
Design a Win-Win Strategy That Is Fair to Both Service Providers and Tasks
When Rejection Is Not an Option

Yohai Trabelsi1 , Pan Xu2 , Sarit Kraus1

1Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
2New Jersey Institute of Technology, Newark, NJ, USA

yohai.trabelsi@gmail.com, pxu@njit.edu, sarit@cs.biu.ac.il

Abstract
Assigning tasks to service providers is a frequent
procedure across various applications. Often the
tasks arrive dynamically while the service providers
remain static. Preventing task rejection caused by
service provider overload is of utmost significance.
To ensure a positive experience in relevant applica-
tions for both service providers and tasks, fairness
must be considered. To address the issue, we model
the problem as an online matching within a bipar-
tite graph and tackle two minimax problems: one
focuses on minimizing the highest waiting time of
a task, while the other aims to minimize the highest
workload of a service provider. We show that the
second problem can be expressed as a linear pro-
gram and thus solved efficiently while maintaining
a reasonable approximation to the objective of the
first problem. We developed novel methods that uti-
lize the two minimax problems. We conducted ex-
tensive simulation experiments using real data and
demonstrated that our novel heuristics, based on the
linear program, performed remarkably well.

1 Introduction
In resource allocation, numerous problems can be represented
as online matching in bipartite graphs. One side of the graph
comprises service providers (interchangeably called work-
ers in this paper), while the other consists of allocated task
types. The graph’s edges indicate the qualifications of service
providers to perform tasks of specific types.

In online matching problems, a common scenario involves
one dynamic side and one static side. This dynamic-static
setup finds application in various contexts, such as match-
ing riders(dynamic) to drivers(static) [Dickerson et al., 2021],
connecting search queries(dynamic) to advertisers in spon-
sored search(static) [Delong et al., 2022], and facilitating the
teleoperation of autonomous vehicles (AVs) [Ackerman Vi-
den et al., 2023]. The primary objective in these problems is
to optimize some criteria from the perspective of the allocator.

Some other works are dedicated to optimizing allocation
fairness. For example, in the domain of ride-sourcing, a
method to achieve allocation fairness was proposed in [Les-
mana et al., 2019]. Additionally, certain studies address cases

where fairness should be maintained for both online tasks and
offline workers [Esmaeili et al., 2023].

Our work is motivated by the teleoperation of AVs that has
garnered increasing attention recently (e.g., [Zhang, 2020;
Ackerman Viden et al., 2023; Tener and Lanir, 2022]). The
primary role of teleoperation is to aid AVs by intervening
in challenging driving situations1. Ensuring a fair allocation
of teleoperators to driving tasks is crucial for enhancing the
satisfaction of both teleoperators and AVs’ users. Particu-
larly, if certain intervention requests have significantly longer
waiting times or if some teleoperators are disproportionately
busier than others, such imbalances can lead to dissatisfaction
among those affected. In addition, as a person in the vehicle
is awaiting the teleoperator’s intervention, a rejection of a re-
quest is unacceptable. Another property of this application
is that the teleoperators (workers) are reusable, which means
they are ready to perform a new intervention request (task)
once they finish a previously allocated request.

We model the problem as online matching in a bipartite
graph and propose several approaches to optimize fairness for
both the tasks (e.g., intervention requests) and the workers
(e.g., teleoperators) involved in the process. Our notion of
fairness is aligned with Rawls’ theory of justice [Rawls, 1999].

We introduce two minimax problems within the given con-
text. The first concerns fairness regarding tasks relative to
waiting times, while the second focuses on Rawlsian fairness
for service providers based on their workload. In both sce-
narios, task rejection is not permissible. We demonstrate that
the second problem can be efficiently formulated as a linear
problem. Notably, the solution to the second problem mir-
rors the first when task durations from each worker conform
to the same distribution. In cases where this isn’t true, we
show that the second problem’s solution approximates the
first problem’s solution, supported by a provable approxima-
tion ratio. Our study concludes with extensive simulations
that underscore the efficacy of these minimax problems. Fur-
thermore, we devise innovative heuristics that leverage the
minimax solutions. These heuristics enhance task fairness
while preserving favorable outcomes for worker fairness.

Our main contributions are: (1) We propose two mod-
els to promote fairness among tasks and workers. (2) We

1As mentioned in [Tener and Lanir, 2022], the AVs will need this
intervention, at least in the near future.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

257

present an LP-based algorithmic framework, which can ex-
actly solve fairness maximization among workers and approx-
imately among tasks, and we provide a tight approximation
bound. (3) We empirically implement and compare different
methods, including several baselines, on datasets involving
the teleoperation of AVs.

1.1 Related Work
In this section, we describe previous works about fair alloca-
tion and allocation with delays. Notably, to our knowledge,
our work distinguishes itself by being the first to consider
fairness and allocation delays together.
Fair allocation Some studies address fair allocation, focus-
ing on only one side of the graph, as seen in [Ma et al., 2020].
Although their fairness approach resembles ours, it pertains
solely to one side of the graph, which falls short of our re-
quirements. Other research, like [Patro et al., 2020], deals
with fairness in recommendation systems. However, the fair-
ness objectives in recommendation systems significantly differ
from those in task allocation contexts. Practical solutions for
enhancing fairness for both service providers and tasks are
explored in works such as [Zhou et al., 2023]. Regrettably,
this branch of research lacks theoretical performance bounds
for their solutions. The fairness principles in [Esmaeili et al.,
2023] closely align with ours. They consider both workers (of-
fline side) and tasks (online side), embracing Rawlsian welfare
[Rawls, 1958]. Nonetheless, task rejection is permissible in
their scenario if workers are unavailable.
Allocation with delayed assignments The original online
matching problem was introduced in [Karp et al., 1990], where
static nodes (workers) are instantly paired with dynamic nodes
(tasks) upon arrival. However, real scenarios often lack im-
mediate worker availability for tasks, prompting consideration
for task execution delays over outright rejection. Numerous
works tackle resource allocation with potential task delays.
However, many of these approaches (e.g., [Righter, 1987;
Li et al., 2023]) prioritize utility maximization without fac-
toring in task wait times or worker workload. Some leverage
reinforcement learning for such issues yet often make batch
decisions, leading to suboptimal outcomes. Moreover, theo-
retical guarantees are frequently absent. An LP-based method
for delayed allocations is presented in [Ackerman Viden et al.,
2023], optimizing a complex utility function that accounts for
task waiting times but overlooks worker workload.

Another pertinent domain involves queue admission con-
trol systems with multiple classes. Here, diverse customer
types (tasks) arrive dynamically, and a decision-maker deter-
mines which task to accept, as demonstrated in [Rigter et al.,
2022]. However, several studies in this realm do not distin-
guish between workers, while others permit task rejection. To
our knowledge, the problem of two-sided fair allocation when
task rejection is not allowed has not yet been addressed.

