
MGCBS: An Optimal and Efficient Algorithm for Solving Multi-Goal
Multi-Agent Path Finding Problem

Mingkai Tang1 , Yuanhang Li1 , Hongji Liu1 , Yingbing Chen1 , Ming Liu2 and Lujia Wang2

1Hong Kong University of Science and Technology
2Hong Kong University of Science and Technology (Guangzhou)

{mtangag, yliog, hliucq, ychengz}@connect.ust.hk, {eelium, eewanglj}@hkust-gz.edu.cn

Abstract
With the expansion of the scale of robotics applica-
tions, the multi-goal multi-agent pathfinding (MG-
MAPF) problem began to gain widespread atten-
tion. This problem requires each agent to visit pre-
assigned multiple goal points at least once without
conflict. Some previous methods have been pro-
posed to solve the MG-MAPF problem based on
Decoupling the goal Vertex visiting order search
and the Single-agent pathfinding (DVS). However,
this paper demonstrates that the methods based on
DVS cannot always obtain the optimal solution. To
obtain the optimal result, we propose the Multi-
Goal Conflict-Based Search (MGCBS), which is
based on Decoupling the goal Safe interval visit-
ing order search and the Single-agent pathfinding
(DSS). Additionally, we present the Time-Interval-
Space Forest (TIS Forest) to enhance the efficiency
of MGCBS by maintaining the shortest paths from
any start point at any start time step to each safe
interval at the goal points. The experiment demon-
strates that our method can consistently obtain op-
timal results and execute up to 7 times faster than
the state-of-the-art method in our evaluation.

1 Introduction
With the development of the robotic industry, the multi-agent
system has attracted more and more attention [Salzman and
Stern, 2020; Stern et al., 2019; Tjiharjadi et al., 2022]. One
of the critical problems to be solved is the multi-agent path
finding (MAPF) problem. The MAPF problem requires plan-
ning a conflict-free path for each agent from its starting point
to its goal point. MAPF is involved in many practical ap-
plication scenarios in the real world, such as aircraft tow-
ing vehicles [Morris et al., 2016], video games [Ma et al.,
2017b] and traffic management [Choudhury et al., 2022;
Dresner and Stone, 2008].

In the MAPF problem, each agent can be assigned only
one goal point. This setting does not meet the needs of some
large-scale robot applications. For example, in an automated
warehouse scenario, each robot may need to deliver multiple
goods in one trip. In this case, the robot needs to be provided
with a collision-free path with multiple goal points. This

1

2

3

Figure 1: An example of the MG-MAPF with three agents. The grey
cells represent the impassable areas occupied by obstacles. The solid
circles indicate the start point of the agent, and the number marked
inside is the agent ID. The dotted circles represent the goal points of
the agent in the corresponding color. The colored arrow marks the
path that can visit all goal points from the start point of the agent.

problem can be modeled as a multi-goal multi-agent pathfind-
ing (MG-MAPF) problem. The solver of MG-MAPF needs
to calculate a collision-free path for each agent so that the
agent can visit each of its goals at least once in an arbitrary
visiting order. Figure 1 shows an example of MG-MAPF.

Solving the MG-MAPF problem optimally, even in degen-
erate scenarios, can be time-consuming. The open loop trav-
eling salesman problem [Applegate et al., 2011], which is
widely recognized as an NP-hard problem, can be reduced
to a subset of the MG-MAPF that only considers one agent.
Furthermore, the classical MAPF problem, which is proved
to be NP-hard [Yu and LaValle, 2013], can also be reduced to
a subset of the MG-MAPF, which considers only one goal for
each agent. Therefore, it can be concluded that the problem
of optimally solving the MG-MAPF is NP-hard.

Some methods have been proposed to solve the MG-MAPF
problem by Decoupling the goal Vertex visiting order search
and the Single-agent pathfinding (DVS), such as the Hamil-
tonian Conflict-based Search [Surynek, 2021], which is the
current state-of-the-art (SOTA) method for the MG-MAPF
problem. We named the MG-MAPF solver that is based on
DVS as the DVS method. To find the shortest path to visit
all goals for a single agent under constraints, DVS methods
search a goal vertex visiting order iteratively. At each itera-
tion, an unvisited goal is enumerated and tried to append to

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

249



the end of the order. The corresponding path is constructed
by concatenating the shortest paths under constraints between
two neighbor goals on the goal vertex visiting order.

However, this paper provides evidence through the case
study and experiment that DVS methods cannot always ob-
tain the optimal result for the MG-MAPF problem. We intro-
duce a new approach, the Multi-Goal Conflict-Based Search
(MGCBS), to solve the MG-MAPF problem optimally and
efficiently. In contrast to the DVS method, MGCBS is based
on Decoupling the goal Safe interval visit order search and the
Single-agent pathfinding (DSS). The safe interval (SI) refers
to a safe configuration with a maximal time period, where
the ‘maximal’ means that if this time period were to be ex-
tended by a time step in any direction, the collision would
occur [Phillips and Likhachev, 2011]. The goal safe interval
(GSI) refers to the safe interval at the goal vertex. Formally,
let ([tSI

0 , tSI
1 ], sSI) be the SI at vertex s for the maximal time

interval [tSI
0 , tSI

1 ]. ([tSI
0 , tSI

1 ], sSI) is an GSI iff sSI is a goal
vertex. We name the MG-MAPF solver that is based on DSS
as the DSS method. The DSS method searches a GSI visit-
ing order so that at least one GSI is visited at each goal. The
corresponding path is obtained by concatenating the shortest
path to visit each GSI following the order. In addition, we
propose a data structure, the Time-Interval-Space Forest (TIS
Forest), to reduce redundant calculations of multiple queries
in the low-level solver of MGCBS by maintaining the shortest
paths and their length from any start vertex at any start time
to each GSI. Overall, the main contributions of this paper are
as follows.

