al., 2022]. The TFT strategy won the championship in
the celebrated Axelrod’s tournament [1981]. Later, numerous
strategies were proposed, and in particular, GTFT and WSLS
were shown to significantly outperform TFT [Nowak and Sig-
mund, 1992; Nowak and Sigmund, 1993]. These early works
typically evaluate the strategies through evolutionary simu-
lations. More recently, an emergent line of research targets
strategies that allow for theoretical characterization of the
payoff relationship between agents. Press and Dyson [2012]
discovered the Zero-Determinant (ZD) strategy, showing that
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Figure 1: Two-player experiments, in which one agent employs the multichannel-WSLS/CIC strategy, while the opponent uses the ALLD,
HardMajority, or the extortion strategies. The error rate is ϵ = 10%. Both the multichannel-WSLS and CIC tend to be exploited in the long
term by the ALLD, HardMajority, and the extortion strategies.

in IPD, an agent can unilaterally enforce a linear relationship
between its own payoff and the opponent’s payoff. In par-
ticular, as a subset of ZD strategies, extortion strategies are
able to enforce an extortionate linear relation between agents’
payoffs [Lu et al., 2022]. Akin [2016] moved beyond ZD
strategies and proved that in the IPD, agents can fix the up-
per bound of the opponent’s expected payoff through Akin’s
“good” strategy. Wang and Lin [2020] proposed the concept
of invincibility and showed that in the absence of errors, the
extortion strategies, TFT, as well as a proportion of Akin’s
“good” strategies, satisfy invincibility. Generalizing Akin’s
approach, Hao et al. [2018] and Li et al. [2019] established
frameworks to allow agents to control their payoffs and their
opponents’ payoffs within a feasible region, thus enforcing
the game towards mutual cooperation. Li et al. [2022] pro-
posed the CURE strategy based on the principle of cumulative
reciprocity, which can ensure fairness for any opponent strat-
egy in terms of the same expected payoffs. However, all the
aforementioned strategies were designed for traditional IPD.
We summarize whether these strategies satisfy goodness, re-
taliation, forgiveness, and invincibility (with or without the
presence of errors) in Appendix Section 6.

The multichannel-WSLS and CIC are the two existing
strategies designed for multichannel IPD [Donahue et al.,
2020]. Our proposed strategy differs from these two strate-
gies from two perspectives. First, these two strategies deter-
mine an agent’s action choice in the current round based on
the outcome of the last round, and do not have the cumulative
characteristic of past interactions, as opposed to our proposed
strategy. More importantly, these strategies are not invincible.
When faced with exploitative strategies (like ALLD and most
extortion strategies), they are periodically exploited without
being able to retaliate effectively.

3 Background and Preliminary Experiments
In this section, we describe the multichannel IPD,
multichannel-WSLS, and CIC. Moreover, we empirically il-
lustrate the limitations of these strategies.

3.1 Multichannel IPD
In a multichannel IPD [Donahue et al., 2020], agents interact
with each other through various channels, and each channel
is an infinitely IPD. For ease of presentation, we consider the
two-channel IPD in this paper, however, the generalization of

our theory to more than two channels is straightforward. In
each channel (or game) k ∈ {1, 2}, the game consists of two
agents X and Y , and each agent chooses to either cooperate
(C) or defect (D). If both choose to cooperate, they receive a
payoff of R. If one agent cooperates while the other defects,
the defector gains a temptation payoff T while the cooperator
receives a sucker’s payoff S. If both defect, they face a pun-
ishment payoff P . This can be represented by the following
payoff bi-matrix:

C D
C (Rk, Rk) (Sk, Tk)
D (Tk, Sk) (Pk, Pk)

(1)

where the payoff values must satisfy the conditions T > R >
P > S and 2R > T + S. Under these conditions, mutual
cooperation is superior to mutual defection, while defection
is the dominant strategy for both agents. Therefore, the game
embodies the tension between individual interest and collec-
tive interest.

The expected cooperation rate in the game is defined as
the expected number of rounds in which an agent cooperates.
Consider a focal agent X , let akX(t) represent X’s action in
channel k in round t. Its expected cooperation rate is

ρX = lim
T→∞

1

2T

T∑
t=1

2∑
k=1

I(akX(t) = C), (2)

where I(akX(t) = C) is an indicator function such that
I(akX(t) = C) = 1 if agent X cooperates in game k at round
t, and I(akX(t) = C) = 0 otherwise.