2 Preliminaries
Suppose we use a bipartite graph 𝐺 = (𝐼, 𝐽, 𝐸) to model
the worker-task network, where 𝐼 denotes the set of offline
workers (e.g., teleoperators), 𝐽 the set of types of tasks, and
an edge 𝑒 = (𝑖, 𝑗) indicates the feasibility of worker 𝑖 to serve

𝐺 Input network graph 𝐺 = (𝐼, 𝐽, 𝐸).
𝐼 (𝐽) Set of worker (task) types.
N𝑖 (N𝑗) Set of neighbors of 𝑖 (𝑗).
𝑖 ∼ 𝑗 (𝑗 ∼ 𝑖) Equivalent to 𝑖 ∈ N𝑗 (𝑗 ∈ N𝑖).
𝜆 𝑗 Arrival rate of task type 𝑗 ∈ 𝐽.
𝜆𝑖 Arrival rate on worker 𝑖 ∈ 𝐼.
Exp(𝜇) Exponential distribution of rate 𝜇 > 0.
Exp(𝜇𝑖 𝑗) Service time taken by worker 𝑖 to service 𝑗 .
𝜌𝑖 ∈ [0, 1] Workload of worker 𝑖 ∈ 𝐼.
𝑤 𝑗 Expected (absolute) waiting time of 𝑗 .
�̄� 𝑗 Expected (relative) waiting time of 𝑗 .
𝜅 ≥ 1 max𝑖∈𝐼

(
max 𝑗∼𝑖, 𝑗′∼𝑖 𝜇𝑖 𝑗/𝜇𝑖, 𝑗′

)
.

Table 1: A glossary of notations throughout this paper.

the task (of type) 𝑗 . Note that at certain points within this
paper, we abuse the notation by referring to 𝑗 as a task instead
of a task type. We also abuse the notation by referring to an
edge 𝑒 = (𝑖, 𝑗) as (𝑖 𝑗). Tasks of type 𝑗 ∈ 𝐽 arrive following
an independent Poisson process of rate 𝜆 𝑗 > 0. For each edge
𝑒 = (𝑖, 𝑗) ∈ 𝐸 , we assume it takes worker 𝑖 an exponentially
distributed service time2 of rate 𝜇𝑖 𝑗 > 0 to complete a task
of type 𝑗 (i.e., with mean of 1/𝜇𝑖 𝑗)3. For each worker 𝑖 and
task 𝑗 , let N𝑖 ⊆ 𝐽 and N𝑗 ⊆ 𝐼 denote the set of neighbors of 𝑖
and 𝑗 in the graph 𝐺. The assigning rule is as follows. Upon
the arrival of a task of type 𝑗 , we (as the central coordinator)
have to assign it to a feasible worker 𝑖 ∈ N𝑗 immediately: if
𝑖 is free (or available) at that time, then 𝑖 will serve 𝑗 right
away; otherwise, 𝑗 will join the virtual queue of 𝑖 and it will
stay there until being served by 𝑖.

2.1 Allocation Policy and Related Concepts
Consider an allocation policy 𝜋(x) (possibly randomized),
characterized as a vector x = {𝑥𝑖 𝑗 | (𝑖 𝑗) ∈ 𝐸}, where 𝑥𝑖 𝑗 ∈
[0, 1] denotes the percentage of task (of type) 𝑗 assigned to
and served by worker 𝑖. In the following, we discuss a few
important properties and concepts related to 𝜋(x). Let Q𝑖 be
the virtual queue maintained by worker 𝑖 ∈ 𝐼.

Arrival rate on Q𝑖 , denoted by 𝜆𝑖 . Observe that x = (𝑥𝑖 𝑗)
can be viewed alternatively as the probability that 𝜋 assigns
each arriving 𝑗 to 𝑖. Thus, we claim that Q𝑖 admits a Poisson
arrival process of rate 𝜆𝑖 :=

∑
𝑗∈N𝑖

𝜆 𝑗 · 𝑥𝑖 𝑗 . By the property
of the Poisson process (See section 2.3.2 at [Gallager, 2011]),
conditioning on the arrival of task (of type) 𝑗 ∈ 𝐽 on 𝑖, we
claim that Pr[𝑗 = 𝑗] = 𝑥𝑖 𝑗 · 𝜆 𝑗/𝜆𝑖 for each 𝑗 ∈ N𝑖 .

Service time on Q𝑖 , denoted byS𝑖 . The analysis above shows
that the task joiningQ𝑖 is of type 𝑗 ∈ N𝑖 with probability equal
to 𝑥𝑖 𝑗 · 𝜆 𝑗/𝜆𝑖 . Thus, the overall service time S𝑖 =

∑
𝑗∈N𝑖

𝜒𝑖 𝑗 ·

2This assumption is justified in [Devore, 2008]. Note that the the-
oretical analysis does not depend on it. We could use any distribution
if the mean and the variance of service time are known.

3Note that the assumption does not necessarily suggest the most
likely outcome is for tasks to be finished in an extremely short time.
Consider a task type with an exponentially distributed service time
of rate 𝜇, denoted as 𝑋 = Exp(𝜇). We observe that for any given
threshold 𝑎 > 0, Pr[𝑋 ≥ 𝑎] = 𝑒−𝜇𝑎 , which can be close to one when
𝜇 is small.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

258

Exp(𝜇𝑖 𝑗), where 𝜒𝑖 𝑗 = 1 indicates that the task joining 𝑖 is of
type 𝑗 with E[𝜒𝑖 𝑗] = 𝑥𝑖 𝑗 · 𝜆 𝑗/𝜆𝑖 , and Exp(𝜇𝑖 𝑗) represents the
exponentially distributed service time of 𝑖 for 𝑗 of rate 𝜇𝑖 𝑗 .
Thus, S𝑖 follows a hyperexponential distribution [Gupta and
Goyal, 1964] with mean equal to

𝑠𝑖 := E[S𝑖] =
∑︁
𝑗∈N𝑖

(𝑥𝑖 𝑗𝜆 𝑗)/(𝜆𝑖𝜇𝑖 𝑗). (1)

Workload of worker 𝑖, denoted by 𝜌𝑖 . By definition,

𝜌𝑖 := 𝜆𝑖 · E[S𝑖] =
∑︁
𝑗∈N𝑖

(𝑥𝑖 𝑗𝜆 𝑗)/𝜇𝑖 𝑗 , (2)

where 𝜌𝑖 can be re-interpreted as the probability that the
worker 𝑖 is busy or the proportion of time the worker 𝑖 is
busy averaged over a long period. Note that 𝜌𝑖 < 1 is the
key condition ensuring the virtual queue Q𝑖 can enter a stable
state. This is also a condition we should impose on every
worker 𝑖 ∈ 𝐼 when designing policy 𝜋(x) since otherwise, 𝑖
could always stay occupied in the long run (thus, not accept-
able to 𝑖) and every task 𝑗 assigned to 𝑖 could risk an infinitely
long waiting time (not acceptable to 𝑗).