1. We present that the DVS methods cannot always obtain
the optimal solution by case study and experiment.

2. We introduce a two-level approach, MGCBS, to solve
MG-MAPF, achieving high computational efficiency in
obtaining optimal solutions.

3. We present the TIS Forest, which maintains the shortest
paths to each GSI from any start vertex at any start time,
minimizing redundant calculations of multiple queries.

4. We provide the theoretical proof of the optimality and
completeness of MGCBS.

5. We conducted a comprehensive experimental evalua-
tion and compared our proposed method with the cur-
rent SOTA method. Compared with the SOTA method,
our method can consistently obtain the optimal solution
while achieving a maximum speedup ratio of up to 7 in
our evaluation.

2 Related Work
Some variants of the MAPF problem, which consider more
than one goal point for an agent, have recently been stud-
ied. The Multi-Agent Pickup-and-Delivery (MAPD) prob-
lem and its variants, which require the agent to pick up
the object in one location and deliver it to another loca-
tion, were studied in [Čáp et al., 2015; Ma et al., 2017a;
Xu et al., 2022]. In [Zhang et al., 2022], the Multi-Agent
Path Finding with Precedence Constraints (MAPF-PC) prob-
lem was proposed, where the visiting order of goal points

needs to satisfy some precedence constraints. The Multi-
Agent Simultaneous Multi-Goal Sequencing and Path Find-
ing (MSMP) problem, which requires assigning goals to each
agent before pathfinding, was solved in [Ren et al., 2021;
Ren et al., 2022]. However, the settings of the above prob-
lems differ from the MG-MAPF problem, making their meth-
ods not directly usable in the MG-MAPF problem.

The MG-MAPF problem was firstly discussed in [Surynek,
2021], and two solutions were proposed: Hamiltonian
Conflict-based Search (HCBS) and Satisfiability Modulo
Theories Conflict-based Search (SMT-HCBS). The HCBS,
which can be categorized as a DVS method, typically runs
faster than SMT-HCBS due to the leverage of its heuristic
function. However, it has room for improvement in optimal-
ity and efficiency. For optimality, our method improves upon
HCBS by using DSS. For efficiency, our method uses the
TIS Forest to reduce redundant calculations of the multiple
queries of the shortest path for each agent.

3 Problem Definition
The MG-MAPF problem is defined as follows. A set of
agents A = {a1, a2, ..., ak} can move on an undirected graph
G(V,E) where each edge is of unit length. Let ni be the
number of goals of ai. The task of agent ai can be de-
scribed as Ωa = {si, gi} where si is the start vertex and
gi = {g1i , g2i , ..., g

ni
i } denotes the goal vertices of the agent.

At each time step, agents can choose to wait at the current ver-
tex or move to an adjacent vertex. The agent will stay at one
of its goal vertices after completing all movements without
incurring any additional cost. The solution to the MG-MAPF
problem is a collection of agents’ collision-free paths, where
the agent can start from its start vertex and visit all its goal
vertices at least once with arbitrary visiting order. A collision
occurs when two agents are located in the same vertex (vertex
conflict) or moving along the same edge (edge conflict) at the
same time step. The cost of an agent’s path is the total time
steps used to visit all goals. We use the summation of the cost
(SOC) as the objective of the problem, meaning that the cost
of the solution is the summation of the cost of each agent’s
path.

4 Case Study
This section will provide an example of the MG-MAPF prob-
lem to illustrate that the DVS method is not optimal.

Theorem 1. The optimality of the methods based on decou-
pling the goal vertex visiting order search and single-agent
pathfinding cannot be guaranteed in the MG-MAPF problem.

Proof. An example that the DVS method cannot find the op-
timal solution is shown in Figure 2. In this example, agent 2
only has one possible goal vertex visiting order, while agent
1 has two possible situations. If agent 1 chooses to go to
g11 before going to g21 , the lower bound of the total cost is
207 + 7 = 214. If agent 1 chooses to travel to g21 before g11 ,
the lower bound of the total cost will be 111+7 = 118. Now
we consider to adopt the second choice. In this case, an edge
conflict between vertex D to vertex E occurs at the time step
6, which is in the path of agent 1 from g21 to g11 . Based on

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

250



the definition of DVS, the path from g21 to g11 may be adjusted
to avoid the conflict. For example, in HCBS, constraints are
created on the path of g21 to g11 of agent 1. However, the path
of agent 1 from the start vertex s1 to the goal vertex g21 will
remain unchanged because the time step of conflict surpasses
the time step of reaching g21 . One of the minimal-cost solu-
tions generated by the DVS method is that agent 1 goes to g21
before g11 , and agent 2 remains at vertex C for 8 time steps
to give paths to agent 1 before proceeding directly to g12 . The
total cost is 111 + 15 = 126. However, there exists an alter-
native solution with a lower total cost that deviates from the
shortest path for agent 1 starting from s1 towards g21 . Agent
1 remains at vertex s1 for 2 time steps. Subsequently, it pro-
ceeds to vertex g21 and then travels to vertex g11 . In this so-
lution, the total cost is 113 + 7 = 120, which is better than
the minimal cost solution given by the DVS method among
all goal vertex visiting orders.