The expected payoff can be defined similarly. Let rkX(t)
represent agent X’s payoff in channel k at round t. Its ex-
pected payoff in channel k is given by

rkX = lim
T→∞

1

T

T∑
t=1

rkX(t). (3)

Summing up the expected payoff in every channel yields its
expected payoff in a two-channel PD, that is, rX = r1X + r2X .
Likewise, we can obtain agent Y ’s expected cooperation rate
ρY and expected payoff rY in a similar fashion.

3.2 Multichannel-WSLS and CIC
By the multichannel-WSLS, an agent will cooperate in game
k only if both the opponent agent and itself previously took
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the same action in that game. By the CIC, an agent will fully
cooperate in all channels if the agent and its opponent choose
the same action in the last round, but will defect otherwise.

Consider an agent X that adopts the multichannel-WSLS
or CIC. For a two-channel IPD, suppose that in a given round
t, both the agent X and its opponent choose to defect; then
in the next round t+ 1, agent X will choose to cooperate, no
matter whether its opponent is exploitative or not. That is to
say, even if its opponent always defects, agent X will imme-
diately return to cooperation once it chooses to defect just like
what its opponent consistently does; in this case, agent X will
be periodically exploited by the always defecting opponent.

Inspired by this observation, we hypothesize that these two
strategies are vulnerable to long-lasting exploitation, and may
easily lose to exploitative strategies. To test this hypothe-
sis, we conduct experiments and pair a multichannel-WSLS
or CIC agent with an opponent that adopts one of the three
types of exploitative strategies: the ALLD strategy, Hard-
Majority, and the extortion strategy. Note that the extortion
strategy involves a large class of strategies; we select two of
them that stand for different levels of extortion. We consider
1, 000, 000 rounds for each pair, and the average payoff per
round is shown in Figure 1.

It is clear that under all these scenarios, the average pay-
off of the multichannel-WSLS or CIC agent is significantly
lower than that of the opponent. This indicates that both the
multichannel-WSLS and CIC lose to these strategies, as they
can be exploited by these strategies over a long-lasting pe-
riod. In addition to the scenarios with a error rate of ϵ = 10%
shown in Figure 1, we also conduct experiments with a lower
error rate ϵ = 1% and illustrate the results in Appendix Sec-
tion 3. The results in both cases are broadly consistent.

4 A Successful Strategy for Multichannel IPD
In this section, we propose a successful strategy for multi-
channel IPD. We consider that for every round, the action
choice of agent X in a two-channel IPD is influenced by the
difference in the cumulative number of defections between
two agents. Consider round t. Let nk

X(t) be the number of
rounds, in which agent X chose to defect in channel k, out of
the previous t− 1 rounds, i.e.

nk
X(t) =

n−1∑
t=1

I
(
akX(t) = D

)
, (4)

where I(akX(t) = D) is an indicator function such that
I(akX(t) = D) = 1 if agent X chooses defect in game
k at round t, otherwise, I(akX(t) = D) = 0. For agent
X , we define the cumulative number of defections to be
nX(t) = n1

X(t) + n2
X(t). Likewise, agent Y ’s cumulative

number of defections can be defined in a similar manner, and
we denote this by nY (t). Intuitively, for agent X , if its oppo-
nent Y has defected more frequently than itself, then agent X
may be more prone to defection. Let dX(t) = nY (t)−nX(t)
represent the difference in the cumulative number of defec-
tions between two agents accumulated over the previous t−1
rounds. Formally, we define our strategy MCSUC for iterated
multichannel PD as follows.

Definition 1. In a two-channel PD, let ∆X,1 and ∆X,2 be
agent X’s tolerance thresholds, such that ∆X,1 ≥ 1, ∆X,2 ≥
∆X,1 ≥ 1. At round t, agent X’s choice of actions is deter-
mined by the following rule:

• If dX(t) ≤ ∆X,1, agent X cooperates on both channels.
• If ∆X,1 < dX(t) ≤ ∆X,2, with probability p agent
X defects in channel 1 but cooperates in channel 2,
whereas with probability 1− p agent X defects in chan-
nel 1 but cooperates in channel 2.