Waiting time on worker 𝑖, denoted by 𝑊𝑖 . By the analysis
above, we see that the queue Q𝑖 on worker 𝑖 qualifies as
an 𝑀/𝐺/1 (using the standard Kendall’s notation [Kendall,
1953]), which means it admits a Poisson arrival process, a
general service time distribution, and a single worker. By the
Pollaczek-Khinchin mean formula [Asmussen, 2003],

𝑤𝑖 := E[𝑊𝑖] =
𝜆𝑖E[S2

𝑖
]

2(1 − 𝜌𝑖)
=

∑
𝑗∈N𝑖

𝑥𝑖 𝑗𝜆 𝑗/𝜇2
𝑖 𝑗

1 −∑
𝑗∈N𝑖

𝑥𝑖 𝑗𝜆 𝑗/𝜇𝑖 𝑗
, (3)

where the numerator is equal to

𝜆𝑖 · E[S2
𝑖] = 𝜆𝑖 · E

[(∑︁
𝑗∈N𝑖

𝜒𝑖 𝑗 · Exp(𝜇𝑖 𝑗)
)2]

= 𝜆𝑖 · E
[∑︁
𝑗∈N𝑖

𝜒𝑖 𝑗 · Exp2 (𝜇𝑖 𝑗)
]
= 𝜆𝑖 ·

∑︁
𝑗∈N𝑖

E
[
𝜒𝑖 𝑗 · Exp2 (𝜇𝑖 𝑗)

]
= 𝜆𝑖 ·

∑︁
𝑗∈N𝑖

(𝑥𝑖 𝑗𝜆 𝑗/𝜆𝑖) · (2/𝜇2
𝑖 𝑗) = 2

∑︁
𝑗∈N𝑖

(𝑥𝑖 𝑗𝜆 𝑗/𝜇2
𝑖 𝑗).

Absolute and relative waiting time of 𝑗 , denoted by 𝑊 𝑗

and 𝑊 𝑗 . Recall that under 𝜋(x), a task 𝑗 will be assigned
to a feasible worker 𝑖 ∈ N𝑗 with probability 𝑥𝑖 𝑗 . Thus, the
expected (absolute) waiting time of 𝑗 should be

𝑤 𝑗 := E[𝑊 𝑗] =
∑︁
𝑖∈N𝑗

𝑥𝑖 𝑗 · 𝑤𝑖 , (4)

where 𝑤𝑖 is the expected waiting time on queue Q𝑖 , as shown
in (3). The relative waiting time of 𝑗 on Q𝑖 is defined as the
ratio of waiting time on Q𝑖 to the service time of 𝑖 for 𝑗 , which
has a mean of 1/𝜇𝑖 𝑗 . Thus, the expected relative waiting time
of 𝑗 should be

�̄� 𝑗 := E[𝑊 𝑗] =
∑︁
𝑖∈N𝑗

𝑥𝑖 𝑗 · 𝑤𝑖/(1/𝜇𝑖 𝑗)

=
∑︁
𝑖∈N𝑗

𝑥𝑖 𝑗 · 𝜇𝑖 𝑗 ·
∑

ℓ∼𝑖 𝑥𝑖ℓ𝜆ℓ/𝜇2
𝑖ℓ

1 −∑
ℓ∼𝑖 𝑥𝑖ℓ𝜆ℓ/𝜇𝑖ℓ

. (5)

2.2 Two Fairness-Related Objectives
In this paper, we propose the following two fairness metrics
and objectives when optimizing a policy 𝜋(x).
FAIR-T: Fairness promotion among tasks, denoted by
min max 𝑗∈𝐽 �̄� 𝑗 . We quantify the overall fairness among
users achieved by policy 𝜋(x) as the maximum expected rel-
ative waiting time among all task types, i.e., max 𝑗∈𝐽 �̄� 𝑗 . A
formula for calculating the relative waiting time is shown
in (5). Note that here we choose the relative version instead of
the absolute one (i.e., max 𝑗∈𝐽 𝑤 𝑗) following, for example, the
paper [Maister and others, 1984] that asserts that “the more
valuable the service, the longer the customer will wait.” A
compelling example is that:“Special checkout counters were
originally provided because customers with only a few items
felt resentful at having to wait a long time for what was seen as
a simple transaction. Customers with a full cart of groceries
were much more inclined to tolerate lines.”

FAIR-S: Fairness promotion among workers, denoted by
min max𝑖∈𝐼 𝜌𝑖 . Recall that for each worker 𝑖 ∈ 𝐼, the work-
load 𝜌𝑖 ∈ (0, 1), as defined in (2), captures the percentage
of busy time on worker 𝑖. Thus, the maximum workload,
i.e., max𝑖∈𝐼 𝜌𝑖 , reflects the highest degree of being occupied
among all workers under policy 𝜋(x). By opting for minimiza-
tion of the maximum workload, denoted by min max𝑖∈𝐼 𝜌𝑖 ,
we aim to minimize the occupation time of the most occupied
worker as substantially as feasible.

2.3 Two Optimization Programs
Consider an allocation policy 𝜋(x) parameterized by x =

(𝑥𝑖 𝑗), where 𝑥𝑖 𝑗 with (𝑖 𝑗) ∈ 𝐸 denotes the percentage of
task of type 𝑗 assigned to worker 𝑖. For ease of notation, we
will use 𝑖 ∼ 𝑗 (and 𝑗 ∼ 𝑖) to represent 𝑖 ∈ N𝑗 (and 𝑗 ∈ N𝑖)
throughout this paper. We formulate FAIR-T and FAIR-S as
minmax programs as follows.

(PT) min max
𝑗∈𝐽

(
�̄� 𝑗 =

∑︁
𝑖∼ 𝑗

𝑥𝑖 𝑗 · 𝜇𝑖 𝑗 ·
∑

ℓ∼𝑖 𝑥𝑖ℓ𝜆ℓ/𝜇2
𝑖ℓ

1 −∑
ℓ∼𝑖 𝑥𝑖ℓ𝜆ℓ/𝜇𝑖ℓ

)
,

(6)

𝑥 𝑗 :=
∑︁
𝑖∼ 𝑗

𝑥𝑖 𝑗 = 1, ∀ 𝑗 ∈ 𝐽 (7)

𝜌𝑖 =
∑︁
ℓ∼𝑖

𝑥𝑖ℓ𝜆ℓ/𝜇𝑖ℓ ≤ 1, ∀𝑖 ∈ 𝐼 (8)

0 ≤ 𝑥𝑖 𝑗 ≤ 1, ∀(𝑖 𝑗) ∈ 𝐸. (9)

(PS) min max
𝑖

𝜌𝑖 , (10)

𝑥 𝑗 :=
∑︁
𝑖∼ 𝑗

𝑥𝑖 𝑗 = 1, ∀ 𝑗 ∈ 𝐽 (11)

𝜌𝑖 =
∑︁
ℓ∼𝑖

𝑥𝑖ℓ𝜆ℓ/𝜇𝑖ℓ ≤ 1, ∀𝑖 ∈ 𝐼 (12)

0 ≤ 𝑥𝑖 𝑗 ≤ 1, ∀(𝑖 𝑗) ∈ 𝐸. (13)
We refer to the above programs as PT and PS, respectively.