The reason why the DVS method is not optimal is because
it incorrectly assumes that the path reaching the goal vertex
earlier is always better than the path reaching it later. Under
the given goal vertex visiting order, it only generates one path
to reach each goal at the earliest possible time step. How-
ever, in some cases, the optimal path might not reach a subset
of goal vertices at the earliest possible time step. The DVS
method misses these paths.

To obtain the optimal path, we propose to search based on
DSS, which only assumes that the path reaching the GSI ear-
lier is always better than the path reaching it later. In contrast
to the DVS method, DSS can obtain multiple paths under a
given goal vertex visiting order when there are multiple GSIs
at some goal vertices. Considering the same case above, when
the path between g21 to g11 is adjusted and causes conflicts at
g21 at a time step larger than the earliest time step to reach g21 ,
more than one GSI will appear in g21 , providing the potential
to search the non-earliest path to g21 from s1.

It is observed that the DVS method is more likely to ob-
tain a non-optimal result in crowded scenarios. On the one
hand, in scenarios with few agents and obstacles, the agent
can temporarily move to the neighbor vertex to give paths to
another agent and return to the original vertex once another
agent has passed. In this way, the DVS method can generate
a path from an earlier SI to a later SI without missing any
potential optimal paths. On the other hand, in crowded sce-
narios, the agent may not be able to return to the original ver-
tex quickly. It makes the agent infeasible for some time steps
in the later SI, making the DVS method miss some potential
optimal paths, which can be obtained by the DSS method.

5 Methodology
We propose an optimal and efficient two-level method, the
MGCBS, for the MG-MAPF problem based on DSS. To im-
prove the efficiency of the search process, we introduce the
TIS Forest data structure to reduce redundant calculations of
multiple queries. A TIS Forest corresponds to an agent and is
composed of several Time-Interval-Space Trees (TIS Tree),
which corresponds to a specific GSI of the agent. The TIS
Tree can be used to get the shortest path and its length to the
corresponding GSI from any start vertex at any start time step.

B DA

C

E

F

100 Nodes

Figure 2: An example of the MG-MAPF with two agents is repre-
sented in a planar graph. The agent 1 starts at vertex B and has two
goals located at vertex A and vertex E. The agent 2 starts at the
vertex C and only has one goal at vertex F .

5.1 MGCBS
The MGCBS is a two-level solver that can effectively calcu-
late the optimal path for each agent to visit all goals without
conflict. The high-level solver employs a constraint tree to
manage conflicts between agents, while the low-level solver
uses an A*-based solver to find the best GSI visiting order.

High-level Solver
The high-level solver of the MGCBS is an extension of the
high-level solver of the conflict-based search (CBS) [Sharon
et al., 2015]. It builds a constraint tree to solve conflicts be-
tween different agents. The constraints consist of vertex con-
straints, which prevent an agent from occupying a vertex at
a specific time step, and edge constraints, which prohibit an
agent from traversing an edge at a given time step. Each con-
straint tree node saves the TIS Forests, the constraint set, each
agent’s path, and the value of SOC. The implementation of
the TIS Forest will be discussed in subsection 5.2.

In the high-level solver, a distance table D is built to store
the distance from each vertex to each goal vertex for each
agent, which will be used in the low-level solver. It is ob-
served that there are no vertex constraints at the root node of
the constraint tree, causing only one GSI with a whole time
interval at each goal vertex. Therefore, D can be built by
querying the TIS Forest at the root node of the constraint tree.

The differences between the high-level solver of basic CBS
and MGCBS are the operations on the TIS Forest and the
distance table. At the beginning of the high-level solver of
MGCBS, the TIS Forests in the root node are built and used
to construct the distance table. Then, the TIS Forests, the
distance table, and the agents’ task information are fed to
the low-level solver to calculate the path that visits all goal
vertices without considering other agents. When a new con-
straint tree node is generated, its TIS Forests are copied from
its parent node, and one of them is reconstructed by the new
constraint set. The new TIS Forest, the distance table, and the
agent’s task information are put into the low-level solver to
compute the shortest path under the constraints.

Algorithm 1 shows the pseudocode of the high-level solver.
In lines 1 ∼ 9, the root node is constructed and put into the
open set. The TIS Forests are built in line 4, and the distance
table is constructed in line 5. The initial path of each agent
is calculated in line 6. In lines 11 ∼ 16, the minimum cost
node is found and checked whether it contains a conflict. If
no, the final solution is found. Otherwise, the constraints are

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

251



Algorithm 1 MGCBShigh

Input: agents A, graph G

1: R← new node
2: R.cons← ∅
3: for each agent a in A do
4: R.tisf [a]← BuildTISForest(G, a, ∅)
5: D[ai]← BuildDistanceTable(R.tisf [a])
6: R.paths[a]←

MGCBSlow(R.tisf [a], D[a], a, ∅) // Algorithm 2
7: end for
8: R.cost← calculate the SOC of R.paths.
9: OPEN ← {R}

10: while OPEN ̸= ∅ do
11: N ← minimum cost node from OPEN .
12: OPEN ← OPEN\{N}
13: F ← the earliest collision in N
14: if F is None then
15: return N.paths
16: end if
17: C ← build constraints from F
18: for constraint c = (a, t, v)/(a, t, vi, vj) in C do
19: P ← new node
20: P.tisf , P.paths← N.tisf , N.paths
21: P.cons← N.cons ∪ c
22: P.tisf [a] = BuildTISForest(G, a, P.cons)
23: P.paths[a]←MGCBSlow(P.tisf [a],