• If dX(t) > ∆X,2, agent X defects in both channels.
Our proposed strategy MCSUC can be viewed as imple-

menting the concept of cumulative reciprocity [Li et al.,
2022] in the context of multichannel IPD. The key idea of
cumulative reciprocity is that it considers the entire history of
interactions rather than just the most recent interaction. Ac-
cording to Definition 1, if an agent employs our strategy, they
will conduct a cumulative evaluation based on all past ac-
tions of the opponent and themselves to determine whether
to fully cooperate, partially cooperate, or fully defect. The
values of ∆X,1 and ∆X,2 quantify the agent X’s tolerance in
two games—the larger the value, the higher the agent’s tol-
erance level. Probability p represents the agent’s preference
for action choices in different channels. The larger p is, the
greater the likelihood that agent X will defect in channel 1
and cooperate in channel 2. The smaller p is, the more likely
agent X will defect in channel 2 and cooperate in channel 1.

As for the extension of our strategy to more channels. Ev-
ery newly added channel will induce a new tolerance thresh-
old. For example, consider three channels, an agent X will
have three tolerance thresholds ∆X,1 ≤ ∆X,2 ≤ ∆X,3. In
principle, the agent will defect in more channels should the
cumulative number of defections dX(t) increase to exceed
certain thresholds. That is, if dX(t) ≤ ∆X,1, the agent coop-
erates in all channels; if ∆X,1 < dX(t) ≤ ∆X,2, the agent
defects in one channel but cooperates in the other two, and so
on so forth.
Niceness, retaliation, and forgiveness. Initially, MCSUC
will cooperate in both games due to dX(t) = 0. If the op-
ponent defects so frequently that the difference in the cu-
mulative number of defections between the two players ex-
ceeds MCSUC’s tolerance threshold (i.e. dX(t) > ∆X,1),
then MCSUC will opt to retaliate by defecting. This shows
that MCSUC is nice as it is never the first to defect; on the
other hand, this also indicates that MCSUC is retaliatory in
response to an opponent’s continuous defection. Moreover,
∆X,1 reflects the degree of retaliation, with a smaller ∆X,1

suggesting a lower likelihood of retaliating against the oppo-
nent. However, MCSUC will not retaliate endlessly. Once the
opponent opts for cooperation after frequent defections, the
difference in the cumulative number of defections between
the two players decreases. Once dX(t) < ∆X,1, MCSUC
will revert to cooperation, demonstrating its forgiveness.

5 Theoretical Analyses
In this section, we analyze the performance and stability of
our strategy MCSUC in various scenarios; the proofs are pre-
sented in Section 4 of the Appendix, due to the lack of space.
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5.1 Performance under Self-Play
To gain some first insights into the performance, we first an-
alyze the use of our strategy under the self-play setting, i.e.,
the multichannel IPD between two agents that both adopt our
strategy. In the following theorem, we show that our strat-
egy leads to the desired state of mutual cooperation in every
channel and every round:
Theorem 1. In a two-channel IPD, agents X and Y , both
using MCSUC, will always cooperate in both channels, lead-
ing to full cooperation. Their expected cooperation rates are
ρX = ρY = 1, and the expected payoffs are rX = rY =
R1 +R2.

Note that this theorem makes no assumption about the tol-
erance thresholds ∆X,1,∆X,2,∆Y,1,∆Y,2, or the payoff val-
ues as long as satisfying the mere requirement of being a PD
in each channel. Thus, under self-play, our strategy can result
in mutual cooperation.

This theorem, however, has not considered the presence of
errors; in the real world, an agent’s actions may be subject to
‘trembling hand’ errors. That is, when an agent chooses an
action, there is a uniform probability ϵ (0 ≤ ϵ < 0.5) that the
agent takes a different action. We take the presence of errors
into account in the following theorem:
Proposition 1. In a two-channel IPD with an error rate ϵ,
the expected cooperation rate for agents X and Y that both
use MCSUC are

ρX = ρY ≈ 1− ϵ+
ϵ− 2ϵ2

(2ϵ− 1)(∆X,1 +∆Y,1)− 1
, (5)

which monotonically increases as the error rate ϵ decreases,
or as the tolerance thresholds ∆X,1,∆Y,1 increase.

As the error becomes rare, the expected cooperation rate
increases; in particular, as ϵ → 0, the expected coopera-
tion rate tends to 1, which recovers the finding in Theo-
rem 1. Moreover, if the tolerance thresholds are sufficiently
large, the expected cooperation rates ρX , ρY are approxi-
mately 1−ϵ, which represents the theoretical maximum—the
highest achievable cooperation rate in the presence of error.
We give an analytic form of the expected payoff under this
setting in Section 4 of the Appendix.