Let x∗𝑡 and x∗𝑠 be optimal solutions to PT and PS, respectively.
Lemma 1. 𝜋(x∗𝑡) and 𝜋(x∗𝑠) are optimal policies under FAIR-
T and FAIR-S, respectively.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

259

Proof. We focus on showcasing the case of FAIR-T and the
program PT. The proof for the other case is similar. Note that
the term shown in (6) captures the precise objective we aim
to optimize. To prove our claim, we need to demonstrate that
all constraints in PT hold true for any viable policy of 𝜋(x).
Constraint (7) is reasonable because every policy must assign
each incoming task to a feasible worker without rejection,
thereby ensuring that the total percentages assigned for each
type sum up to one. Constraint (8) is valid as the workload
of any worker (i.e., the percentage of busy time) should not
exceed one. Constraint (9) holds true since 𝑥𝑖 𝑗 represents the
percentage of tasks of type 𝑗 assigned to worker 𝑖. □

Lemma 1 suggests that the optimal policies for FAIR-T and
FAIR-S each can be obtained by solving minmax programs
represented by PT and PS respectively. Note that PS can
be reformulated as a linear program (LP) by introducing an
auxiliary variable 𝜌 and modifying the objective as min 𝜌,
along with additional constraints 𝜌 ≥ 𝜌𝑖 for all 𝑖 ∈ 𝐼. Con-
sequently, we can efficiently solve PS and obtain an optimal
policy for FAIR-S. However, for program PT, the objective is
non-linear and can be neither convex nor concave even under
very special settings, posing a technical challenge for direct
optimization; see detailed discussions in the full version of
the paper [Trabelsi et al., 2024].

Nevertheless, under certain conditions, PT can be effec-
tively and accurately approximated by PS, as proven in Theo-
rem 1.
Lemma 2. The optimal values of PT and PS each remain
invariant if we treat any task type 𝑗 ∈ 𝐽 with an arrival rate
of 𝜆 𝑗 as 𝑘 different online types, each having the same set of
neighbors as 𝑗 , with an arrival rate of 𝜆 𝑗/𝑘 for any integer 𝑘 .

The above lemma suggests that for fairness maximization
among either workers under metric FAIR-S or tasks under
metric FAIR-T, we can assume without loss of generality that
all tasks take a uniform arrival rate by creating an appropri-
ate number of copies for each task type. In other words, the
variation among tasks’ arrival rates makes no difference to
fairness promotion, compared with the difference among ser-
vice times. In the remaining sections, we assume without
loss of generality that 𝜆 𝑗 = 𝜆 for all 𝑗 ∈ 𝐽.

3 The Relation Between the Two Fairness
Optimization Problems

Consider a general setting denoted by 𝝁 := (𝜇𝑖 𝑗), where 𝜇𝑖 𝑗
with (𝑖 𝑗) ∈ 𝐸 represents the parameter for the exponential
distribution of the service time taken by worker 𝑖 to serve task
𝑗 . Let 𝜂𝑡 (𝝁, x) denote the objective value of PT(𝝁) with
respect to the input 𝝁 and a feasible solution x = (𝑥𝑖 𝑗). Sim-
ilarly, 𝜂𝑠 (𝝁, x) denotes the objective value of PS(𝝁). When
the context is clear, we may omit either the first or second
argument for 𝜂𝑡 and 𝜂𝑠 . For any given input 𝝁, let 𝜂∗𝑡 (𝝁)
and 𝜂∗𝑠 (𝝁) denote the optimal values of PT(𝝁) and PS(𝝁)
respectively.
Theorem 1. Let x∗𝑠 be an optimal solution to PS(𝝁). We have

𝜂𝑡 (𝝁, x∗𝑠) ≤ 𝜅3
(
1 +

(
1 − 1

𝜅

)
·

𝜂∗𝑠 (𝝁)
1 − 𝜂∗𝑠 (𝝁)

)
· 𝜂∗𝑡 (𝝁), (14)

where 𝜅 = max𝑖∈𝐼
(
max 𝑗∼𝑖, 𝑗′∼𝑖 𝜇𝑖 𝑗/𝜇𝑖, 𝑗′

)
≥ 1, which cap-

tures the maximum pairwise ratio among the expectations of
all service time on each given worker.

For a private case of Theorem 1- where 𝜅 = 1 we prove that
𝜂𝑡 (𝝁, x∗𝑠) = 𝜂∗𝑡 (𝝁) (Theorem 2).

These results serve as the bedrock of the whole proof for
Theorem 1(See [Trabelsi et al., 2024] for the whole proof of
Theorem 1). Toward the proof of 𝜅 = 1, we first define the
following minimax programs and show their equivalence to
PT and PS, respectively, for 𝜅 = 1.

(PT) min max
𝑗∈𝐽

(
�̄� 𝑗 =

∑︁
𝑖∼ 𝑗

𝑥𝑖 𝑗

1 − 𝜌𝑖
− 1

)
, (15)∑︁

𝑖∼ 𝑗

𝑥𝑖 𝑗 = 1, ∀ 𝑗 ∈ 𝐽 (16)

𝜌𝑖 = (𝜆/𝜇𝑖)
∑︁
𝑗∼𝑖

𝑥𝑖 𝑗 ≤ 1, ∀𝑖 ∈ 𝐼 (17)

0 ≤ 𝑥𝑖 𝑗 ≤ 1, (𝑖 𝑗) ∈ 𝐸. (18)

(PS) min max
𝑖∈𝐼

𝜌𝑖 , (19)∑︁
𝑖∼ 𝑗

𝑥𝑖 𝑗 = 1, ∀ 𝑗 ∈ 𝐽 (20)

𝜌𝑖 = (𝜆/𝜇𝑖)
∑︁
𝑗∼𝑖

𝑥𝑖 𝑗 ≤ 1, ∀𝑖 ∈ 𝐼 (21)

0 ≤ 𝑥𝑖 𝑗 ≤ 1, (𝑖 𝑗) ∈ 𝐸. (22)

Lemma 3. For 𝜅 = 1, the programs PT and PT are equivalent
and the programs PS and PS are also equivalent.