D[a], a, P.cons) // Algorithm 2
24: if P.paths[a] is not NULL then
25: P.cost← calculate the SOC of P.paths
26: OPEN ← OPEN ∪ {P}
27: end if
28: end for
29: end while
30: return NULL

built according to the earliest conflict. In lines 19 ∼ 27, new
nodes are constructed for each constraint, and the correspond-
ing constraint is added to the constraint set. The TIS Trees
that are related to the constrained agent are reconstructed ac-
cording to the new constraint set in line 22. The low-level
solver is called to build the path of a single agent in line 23.

Low-level Solver
The low-level solver computes the shortest path for a sin-
gle agent under constraints, ensuring that each goal is visited
at least once based on DSS. The low-level solver comprises
two stages: the GSI visiting order search stage and the path-
generating stage.

The GSI visiting order stage search uses an A* solver for
the best GSI visiting order. The state in the search can be
represented by (L, p), where L is the visited goal set and p is
the SI where the agent is currently located. The cost of the
state (L, p) is the length of the path that has visited all the
goals in L and is currently located in p. Let the g be the cost
value which is the same as the current time step, the h be the
heuristic value, and the f be the evaluation value. The cost
of the minimum spanning tree (MST) of the currently located
vertex and all unvisited goal vertices is used as the h. The
distance table D can be utilized to construct the MST. Dur-
ing the search, the state (L, p) can transfer to (L ∪ {q.v}, q),
where the q is a GSI whose vertex is not in L, and the q.v

Algorithm 2 MGCBSlow

Input: TIS Forest tisf , distance table D, agent a, constraint set
cons

1: R← new node
2: R.L← ∅
3: R.p← GetEarliestSI(a.start, cons)
4: R.g ← 0
5: R.h← Cost(GetMST (D,R.L, (R.p).v))
6: R.f ← R.g +R.h
7: OPEN,CLOSED← {R}, ∅
8: while OPEN ̸= ∅ do
9: N ← minimum f node from OPEN .

10: OPEN ← OPEN\{N}
11: CLOSED← CLOSED ∪ {N}
12: if N.L contains all goals of a then
13: order ← GenerateGoalV isitedOrder(N)
14: path← GeneratePath(tisf, order)
15: return path
16: end if
17: for q in GetAllPotentialGSI(a, cons,N.L) do
18: M ← GetNode(OPEN , CLOSED, N.L ∪ {q.v}, q)
19: if M /∈ CLOSED then
20: tist← GetTISTree(q, tisf )
21: len← GetPathLength(tist, (N.p).v,N.g)
22: if M ∈ OPEN then
23: M.g ← min(M.g,N.g + len)
24: M.f ←M.g +M.h
25: else
26: M.g ← N.g + len
27: M.h← Cost(GetMST (D,M.L, (M.p).v))
28: M.f ←M.g +M.h
29: OPEN ← OPEN ∪ {M}
30: end if
31: end if
32: end for
33: end while
34: return NULL

refers to the vertex corresponding to the q. It means that the
agent moves from the p.v at the start time step g to the GSI
q, whose vertex is an unvisited goal vertex q.v. The transfer
cost is the shortest path length from the p.v at time step g to
the GIS q under the constraint set. It can be directly obtained
from the TIS Forest. Specially, if q.v is the final unvisited
goal, only the latest GSI at q.v can be chosen as the next GSI
for avoiding conflicts after the agent finishes at the final goal.

The path-generating stage is executed when the minimum-
cost state that visits all goals is found. We backtrack the final
state to the initial state to get the GSI visiting order and use
the TIS Forest to build the path based on the order.

Algorithm 2 shows the pseudocode of the low-level solver.
In lines 1 ∼ 7, the initial node is initialized and put into the
open set, while the R.p is the earliest SI at the start vertex of
the agent. The heuristic value of the node is calculated by the
cost of the MST in line 5. At each iteration, the node with the
minimum f value is popped from the open set (lines 9 ∼ 11).
If the current node N has already visited all goals, extract the
GSI visiting order and then build the path (lines 12 ∼ 16).
Otherwise, all GSI at unvisited goals is enumerated with the
exception of the last unvisited goal, for which only the lastest
GSI is considered (lines 17). Let q be the current enumerated

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

252



1

[2, ]

0

3
[0, 0] 2

1
[1, ]

2

1

5

4

2

[1, ][0, ]

3

6

2

2

[5, ]

[0, ]

[0, 3]

5

2

1

6

4

3

[0, 0]

2

2

[0, 0]

Figure 3: The left subfigure shows the graph on which the TIS Tree
was built. The number in the circle is the vertex ID. The right sub-
figure shows the TIS Tree whose seed GSI is [2,+∞] at vertex 1.
The constraint set includes two vertex constraints, including vertex
1 at time step 1, and vertex 5 at time step 4. The block represents
the node in the tree, where the number in the block is the cost of the
node. The number under the block is the vertex ID. The bracketed
number represents the time interval of the TIS state of the node. The
arrow represents the edge of the TIS Tree pointing from the parent
node to the child node. The self-point arrow at vertices 2 and 3 in-
dicates waiting for one time step.