Given that errors are typically unavoidable in the real
world, our subsequent analysis assumes their presence unless
otherwise stated.

5.2 Performance against ALLC or ALLD
Now, we consider the scenarios in which our proposed strat-
egy interacts with two common strategies: ALLC and ALLD.
The ALLD strategy manifests an extreme case of exploita-
tion by invariably choosing defects. By interacting with the
ALLD strategy, we can gauge the capability of our proposed
strategy to counteract the exploitation from the opponent. On
the other hand, the ALLC strategy represents another extreme
case of always choosing cooperation. Thus, the ALLC strat-
egy serves as a touchstone to test if our proposed strategy can
resist the temptation of exploiting others.

In the following theorem, we characterize the expected co-
operation rates and expected payoffs when our strategy inter-
acts with the ALLD strategy.

Theorem 2. In a two-channel IPD, suppose agent X uses
MCSUC while the opponent agent Y uses the ALLD strategy.
With error rate ϵ > 0, both agents have the same expected
cooperation rate ρX = ρY = ϵ, and have the same expected
payoff

rX = rY = ϵ2(R1 +R2) + (1− ϵ)2(P1 + P2)

+ ϵ(1− ϵ)(T1 + S1 + T2 + S2).
(6)

The expected cooperation rate ρX = ϵ implies that our
strategy mostly defects and effectively acts like the ALLD
strategy, when it is confronted with the ALLD strategy. More-
over, the same expected payoff as the ALLD strategy, shown
by rX = rY in Equation 7, suggests that our strategy
can avoid lasting exploitation from the ALLD strategy, as
opposed to the existing strategies (multichannel-WSLS and
CIC) [Donahue et al., 2020].

Likewise, we obtain the following result when our strategy
interacts with the ALLC strategy:

Theorem 3. In a two-channel IPD, suppose agent X uses
MCSUC while the opponent agent Y uses the ALLC strategy.
With error rate ϵ > 0, both agents have the same expected
cooperation rate, ρX = ρY = 1 − ϵ, and have the same
expected payoff

rX = rY = (1− ϵ)2(R1 +R2) + ϵ2(P1 + P2)

+ ϵ(1− ϵ)(T1 + S1 + T2 + S2).
(7)

The expected cooperation rate ρX = 1 − ϵ implies that
our strategy mostly cooperates, and effectively acts like the
ALLC strategy, when it is confronted with the ALLC strat-
egy. Thus, our strategy can resist the temptation to exploit
the other’s cooperation.

Putting Theorems 3 and 4 together, we conclude that
our strategy demonstrates the characteristics of a “partner”
strategy—returns cooperation for cooperation and returns de-
fection for defection—which has been previously identified
as the key to maintaining cooperation [Hilbe et al., 2018].

5.3 Fairness and Invincibility
Based on the aforementioned results, we additionally notice
an interesting finding: the expected cooperation rates of both
agents are always the same, regardless of the specific sce-
nario; this pattern also holds for the expected payoffs. This
inspires us to ask whether our proposed strategy can ensure
fairness in certain scenarios. We answer this question in the
following theorem.

Theorem 4. In a two-channel IPD, suppose agent X uses
MCSUC while the opponent agent Y uses a strategy α. For
any opponent strategy α, both agents always have the same
expected cooperation rate ρX = ρY . Moreover, if the two-
channel IPD satisfies (T1−S1)− (T2−S2) = 0, both agents
also have the same expected payoff rX = rY .

This theorem shows that under the condition (T1 − S1) −
(T2 − S2) = 0, our proposed strategy ensures fairness in
terms of the expected payoffs, no matter what strategy the
other agent plays. This condition refers to the scenarios where
the difference between the temptation to defect (denoted by
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T ) and the risk of being deceived (denoted by S) are the same
across different channels.

It is then natural to ask what happens when the aforemen-
tioned condition (T1 − S1) − (T2 − S2) = 0 is not satis-
fied. Interestingly, we show in the following theorem that our
proposed strategy can achieve invincibility in these scenar-
ios. That is to say, even though fairness is not guaranteed, our
strategy results in an expected payoff that is not smaller than
that of any opponent strategy.
Theorem 5. In a two-channel IPD, suppose agent X uses
MCSUC while the opponent agent Y uses a strategy α. For
any opponent strategy α, if (T1−S1)−(T2−S2) > 0, setting
p = 1 will result in rX ≥ rY . If (T1 − S1)− (T2 − S2) < 0,
setting p = 0 will result in rX ≥ rY .