Proof. Note that 𝜅 = 1 suggests that 𝜇𝑖 𝑗 takes some uniform
value of 𝜇𝑖 𝑗 = 𝜇𝑖 for every 𝑗 ∼ 𝑖. Recall that 𝜆 𝑗 = 𝜆 for all
𝑗 ∈ 𝐽 due to Lemma 2. Under these assumptions, we see that
the expressions of 𝜌𝑖 and �̄� 𝑗 in (2) and (5) can be simplified
as

𝜌𝑖 =
∑︁
ℓ∼𝑖

𝑥𝑖ℓ𝜆ℓ/𝜇𝑖ℓ = (𝜆/𝜇𝑖) ·
∑︁
ℓ∼𝑖

𝑥𝑖ℓ ,

�̄� 𝑗 := E[𝑊 𝑗] =
∑︁
𝑖∼ 𝑗

𝑥𝑖 𝑗 · 𝑤𝑖/(1/𝜇𝑖 𝑗)

=
∑︁
𝑖∼ 𝑗

𝑥𝑖 𝑗 · 𝜇𝑖 ·
∑

ℓ∼𝑖 𝑥𝑖ℓ𝜆ℓ/𝜇2
𝑖

1 −∑
ℓ∼𝑖 𝑥𝑖ℓ𝜆ℓ/𝜇𝑖

=
∑︁
𝑖∼ 𝑗

𝑥𝑖 𝑗 ·
∑

ℓ∼𝑖 𝑥𝑖ℓ𝜆ℓ/𝜇𝑖
1 −∑

ℓ∼𝑖 𝑥𝑖ℓ𝜆ℓ/𝜇𝑖

=
∑︁
𝑖∼ 𝑗

𝑥𝑖 𝑗

(
− 1 + 1

1 − 𝜌𝑖

)
= −1 +

∑︁
𝑖∼ 𝑗

𝑥𝑖 𝑗

1 − 𝜌𝑖
,

where the equality on the last line is due to
∑

𝑖∼ 𝑗 𝑥𝑖 𝑗 = 1 for
every 𝑗 ∈ 𝐽 (no rejection allowed). Substituting lines 17 and
21 with the value of 𝜌𝑖 and line 15 with the value of �̄� 𝑗 implies
that the programs PT and PS are equivalent to PT and PS. □

Consider a given setting with 𝝁 = (𝜇𝑖 𝑗) satisfying 𝜇𝑖 𝑗 = 𝜇𝑖
for all 𝑗 ∼ 𝑖 and 𝜆 𝑗 = 𝜆 for all 𝑗 ∈ 𝐽. For ease of notation,
we use 𝜂∗𝑡 and 𝜂∗𝑠 to denote optimal values of PT and PS,
respectively, with respect to the given setting. By default, we

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

260

assume both have feasible solutions.4 We denote by 𝜂𝑡 (x∗𝑠)
the value of PT on x∗𝑠 in the given setting.

It is tempting to prove that 𝜂𝑡 (x∗𝑠) = 𝜂∗𝑡 for 𝜅 = 1 by showing
that PT and PS each possess an optimal solution such that {𝜌𝑖}
all take a uniform value, say 𝜌. Following this “claim”, PT is
then reduced to min 1/(1 − 𝜌) − 1 with 𝜌 = 𝜌𝑖 for all 𝑖 ∈ 𝐼,
while PS is reduced to min 𝜌 with 𝜌 = 𝜌𝑖 for all 𝑖 ∈ 𝐼. This
establishes Theorem 2 since min 1/(1− 𝜌) −1 is equivalent to
min 𝜌. The example below disproves this idea, unfortunately.

Example 1. [PT and PS each possess a unique optimal so-
lution with non-uniform values of {𝜌𝑖} and {�̄� 𝑗 }.] Consider
a graph 𝐺 = (𝐼, 𝐽, 𝐸) such that |𝐼 | = 𝑚 = 2 and |𝐽 | = 𝑛 ≫ 1
(A relevant figure is in [Trabelsi et al., 2024]). The input
setting is as follows. 𝜇𝑖 𝑗 = 𝜇 for all (𝑖 𝑗) ∈ 𝐸 and 𝜆 𝑗 = 𝜆

for all 𝑗 ∈ 𝐽. Let 𝜙 = 𝜆/𝜇 with 𝑛 · 𝜙 < 1. 𝑖 = 2 is con-
nected to all 𝑗 ∈ 𝐽, while 𝑖 = 1 is connected only to 𝑗 = 1.
We can verify that (1) PT and PS each have a unique opti-
mal solution and the two are the same, which is x∗ = (𝑥𝑖 𝑗)
with 𝑥11 = 1, 𝑥21 = 0, and 𝑥2 𝑗 = 1 for all 1 < 𝑗 ≤ 𝑛;
(2) for PS: 𝜌1 (x∗) = 𝜙, and 𝜌2 (x∗) = (𝑛 − 1)𝜙 < 1; for
PT: �̄�1 (x∗) = 1/(1 − 𝜌1 (x∗)) − 1 = 1/(1 − 𝜙) − 1 and
�̄� 𝑗 = 1/(1− 𝜌2 (x∗)) −1 = 1/(1− (𝑛−1)𝜙) −1 for 1 < 𝑗 ≤ 𝑛.

We will now present two lemmas that establish together the
correctness of Theorem 2.

Lemma 4. 𝜂𝑡 (x∗𝑠) ≤ 1/(1 − 𝜂∗𝑠) − 1

Proof. Since x∗ = (𝑥𝑖 𝑗) is an optimal solution to PS, 𝜂∗𝑠 =

max𝑖∈𝐼 𝜌𝑖 (x∗) := 𝜌∗. Observe that for each 𝑗 ∈ 𝐽,

�̄� 𝑗 (x∗) =
∑︁
𝑖∼ 𝑗

𝑥𝑖 𝑗

1 − 𝜌𝑖 (x∗)
≤
∑︁
𝑖∼ 𝑗

𝑥𝑖 𝑗

1 − 𝜌∗
=

1
1 − 𝜌∗

− 1,

which suggests that 𝜂𝑡 (x∗) = max 𝑗 �̄� 𝑗 (x∗) ≤ 1/(1− 𝜌∗) −1 =

1/(1 − 𝜂∗𝑠) − 1. □

Lemma 5. 1/(1 − 𝜂∗𝑠) − 1 ≤ 𝜂∗𝑡 .

The lemma’s proof is in the full version of the paper [Tra-
belsi et al., 2024].

We’re now set to present results for 𝜅 = 1.

Theorem 2. Consider an input 𝝁 = (𝜇𝑖 𝑗) with 𝜅 = 1. Let
x∗𝑠 be an optimal solution to PS. We have that the value of
PT on the solution of x∗𝑠 is equal to its optimal value, i.e.,
𝜂𝑡 (x∗𝑠) = 𝜂∗𝑡 .