GSI. A node M is constructed where M.L = N.L ∪ {q.v}
and M.p = q (line 18). The TIS Tree corresponding to q is
filtered from the TIS Forest and used to obtain the path length
from (N.p).v at the time step N.g to q (lines 20 ∼ 21). M is
updated if it can be improved by N (lines 22 ∼ 30).

5.2 Time-Interval-Space Forest
The shortest path length to the GSI is frequently queried in the
low-level solver. If the MGCBS employs the A* algorithm to
obtain the path length, it will become time-consuming. Ob-
serving that the shortest path length to a specific GSI may be
queried multiple times during the search, we consider utiliz-
ing a data structure to reduce the redundant computation. It is
not trivial because the start time of each query is unknown be-
fore the search and can only be obtained after the path to the
previous GSI is generated. Considering that the constraints
are related to the time step, the optimal path of different start
time steps might be diverse, making it hard to reuse the result
of the previous search.

We propose TIS Forest to reduce redundant calculations.
Each TIS Forest corresponds to an agent. It consists of several
TIS Trees, each corresponding to a GSI of the agent. The TIS
Tree maintains the shortest path and its length from any start
vertex at any start time to the GSI. We name that GSI as the
seed GSI of the TIS Tree.

Let (t, s) be a time-space state (TS state) representing that
the agent is located at the vertex s at the time step t. Let
([t0, t1], s) be a time-interval-space state (TIS state), rep-
resenting a collection of TS states at the same vertex, i.e.,
([t0, t1], s) = {(t, s)|t ∈ [t0, t1]}. A TIS state is safe if and
only if it does not contain any TS states under vertex con-
straints. It should be noted that the SI is a special type of TIS
state, while the TIS state does not always need to be maximal.

Each node in the TIS Tree represents a safe TIS state, con-
taining the TS states that take the same vertex sequence as the
shortest path to the seed GSI. Therefore, different TS states in
a TIS state have the same shortest path length to the seed GSI.
We define the cost of the node as the shortest path length of
the TS states in the TIS state to the seed GSI. There might be
more than one node at a vertex when some vertex constraints
exist at the vertex.

The TIS Tree is constructed by a Dijkstra-based algorithm
[Dijkstra, 1959]. Initially, we find all maximal TIS states
(i.e., SI) at each vertex and create a node for each of them.
We refer to the node corresponding to the seed GSI as the
seed node. If the node is the seed node, its cost is set to
0; otherwise, its cost is set to +∞. At the beginning, all
nodes are put into an unvisited set U . At each iteration of
the search, the node with the minimum cost in U pops out
and is used to improve the path of its neighbor through the
reverse edge. Specifically, let ([t0, t1], v) be the TIS state of
the current minimum cost node n and cost(n) be the cost of
n. Let v′ be a vertex that can take one action to transfer to
v, i.e., v′ ∈ Nbr(v) and Nbr(v) = {v′|(v′, v) ∈ E} ∪ {v}.
Now we consider how to improve the path of the nodes at
v′ by ([t0, t1], v). We construct a TIS state set denoted by
B at vertex v′, such that each TS state in the TIS state is
safe and can transfer to a TS state in ([t0, t1], v) at a time
step. For example, ([t0, t1], v) = ([2, 8], v) and here is a ver-
tex constraint at vertex v′ at time step 3 and an edge con-
straint from vertex v′ to vertex v at time step 6, the B will be
{([1, 2], v′), ([4, 5], v′), ([7, 7], v′)}. We enumerate all nodes
at v′ and all TIS states in B. Let ([t′0, t

′
1], v

′) be the TIS
state of the current enumerated node n′ and ([tB0 , t

B
1 ], v

′) be
the TIS state in B. If cost(n′) > cost(n) + 1 and [t′0, t

′
1]

can be fully covered by [tB0 , t
B
1 ], the n′ can be improved

by setting n as its parent and cost(n′) = cost(n) + 1. If
cost(n′) > cost(n) + 1 and only a part of [t′0, t

′
1] is covered

by [tB0 , t
B
1 ], n

′ will be divided into several new nodes accord-
ing to the coverage, and only the new node whose time inter-
val is fully covered by [tB0 , t

B
1 ] can be improved by n. When

a node needs to be divided, the U is updated by deleting the
original node and adding the new nodes. The search will stop
when the U is empty. Figure 3 shows an example of the TIS
Tree.

After the construction, the TIS Tree can be used to query
the shortest path from any start vertex at any start time to the
seed GSI by the following steps. Firstly, we construct a TS
state according to the start time and vertex. Secondly, we find
out the node whose TIS state contains the TS state. Finally,
we backtrack this node to the seed node and construct the
shortest path through the vertices of passed nodes. Further-
more, we can get the shortest path length directly using the
cost of the node found in the second step without building the
path explicitly. When we need to obtain the shortest path or
its length to a GSI by a TIS Forest, we can extract the TIS
Tree that corresponds to the GSI and use it for the query.

The concept of TIS Forest may seem similar to the SIPP al-
gorithm [Phillips and Likhachev, 2011] as both the TIS Forest
and the SIPP algorithm search based on time intervals. How-
ever, their underlying principles differ. The SIPP algorithm
utilizes a forward search, with each SI containing a single

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

253



dominant time step, rendering all other time steps unimpor-
tant for the search. This property allows the SIPP algorithm
to reduce the total number of nodes during the search. In con-
trast, the TIS Forest employs a backward search. On the one
hand, we cannot use a mechanism similar to the SIPP algo-
rithm to construct the TIS Forest because the precise goal-
reaching time step is unknown beforehand, and the dominant
time step doesn’t exist. On the other hand, the TIS Forest is
built by the principle that the shortest path to the seed GSI
from all TS states within a TIS state have the same vertex se-
quence, and all TS states within a TIS state can be expanded
simultaneously along a reverse edge.