Therefore, when (T1 − S1)− (T2 − S2) ̸= 0, by adjusting
the probability p of cooperating in channel 1 but defecting in
channel 2, our strategy never loses to any opponent strategy
in terms of the expected payoff.

Putting Theorem 4 and Theorem 5 together, we conclude
the performance of our proposed strategy against any oppo-
nent strategy as follows:
Corollary 1. In a two-channel IPD, suppose agent X adopts
our proposed strategy while the opponent agent Y uses a
strategy α. For any opponent strategy α, there always exists
a value of p (the probability that agent X defects in channel 1
but cooperates in channel 2) such that the expected payoff of
our strategy is not smaller than that of the opponent strategy,
i.e. rX ≥ rY .

Simply put, our proposed strategy can always ensure in-
vincibility, regardless of the opponent strategy. Note that this
capability of ensuring invincibility is a distinct property of
our proposed strategy. In contrast, the multichannel-WSLS
and CIC typically fail to ensure invincibility or fairness as we
have already shown in Figure 1.

5.4 Stability
Last but not least, we examine the stability of our proposed
strategy through equilibrium analysis. We focus on the self-
play settings, as the equilibrium analysis given any arbitrary
opponent strategy is typically intractable in IPD [Press and
Dyson, 2012; Akin, 2016].
Theorem 6. In a two-channel IPD without the presence of
errors, the strategy profile (MCSUC,MCSUC) is a Nash
equilibrium as well as a subgame perfect equilibrium.

This theorem indicates that in the absence of errors, if both
agents use our strategy, the strategy is stable in the sense that
no player can increase the payoff in the two-channel IPD as
well as in every subgame by unilaterally deviating from our
strategy. However, as we show in the following proposition,
this does not hold given the presence of errors:
Proposition 2. In a two-channel IPD with a positive error
rate ϵ > 0, the strategy profile (MCSUC,MCSUC) is not
a Nash equilibrium.

That said, under the self-play setting, even though the use
of our strategy does not lead to a Nash equilibrium, we show
in the following theorem that it results in an approximate
Nash equilibrium given a sufficiently small error rate:

Theorem 7. In a two-channel IPD with a positive error
rate ϵ > 0, given a non-negative ε̂, the strategy profile
(MCSUC,MCSUC) is an ε̂-equilibrium if

ϵ ≤ ε̂

max {max [(R1 − P1), (2R1 − S1 − T1)] ,

max [(R2 − P2), (2R2 − S2 − T2)]}.
(8)

For an ε̂-equilibrium, the strategy profile approximately
satisfies the condition of Nash equilibrium in the sense that
no players can gain more than ε̂ in the expected payoff by
unilaterally deviating from the equilibrium strategy [Rough-
garden, 2010]. Thus, this theorem shows that under the self-
play setting, given a sufficiently small error rate, the use of
our strategy is stable in the sense of satisfying the require-
ment of ε̂-equilibrium.

6 Evolutionary Experiments
In this section, we present two sets of evolutionary experi-
ments: two-strategy populations and three-strategy popula-
tions. More experiments that numerically validate our analyt-
ical results and examine the capability of our strategy in other
multichannel games are presented in the Appendix.

6.1 Two-Strategy Populations
To investigate if our strategy holds an evolutionary advantage,
we consider two-strategy populations and let agents’ strate-
gies evolve. One strategy is MCSUC with ∆1 = 2,∆2 =
4, and the other strategy can be multichannel-WSLS, CIC,
ALLC, ALLD, TFT, GTFT, HardMajority, CURE, the ex-
tortion strategy, or the generous strategy. We extend these
strategies to multichannel IPD, and consider the extension in
simulations. The details of these extensions are elaborated in
the Appendix Section 1.