Proof. The above two lemmas together imply that 𝜂𝑡 (x∗𝑠) ≤
𝜂∗𝑡 . x∗𝑠 is feasible to PT since PT and PS share the same
set of constraints, and thus, 𝜂𝑡 (x∗𝑠) ≥ 𝜂∗𝑡 , which establishes
Theorem 2. □

4Infeasibility to either Program PT or PS suggests that no policy
can lead to meaningful fairness among tasks (finite max expected
waiting time) or among workers (a non-zero ratio of being free).

4 Experiments
4.1 Algorithms and Heuristics
This section presents an algorithm derived from solutions to
one of the minimax problems. We also describe a heuristic
based on this algorithm, which gives preference to assign-
ing tasks to available workers, thereby enhancing allocation
through the effective workload of free workers. In addition,
this section introduces two real-time greedy heuristics, which
function as baseline methodologies.
Minimax problems based algorithm: We first describe Al-
gorithm 1. This algorithm has offline and online phases. In
the offline phase (line 2), a solution to one of the minimax
problems is computed. In the online phase (lines 4-7), when
a task arrives, the task is assigned to the queue of a worker
according to the probabilities computed by the program in the
offline phase. This algorithm has two variants: One solves
PT in the offline phase while the other solves PS.
Minimax problems based heuristic: A notable issue with
Algorithm 1 is that tasks can wait for a busy worker despite
other available workers. This leads to suboptimal perfor-
mance. To address this, we create a heuristic based on Algo-
rithm 1. Like Algorithm 1, in Algorithm 2, task assignment
probabilities are computed offline to mitigate this problem. In
the online phase, incoming tasks are assigned to free workers.
If multiple workers are free, their precomputed probabilities
(from the offline phase) are normalized to sum to 1. A worker
is subsequently chosen randomly, guided by these normal-
ized probabilities. If there are no free workers, the tasks are
assigned according to their probabilities as in Algorithm 1.
Algorithm 2 describes this heuristic. As in Algorithm 1, there
are two variants of Algorithm 2: One solves PT in the offline
phase, while the other solves PS.

This method targets reduced waiting times, especially dur-
ing low-load periods. However, this change might decrease
worker workload or waiting times for other tasks, as it deviates
from calculated optimal probabilities. In practice, we find that
the trade-off for worker and task fairness is reasonable, given
the substantial benefits for all tasks’ fairness.
Computational complexity of Algorithms 1 and 2 Both
algorithms 1 and 2 have offline and online phases. The
offline phase is identical for both algorithms and requires the
solution of PT or PS. Following [Cohen et al., 2021], the
runtime for solving the linear program- PS can be as low as
𝑂∗ (𝑁2+1/6 log(𝑁/𝛿)), where 𝛿 is the relative accuracy and
𝑁 = |𝐸 | is the number of edges in the graph 𝐺. We leave
the complexity of solving PT to future work. In any case, the
complexity of the offline phase dominates the complexity of
the online phase.
The two greedy heuristics Similar to [Ackerman Viden
et al., 2023], we devised two greedy heuristics as baselines
for comparison. The first minimizes maximum task waiting
times, and the second minimizes maximum worker workload.
In the first, incoming tasks are assigned to workers with the
shortest estimated waiting time, calculated by summing aver-
age expected task durations for tasks in the queue. The elapsed
time for ongoing tasks is subtracted from their average dura-
tion to update estimates. For the second, tasks are assigned

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

261

Algorithm 1: An LP-based algorithm for FAIR-T and
FAIR-S.

1 Offline Phase:
2 Solve PT (PS) and let {𝑥𝑖 𝑗 } be an optimal solution.
3 Online Phase:
4 for each task of type 𝑗 that arrive on time 𝑡 do
5 Let Q𝑖 be a queue of worker 𝑖
6 Choose randomly a worker 𝑖 following the

probabilities in {𝑥𝑖 𝑗 }
7 Update Q𝑖 = Q𝑖 ∪ {(𝑗 , 𝑡)}.

to less utilized workers based on current workload upon task
arrival. This approach considers executed tasks, using actual
durations rather than expected durations. The first heuristic is
denoted as GTW (Greedy Task Waiting time) and the second
as GWU (Greedy Worker Workload).

4.2 Experimental Settings
We ran experiments on the teleoperation domain. As already
mentioned in Section 1, the teleoperation of AVs involves
intervention tasks that are assigned to the teleoperators who
perform them. We adapted the dataset of [Ackerman Viden
et al., 2023] for our two-sided fairness study. More details
about the experimental settings and additional experimental
results are in the full version of the paper [Trabelsi et al.,
2024]. Source code and data for running the experiments are
available at [Trabelsi, 2024].
The tasks, their durations and their arrival rates Our
study built upon the four task types defined by Viden et
al. (2023). Their dataset provided valuable insights into the
average duration times for each teleoperator (worker) and task
type in a simulation. We explored three distinct approaches
to define task duration in our experiments. All approaches
involved sampling durations from exponential distributions,
but the difference lay in the means of these distributions.
The teleoperators and the tasks they can perform Using
the dataset of Viden et al. (2023), we initially had 10 teleop-
erators (workers) and 4 task types. We form a bipartite graph
with 10 teleoperators on one side and 4 task types on the
other. The dataset provides average task completion times for
each teleoperator-task pair. An edge is established between a
teleoperator and a task type if their average time matches or
exceeds the task type’s median value. Following this process,
a teleoperator who consistently performed tasks slower than
the median was identified and subsequently excluded from
the graph. More experiments on a synthetic dataset in which
the numbers of teleoperators and task types are varied can be
found in [Trabelsi et al., 2024].
Experimental environment and more settings Each ex-
periment spanned a virtual 4-week period. Due to algorithmic
stochasticity, each experiment was repeated 10 times.

4.3 Results and Discussion
Effect of changing 𝜅 In Figures 1(a,b), we illustrate the
performance of various methods across diverse 𝜅 values. In
Figure 1(a), we measure the maximum task waiting time. We

Algorithm 2: A heuristic for FAIR-T (FAIR-S).
1 Offline Phase:
2 Solve PT (PS) and let {𝑥𝑖 𝑗 } be an optimal solution.
3 Online Phase:
4 for each task of type 𝑗 that arrive on time 𝑡 do
5 Let Q𝑖 be a queue of worker 𝑖 and let 𝐹 be the

subset of free workers on time 𝑡
6 If 𝐹 ≠ ∅, randomly choose a free worker 𝑖 with

probability {𝑥𝑖 𝑗/
∑

𝑖′∈𝐹 𝑥𝑖′ 𝑗 }
7 Otherwise choose randomly a worker 𝑖 following

the probabilities in {𝑥𝑖 𝑗 }
8 Update Q𝑖 = Q𝑖 ∪ {(𝑗 , 𝑡)}.

see that the gap between SIM(PS) and SIM(PT), as well as
the gap between SIM-F(PS) and SIM-F(PT), increase with
𝜅. This aligns with the fact that with higher values of 𝜅, the
approximation ratio of PS’s solution relative to PT’s objective
is greater. However, the ratio between the different methods
measured in practice is lower than the worst-case theoretical
ratio given by Theorem 1 (which is greater than 𝜅3).