6 Theoretical Analysis
In this section, we will prove the optimality and completeness
of MGCBS.

Lemma 1. For two TS states in the same SI, the minimum
completion time of the path to visit a set of goals at least once
from the earlier TS state will not exceed the time from the
later TS state.

Proof. We prove it by contradiction. Let (t0, s) and (t1, s) be
two TS states in the same SI where t1 > t0. Define C(t, s)
as the minimum completion time of the path to visit a set of
goals at least once from a TS state (t, s). Suppose, towards a
contradiction, that C(t1, s) < C(t0, s). Consider the optimal
path that achieves the completion time C(t0, s). This path
can be modified to stay at vertex s until time t1 and then fol-
low the same sequence of vertices as the optimal path starting
from (t1, s). The modified path would visit all goals no later
than the optimal path from (t1, s), yielding a completion time
that is at most C(t1, s), in direct contradiction to the suppo-
sition that C(t1, s) < C(t0, s).

Lemma 2. The path maintained in the TIS Tree is the optimal
path to the seed GSI of the TIS tree under given constraints.

Proof. The TIS Tree is constructed based on a backward ver-
sion of the Dijkstra algorithm [Dijkstra, 1959]. The optimal-
ity of the TIS Tree can be guaranteed by the optimality of the
Dijkstra algorithm.

Lemma 3. The function GeneratePath in Algorithm 2 can
obtain the optimal path following a given GSI visiting order
under given constraints.

Proof. The resulting path of GeneratePath is constructed
by iteratively concatenating the subpath to the next GSI by
the TIS Tree, and the length of the subpath is shortest accord-
ing to the Lemma 2. The current Lemma can be proved by
induction. The search starts from a TS state with time step
0. Assume that using this construction method can obtain the
path with the minimum completion time following the first k
GSI visiting order. According to Lemma 1, concatenating the
shortest subpath to the k+1 GSI can obtain the path with the
minimum completion time following the first k + 1 GSI vis-
iting order. Therefore, by the principle of induction, the final
resulting path has the minimum completion time following
the whole GSI visiting order.

Theorem 2. MGCBS is an optimal solver of the MG-MAPF
problem.

Proof. In the low-level solver, the heuristic function is ad-
missible and satisfies the consistency assumption according
to the property of MST. The optimality of the low-level solver
can be guaranteed by the Lemma 3 and the optimality of A*
[Hart et al., 1968]. According to the optimality of CBS and
the low-level solver, the optimality of MGCBS can be guar-
anteed.

Theorem 3. MGCBS is a complete solver of the MG-MAPF
problem.

Proof. The completeness can be proven by following steps.
Firstly, based on the TIS forest design, if there is a feasible
path r from one start/goal vertex u at time step tu to reach
one goal vertex v at time step tv , there will not be a vertex
constraint on vertex v at time step tv . A TIS Tree must exist,
whose seed GSI includes time step tv at vertex v. This node
can be iteratively expanded following the reverse direction of
r to reach the node whose TIS state includes time step tu at
vertex u. Therefore, the TIS Tree is complete. Secondly,
if there is a feasible solution for a multi-goal single-agent
pathfinding problem, their corresponding GSI visiting order
could be searched in the low-level solver, and the path could
be constructed according to the completeness of A* and TIS
Tree. Thirdly, MGCBS is complete according to the com-
pleteness of CBS and the low-level solver.

7 Experiment
We verify our proposed algorithm’s effectiveness and opti-
mality on the 4-neighbor grid maps. We randomly sample
each agent’s start and goal points in the grid map, ensur-
ing that the start points of the different agents are distinct.
The test computer is equipped with an I9-7900X CPU with
3.3 GHz and 32GB RAM. The code is publicly available at
https://github.com/tangmingkai/MGCBS.

We use the following four algorithms for the experiments.

• HCBS (A1): A three-level algorithm [Surynek, 2021].
The highest level solver is a CBS algorithm, and the mid-
dle level solver is an A* algorithm that searches a goal
vertex visiting order. The lowest level solver is a classic
A* for single-agent pathfinding. It is the current SOTA
method based on DVS.

• MGCBS without TIS Forest (A2): MGCBS with a
modified low-level solver that uses the A* algorithm to
obtain the shortest path and its length to a GSI.

• MGCBS (A3): Our propose method.

• CBS + A* (A4): An optimal algorithm that is the CBS
with a coupled low-level search using an A* algorithm
to search for the shortest path visiting all the goals.