For each simulation, there are two steps. First, we ob-
tain the average payoffs of two strategies in 1,000 simula-
tion runs each lasting for 1,000,000 rounds. The payoff ma-
trix is shown in Appendix Section 1. Then through a noisy
‘survival of the fittest’ environment with a mutation rate 10%
[Antal et al., 2009; Bodnar et al., 2020], we calculate the
strategies’ frequencies based on the average payoffs obtained
in the first step. Specifically, a noisy ‘survival of the fittest’
environment assumes a population of agents adopting each
of the two strategies. Whether an agent changes its strategy
is largely influenced by the fitness of each strategy, which is
deduced from the average payoffs obtained in the first step.
Our calculation of fitness follows Nowak and Sigmund’s ap-
proach [Nowak and Sigmund, 1992]. A strategy is said to be
able to invade if the strategy starts with a low initial frequency
but finally dominates the population. A simulation ends if the
frequency of each strategy no longer changes. This indicates
two possible steady states, that is, either the full invasion of
one strategy into the other or the stable coexistence of the two
strategies. It is noteworthy that different from the experiments
(shown in Figure 1) where one agent competes against an-
other agent, here we consider a large population of agents, in
which some agents employing the MCSUC compete against
other agents employing a different strategy.
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Figure 2: Two-strategy populations, where one strategy is MCSUC. The initial frequency of our strategy is 0.1% in most populations ((a)-
(e),(i),(j)) and lower than 50% in other populations ((f),(g),(h)). There are two cases of error rates: ϵ = 1% (solid line) and ϵ = 10% (dashed
line). The red line represents MCSUC, while the blue line represents the opponent’s strategy. Our strategy is evolutionarily more advantaged
than nine of the ten strategies except for the ALLC strategy.
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Figure 3: (a) A two-strategy population with only the ALLC and
ALLD. The ALLD strategy invades the ALLC strategy, leading to
the dominance of the ALLD strategy. (b) A three-strategy popula-
tion with the ALLC, ALLD, and MCSUC. Eventually, the ALLD
strategy almost disappears, and our strategy MCSUC and the ALLC
strategy stably co-exist. In both subplots, the error rate is ϵ = 10%.

As shown in Figure 2(a),(c)-(j), our strategy successfully
invades nine out of the ten strategies, except the ALLC strat-
egy. This means our strategy has an evolutionary advantage
against these strategies except the ALLC strategy. Remark-
ably, even with 0.1% of agents initially adopting our strat-
egy in the population, our strategy fully invades the ALLD,
HardMajority, TFT, GTFT, extortion, and generous strategies.
Moreover, with less than 50% of agents initially using our
strategy, our strategy fully invades the multichannel-WSLS,
CIC, and CURE strategy. We also note that our strategy
is risk-dominant compared to the multichannel-WSLS, CIC,
and CURE strategies.

When playing against the ALLC strategy (Figure 2(b)), our
strategy does not invade. Rather, at the end of the simulation,
our strategy and the ALLC strategy stably co-exist. We re-
mark that failures in an invasion against the ALLC strategy
are common in the research on IPD. Moreover, the ALLC
strategy itself can be invaded by the ALLD strategy (Figure
3(a)), the latter of which, in the other way around, can be in-
vaded by our strategy. This motivates us to ask what if the
ALLC, ALLD, and MCSUC coexist?

6.2 Three-Strategy Population
To answer the above question, we then consider a three-
strategy population (with the ALLC, ALLD, and MCSUC)
using a similar approach as in the two-strategy populations.
As shown in Figure 3(b), after 70 generations, the ALLD
strategy is almost eliminated from the population, while most
agents in the population adopt our strategy. Later, as our
strategy cannot invade the ALLC strategy, the number of
agents adopting the ALLC strategy increases, which even-
tually leads to the stable co-existence of our strategy and the
ALLC strategy. Because our strategy behaves like the ALLC
strategy when facing the ALLC strategy, the eventual stable
co-existence suggests that most of the agents will cooper-
ate. Therefore, although our strategy cannot invade the ALLC
strategy in the two-strategy population, our strategy can pro-
tect the ALLC strategy from exploitation in the three-strategy
population with the presence of the ALLD strategy, thereby
promoting and sustaining cooperation.

7 Conclusions
In this paper, we address the challenge of what a success-
ful strategy should be in the multichannel IPD. We start with
analyses of the existing strategies, showing that they are vul-
nerable to long-lasting exploitation and lose to some common
strategies. Motivated by this, we propose a novel strategy
that is nice, retaliatory, forgiving, and perhaps most inter-
estingly, invincible. We present extensive analytical results
regarding the performance and stability of our strategy under
various scenarios. Our key results remain applicable in games
with more channels. The expected cooperation rate will not
change as the number of channels increases. However, as
more channels will naturally induce additional payoff param-
eters to the games, the expected payoff will need to change by
taking into account these additional payoff parameters; nev-
ertheless, this involves just a re-calculation using our current
approach. Likewise, our proofs for fairness, invincibility, and
stability do not depend on the number of channels. Thus, even
with more channels, MCSUC will still enjoy these properties.
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