In Figure 1(b), we measure the maximum worker workload.
The differences between SIM(PT) vs SIM(PS) are very small
for 𝜅 ≤ 3, but they become more significant for 𝜅 ∈ {4, 5}.
Surprisingly, there is a different effect with SIM-F(PT) and
SIM-F(PS). SIM-F(PT) performs slightly better than SIM-
F(PS). We conjecture that the initial selection of free workers
has a more detrimental effect in SIM-F(PS), which integrates
two distinctly different methods, in contrast to the relatively
similar approaches in SIM-F(PT). We also see that for larger
values of 𝜅, both SIM(PT) and SIM(PS) perform worse than
for lower values.

Effect of changing the task load Figures 1(c,d) might help
the teleoperation center’s owner decide whether the current
number of workers is sufficient. It is noticeable that in Fig-
ure 1(c) there is a significant jump from 120000 to 140000
tasks per day. This means that perhaps the owner should em-
ploy more workers in this case. Referring to Figure 2(d) may
lead us to similar conclusions. Employing more workers is
advisable if individual worker workload is excessively high.

Effect of changing the task balance Figures 1(e,f) repre-
sent the performance of the different algorithms when chang-
ing the task balance. The left bar represents an even distri-
bution for each task type (0.25). The second bar represents
a higher probability for the first type (0.7) and a lower prob-
ability for the other types (0.1). The other bars are similarly
defined for the other task types.

In Figures 1(e,f), higher arrival distribution of the first task
type leads to elevated waiting times and worker workload.
Consequently, the teleoperation center’s owner could enhance
fairness by upskilling operators who are not qualified for the
task or hiring new ones proficient in it. Alternatively, training
could be provided to expedite task completion. The negligible
error bars in all figures show that the error approaches 0 if the
experiments are carried out over a sufficiently long period of
time, as we have done.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

262

1.0 2.0 3.0 4.0 5.0

(a) κ
0

1

2

3

4

5

6

7

M
ax

. T
as

k
W

ai
t.

Ti
m

e

1.0 2.0 3.0 4.0 5.0

(b) κ
0.0

0.2

0.4

0.6

0.8

1.0

M
ax

. W
or

k.
 W

or
kl

oa
d

SIM(PT)
SIM(PS)
SIM-F(PT)
SIM-F(PS)
GTW
GWW

80000 100000 120000 140000

(c) Tasks Per Day
0

2

4

6

8

10

M
ax

. T
as

k
W

ai
t.

Ti
m

e SIM(PT)
SIM(PS)
SIM-F(PT)
SIM-F(PS)
GTW
GWW

80000 100000 120000 140000

(d) Tasks Per Day
0.0

0.2

0.4

0.6

0.8

1.0

M
ax

. W
or

k.
 W

or
kl

oa
d

SIM(PT)
SIM(PS)
SIM-F(PT)
SIM-F(PS)
GTW
GWW

Equal First Second Third Forth

(e) Tasks Balance
0

1

2

3

4

M
ax

. T
as

k
W

ai
t.

Ti
m

e

Equal First Second Third Forth

(f) Tasks Balance
0.0

0.2

0.4

0.6

0.8

1.0

M
ax

. W
or

k.
 W

or
kl

oa
d

SIM(PT)
SIM(PS)
SIM-F(PT)

SIM-F(PS)
GTW
GWW

Figure 1: Y axis is the maximum waiting time(in seconds) for a task(a,c and e) and the max. worker workload(b,d and f). The X axis in (a,b)
is the value of 𝜅(x axis) and the task load is of 120000 tasks per day. In (c,d), the X axis is the task load and 𝜅 is set to 1. In (e,f) the X axis is
for different balances of arrival distribution: first bar is for equal distribution for each task type. In the second bar, the first type has probability
of 70% and the others have 10%. the other bars are defined similarly for the second, third and forth task types (task load was 80000 tasks
per day and 𝜅 is set to 1). In the legend: SIM(PT) and SIM(PS) denote Algorithm 1’s results for PT and PS in simulation. SIM-F(PT) and
SIM-F(PS) are Algorithm 2’s results (in which we assign to a free worker first) for PT and PS in simulation. 𝐺𝑇𝑊 and 𝐺𝑊𝑈 are the results
of the greedy heuristics targeting task waiting time and worker workload in simulation. Error bars represent a confidence interval of 0.95.

Computed optimal values vs simulation values In all ex-
periments that we ran, the computed expected maximum wait-
ing time (OPT(PT)) and the computed expected maximum
worker workload (OPT(PS)) closely align with simulation-
derived values (SIM(PT) and SIM(PS) respectively). Addi-
tionally, the alignment of OPT(PT) and OPT(PS) at 𝜅 = 1 is
consistent with Theorem 1.

Choosing the best algorithm The heuristic GTW, which
minimizes the maximum task waiting time, performs well at
maximum task waiting time and performs poorly at maxi-
mum worker workload. Conversely, the greedy heuristic that
minimizes the maximum worker workload, GWU, performs
well at the maximum worker workload and performs poorly at
maximum task waiting time. The methods that offer the best
tradeoff between two dimensions of fairness are SIM-F(PT)
and SIM-F(PS). However, since PT is nonlinear, there is no
tool that guarantees to find an optimal solution for PT, and
therefore PT-dependent approaches such as SIM-F(PT) might
be unsolvable.

Therefore, if 𝜅 = 1 or at least a small number close to 1, we
might want to use SIM-F(PS). However, SIM(PS) might be
slightly better if worker workload is more important than task
waiting times (but still important). If 𝜅 is large, it is advisable
to consider using a tool that approximates a solution for PT
with SIM-F(PT). The figures show that the available tools
work adequately in such cases, despite the lack of theoretical
guarantees (at least for small problems). Another option is
to try both SIM-F(PT) and SIM-F(PS) and pick the one that

gives the best results.

5 Conclusion

This paper addresses two-sided fairness problems represented
as online bipartite matching with accommodated delays. We
introduce two minimax problems: PT to minimize the maxi-
mum workload of workers and PS to minimize the maximum
waiting time of tasks. We show that the second problem can
be formulated as a linear program and thus solved efficiently.
Moreover, we showed that the policy using a solution for PS
approximates the solution for PT, and we then presented an
upper bound on the approximation ratio. Finally, we com-
pared the performance of different approaches (most of them
used the solutions to the problems) and empirically evaluated
their performance.