7.1 Experiment for Efficiency
From the MAPF benchmark [Sturtevant, 2012], three grid
maps from small to large are selected, namely ‘maze-32-32-
4’, ‘lak303d’, and ‘orz900d’. They are marked as M1, M2,
and M3, as shown in Figure 4. We generate 100 instances for

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

254



Map k A1 A2 A3

M1 2 98% 98% 100%
4 69% 69% 86%
6 22% 22% 50%
8 4% 4% 9%

M2 2 100% 100% 98%
4 93% 93% 91%
6 66% 66% 74%
8 20% 20% 50%

M3 2 0% 0% 100%
4 0% 0% 73%
6 0% 0% 8%
8 0% 0% 0%

Table 1: Table of the success rate. k is the number of agents.

map k A1 A2 A3

M1 2 4.37(-) 4.52(0.97) 0.63(6.94)
4 27.39(-) 27.84(0.98) 12.16(2.25)
6 53.44(-) 53.69(1.00) 37.47(1.43)
8 58.75(-) 58.75(1.00) 56.41(1.04)

M2 2 8.87(-) 8.87(1.00) 3.79(2.34)
4 23.73(-) 23.79(1.00) 12.23(1.94)
6 44.40(-) 44.40(1.00) 24.60(1.80)
8 57.18(-) 57.23(1.00) 42.26(1.35)

M3 2 60.00(-) 60.00(1.00) 17.73(3.38)
4 60.00(-) 60.00(1.00) 42.96(1.40)
6 60.00(-) 60.00(1.00) 58.73(1.02)

Table 2: Table of the average running time and the speedup ratio.
The first number in the cell shows the average running time (sec),
and the number in parentheses indicates the speedup ratio relative to
A1. k is the number of agents. The result of k = 8 on M3 is omitted
because there are no successful instances.

each number of agents in the range of {2, 4, 6, 8}. We fix each
agent’s goal number to 12. We employ the average running
time and the success rate as evaluation metrics for comparing
the performance of A1, A2, and A3. A test case is unsuccess-
ful if its running time exceeds 60 seconds, in which case the
running time will be directly set to 60 seconds.

Table 1 and Table 2 show the success rate, the average run-
ning time, and the speedup ratio to A1 of the other two on M1,
M2, and M3. In most instances, A3 outperforms A1 and A2
regarding average running time and success rate. Specifically,
the speedup ratio of A3 to A1 is nearly 7 when the number of
agents is two on M1. When the number of agents is smaller,
the acceleration is more pronounced because when the num-
ber of agents is large, unsuccessful instances will smooth the
speedup ratio. On M3, A1 and A2 cannot solve any instances,
while A3 solves all instances successfully when the number
of agents is 2. In small numbers of instances on M2 with few
agents, the speedup by using TIS Forest to find the shortest
path cannot overlap the construction overhead, making the
success rate lower than A1 and A2. However, regarding the
average running time, A3 performs the best on the same map
and the number of agents. In some instances, A2 runs slightly
slower than A1 because A2, which searches the GSI visiting
order in the low-level solver, has a higher computation com-

Map Algorithm SN DN MRE ARE

M4 A1 841 29 17.39% 0.19%
A3 852 0 0.00% 0.00%

M5 A1 896 4 7.14% 0.03%
A3 896 0 0.00% 0.00%

Table 3: Table for evaluating the solution quality of A1 and A3.
SN is the number of instances both the target algorithm and A4 can
successfully run. DN is the number of instances where the solution
cost produced by the target algorithm differs from those produced
by A4. MRE and ARE are maximal and average relative error,
respectively.

M1 M2 M3 M4 M5

Figure 4: The grid maps used in the experiment.

plexity than A1, which only searches the goal vertex visiting
order.

7.2 Experiment for Optimality
We use two self-defined grid maps, M4 and M5, in Figure
4, to evaluate the optimality of our proposed algorithm. We
generate 100 instances for the number of agents and goals
ranging from 2 to 4, with a total of 900 instances for each
grid map. We utilize relative error to evaluate the solution
quality with A4 and the target algorithm (A1 and A3), only
considering instances where both A4 and the target algorithm
are successful. Specifically, we count the instance number
where their costs differ and compute the maximum and aver-
age values of the relative error.

Table 3 displays the number of instances in which the cost
differs between the target algorithms and A4 across all suc-
cessfully solved instances, as well as the maximum and av-
erage relative error. In some instances, A1 cannot obtain the
optimal path with a maximal relative error exceeding 17%,
while A3 can obtain optimal results among all instances.

8 Conclusion
This work used the case study and experiment to demon-
strate that the method based on decoupling the goal ver-
tex visiting order search and the single-agent pathfinding is
not optimal for the multi-goal multi-agent pathfinding prob-
lem. Hence, we proposed a two-level optimal and efficient
solver, MGCBS, decoupling the goal safe interval visiting or-
der search and the single-agent pathfinding. To obtain the
shortest path and its length to each goal safe interval effi-
ciently, we proposed the Time-Interval-Space Forest to main-
tain the shortest path from any start vertex at any start time
step to the goal safe interval. Experiments have shown that
MGCBS can consistently obtain the optimal result and sig-
nificantly outperform the SOTA decoupled method regarding
running speed.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

255



Acknowledgments
This work was supported by Guangdong Basic and Ap-
plied Basic Research Foundation (No. 2021B1515120032),
and Guangzhou-HKUST(GZ) Joint Funding Program (No.
2024A03J0618).

References
[Applegate et al., 2011] David L Applegate, Robert E Bixby,

Vašek Chvátal, and William J Cook. The traveling sales-
man problem. In The Traveling Salesman Problem. Prince-
ton university press, 2011.

[Čáp et al., 2015] Michal Čáp, Peter Novák, Alexander
Kleiner, and Martin Seleckỳ. Prioritized planning al-
gorithms for trajectory coordination of multiple mobile
robots. IEEE transactions on automation science and en-
gineering, 12(3):835–849, 2015.

[Choudhury et al., 2022] Shushman Choudhury, Kiril
Solovey, Mykel Kochenderfer, and Marco Pavone. Co-
ordinated multi-agent pathfinding for drones and trucks
over road networks. In Proceedings of the 21st Interna-
tional Conference on Autonomous Agents and Multiagent
Systems, pages 272–280, 2022.

[Dijkstra, 1959] Edsger W Dijkstra. A note on two prob-
lems in connexion with graphs. Numerische Mathematik,
1:269–271, 1959.

[Dresner and Stone, 2008] Kurt Dresner and Peter Stone. A
multiagent approach to autonomous intersection manage-
ment. Journal of artificial intelligence research, 31:591–
656, 2008.

[Hart et al., 1968] Peter E Hart, Nils J Nilsson, and Bertram
Raphael. A formal basis for the heuristic determination of
minimum cost paths. IEEE transactions on Systems Sci-
ence and Cybernetics, 4(2):100–107, 1968.

[Ma et al., 2017a] Hang Ma, Jiaoyang Li, TK Satish Kumar,
and Sven Koenig. Lifelong multi-agent path finding for
online pickup and delivery tasks. In Proceedings of the
16th Conference on Autonomous Agents and MultiAgent
Systems, pages 837–845, 2017.

[Ma et al., 2017b] Hang Ma, Jingxing Yang, Liron Cohen,
TK Satish Kumar, and Sven Koenig. Feasibility study:
Moving non-homogeneous teams in congested video game
environments. In Thirteenth Artificial Intelligence and In-
teractive Digital Entertainment Conference, 2017.

[Morris et al., 2016] Robert Morris, Corina S Pasareanu,
Kasper Luckow, Waqar Malik, Hang Ma, TK Satish Ku-
mar, and Sven Koenig. Planning, scheduling and moni-
toring for airport surface operations. In Workshops at the
Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[Phillips and Likhachev, 2011] Mike Phillips and Maxim
Likhachev. Sipp: Safe interval path planning for dynamic
environments. In 2011 IEEE international conference on
robotics and automation, pages 5628–5635. IEEE, 2011.

[Ren et al., 2021] Zhongqiang Ren, Sivakumar Rathinam,
and Howie Choset. Ms*: A new exact algorithm for multi-

agent simultaneous multi-goal sequencing and path find-
ing. In 2021 IEEE International Conference on Robotics
and Automation (ICRA), pages 11560–11565. IEEE, 2021.

[Ren et al., 2022] Zhongqiang Ren, Sivakumar Rathinam,
and Howie Choset. Conflict-based steiner search for
multi-agent combinatorial path finding. Proceedings of
Robotics: Science and Systems, New York City, NY, USA,
2022.

[Salzman and Stern, 2020] Oren Salzman and Roni Stern.
Research challenges and opportunities in multi-agent path
finding and multi-agent pickup and delivery problems. In
Proceedings of the 19th International Conference on Au-
tonomous Agents and MultiAgent Systems, pages 1711–
1715, 2020.

[Sharon et al., 2015] Guni Sharon, Roni Stern, Ariel Fel-
ner, and Nathan R Sturtevant. Conflict-based search for
optimal multi-agent pathfinding. Artificial Intelligence,
219:40–66, 2015.

[Stern et al., 2019] Roni Stern, Nathan R Sturtevant, Ariel
Felner, Sven Koenig, Hang Ma, Thayne T Walker,
Jiaoyang Li, Dor Atzmon, Liron Cohen, TK Satish Ku-
mar, et al. Multi-agent pathfinding: Definitions, variants,
and benchmarks. In Twelfth Annual Symposium on Com-
binatorial Search, 2019.

[Sturtevant, 2012] Nathan R Sturtevant. Benchmarks for
grid-based pathfinding. IEEE Transactions on Computa-
tional Intelligence and AI in Games, 4(2):144–148, 2012.

[Surynek, 2021] Pavel Surynek. Multi-goal multi-agent path
finding via decoupled and integrated goal vertex ordering.
In Proceedings of the AAAI Conference on Artificial Intel-
ligence, volume 35, pages 12409–12417, 2021.

[Tjiharjadi et al., 2022] Semuil Tjiharjadi, Sazalinsyah
Razali, and Hamzah Asyrani Sulaiman. A systematic
literature review of multi-agent pathfinding for maze
research. Journal of Advances in Information Technology
Vol, 13(4), 2022.

[Xu et al., 2022] Qinghong Xu, Jiaoyang Li, Sven Koenig,
and Hang Ma. Multi-goal multi-agent pickup and deliv-
ery. In 2022 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), pages 9964–9971.
IEEE, 2022.

[Yu and LaValle, 2013] Jingjin Yu and Steven M LaValle.
Structure and intractability of optimal multi-robot path
planning on graphs. In Twenty-Seventh AAAI Conference
on Artificial Intelligence, 2013.

[Zhang et al., 2022] Han Zhang, Jingkai Chen, Jiaoyang Li,
Brian C Williams, and Sven Koenig. Multi-agent path
finding for precedence-constrained goal sequences. In
Proceedings of the 21st International Conference on Au-
tonomous Agents and Multiagent Systems, pages 1464–
1472, 2022.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

256


	Introduction
	Related Work
	Problem Definition
	Case Study
	Methodology
	MGCBS
	High-level Solver
	Low-level Solver

	Time-Interval-Space Forest 

	Theoretical Analysis 
	Experiment
	Experiment for Efficiency
	Experiment for Optimality

	Conclusion