Future research may explore different definitions of fair-
ness. In addition, it is promising to extend our approach to
scenarios where workers are also arriving dynamically. To
demonstrate the need in such scenarios one might consider
the teleoperation application where teleoperators (workers)
can join or leave the crew. Considering different distributions
for both task arrivals and task durations can provide more
depth and insights into the study. Finally, it might be benefi-
cial to consider some robust version, say, minimization of the
maximum possible absolute waiting time among users, which
is equivalent to the minimization of the maximum absolute
waiting time among all workers.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

263

Acknowledgements
This research has been partially supported by the Israel Sci-
ence Foundation under grant 1958/20 and the EU Project
TAILOR under grant 952215. Work of Pan Xu was partially
supported by NSF CRII Award IIS-1948157.

References
[Ackerman Viden et al., 2023] Osnat Ackerman Viden,

Yohai Trabelsi, Pan Xu, Karthik Abinav Sankararaman,
Oleg Maksimov, and Sarit Kraus. Allocation problem
in remote teleoperation: Online matching with offline
reusable resources and delayed assignments. In Proceed-
ings of the 2023 International Conference on Autonomous
Agents and Multiagent Systems, pages 513–521, 2023.

[Asmussen, 2003] Søren Asmussen. Random walks. Applied
Probability and Queues, pages 220–243, 2003.

[Cohen et al., 2021] Michael B Cohen, Yin Tat Lee, and Zhao
Song. Solving linear programs in the current matrix mul-
tiplication time. Journal of the ACM (JACM), 68(1):1–39,
2021.

[Delong et al., 2022] Steven Delong, Alireza Farhadi, Rad
Niazadeh, and Balasubramanian Sivan. Online bipartite
matching with reusable resources. In Proceedings of the
23rd ACM Conference on Economics and Computation,
pages 962–963, 2022.

[Devore, 2008] Jay L Devore. Probability and statistics for
engineering and the sciences. 2008.

[Dickerson et al., 2021] John P Dickerson, Karthik A
Sankararaman, Aravind Srinivasan, and Pan Xu. Alloca-
tion problems in ride-sharing platforms: Online matching
with offline reusable resources. ACM Transactions on Eco-
nomics and Computation (TEAC), 9(3):1–17, 2021.

[Esmaeili et al., 2023] Seyed Esmaeili, Sharmila Duppala,
Davidson Cheng, Vedant Nanda, Aravind Srinivasan, and
John P Dickerson. Rawlsian fairness in online bipartite
matching: Two-sided, group, and individual. In Proc. 37th
AAAI, number 5, pages 5624–5632, 2023.

[Gallager, 2011] Robert G Gallager. Discrete stochastic pro-
cesses. OpenCourseWare: Massachusetts Institute of Tech-
nology, 2011.

[Gupta and Goyal, 1964] SK Gupta and JK Goyal. Queues
with poisson input and hyper-exponential output with finite
waiting space. Operations Research, 12(1):75–81, 1964.

[Karp et al., 1990] Richard M. Karp, Umesh V. Vazirani, and
Vijay V. Vazirani. An optimal algorithm for on-line bipar-
tite matching. STOC-90, 1990.

[Kendall, 1953] David G Kendall. Stochastic processes oc-
curring in the theory of queues and their analysis by the
method of the imbedded markov chain. The Annals of
Mathematical Statistics, pages 338–354, 1953.

[Lesmana et al., 2019] Nixie S Lesmana, Xuan Zhang, and
Xiaohui Bei. Balancing efficiency and fairness in on-
demand ridesourcing. Advances in neural information pro-
cessing systems, 32, 2019.

[Li et al., 2023] Zihao Li, Hao Wang, and Zhenzhen Yan.
Fully online matching with stochastic arrivals and depar-
tures. In Proc. 37th AAAI, number 10, pages 12014–12021,
2023.

[Ma et al., 2020] Will Ma, Pan Xu, and Yifan Xu. Group-
level fairness maximization in online bipartite matching.
arXiv preprint arXiv:2011.13908, 2020.

[Maister and others, 1984] David H Maister et al. The psy-
chology of waiting lines. Citeseer, 1984.

[Patro et al., 2020] Gourab K Patro, Arpita Biswas, Niloy
Ganguly, Krishna P Gummadi, and Abhijnan Chakraborty.
Fairrec: Two-sided fairness for personalized recommenda-
tions in two-sided platforms. In Proceedings of the web
conference 2020, pages 1194–1204, 2020.

[Rawls, 1958] John Rawls. Justice as fairness. The philo-
sophical review, 67(2):164–194, 1958.

[Rawls, 1999] John Rawls. A Theory of Justice. Harvard
University Press, Cambridge, MA, 1999.

[Righter, 1987] Rhonda Righter. The stochastic sequential
assignment problem with random deadlines. Probability
in the Engineering and Informational Sciences, 1(2):189–
202, 1987.

[Rigter et al., 2022] Marc Rigter, Danial Dervovic, Parisa
Hassanzadeh, Jason Long, Parisa Zehtabi, and Daniele
Magazzeni. Optimal admission control for multiclass
queues with time-varying arrival rates via state abstrac-
tion. In Proc. 36th AAAI, number 9, pages 9918–9925,
2022.

[Tener and Lanir, 2022] Felix Tener and Joel Lanir. Driving
from a distance: Challenges and guidelines for autonomous
vehicle teleoperation interfaces. In Proceedings of the 2022
CHI Conference on Human Factors in Computing Systems,
pages 1–13, 2022.

[Trabelsi et al., 2024] Yohai Trabelsi, Pan Xu, and Sarit
Kraus. Design a win-win strategy that is fair to both
service providers and tasks when rejection is not an op-
tion. https://github.com/yohayt/two sided fairness/blob/
main/full version.pdf?raw=true, 2024.

[Trabelsi, 2024] Yohai Trabelsi. Code and data: Design a
win-win strategy that is fair to both service providers and
tasks when rejection is not an option. https://github.com/
yohayt/two sided fairness, 2024. Accessed: 05/05/2024.

[Zhang, 2020] Tao Zhang. Toward automated vehicle tele-
operation: Vision, opportunities, and challenges. IEEE
Internet of Things Journal, 7(12):11347–11354, 2020.

[Zhou et al., 2023] Quan Zhou, Jakub Mareček, and Robert
Shorten. Subgroup fairness in two-sided markets. Plos
one, 18(2):e0281443, 2023.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

264

https://github.com/yohayt/two_sided_fairness/blob/main/full_version.pdf?raw=true
https://github.com/yohayt/two_sided_fairness/blob/main/full_version.pdf?raw=true
https://github.com/yohayt/two_sided_fairness
https://github.com/yohayt/two_sided_fairness

	Introduction
	Related Work

	Preliminaries
	Allocation Policy and Related Concepts
	Two Fairness-Related Objectives
	Two Optimization Programs

	The Relation Between the Two Fairness Optimization Problems
	Experiments
	Algorithms and Heuristics
	Experimental Settings
	Results and Discussion

	Conclusion

