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Abstract
Coalition formation is a key capability in multi-
agent systems. An important problem in coalition
formation is coalition structure generation: parti-
tioning agents into coalitions to optimize the so-
cial welfare. This is a challenging problem that
has been the subject of active research for the past
three decades. In this paper, we present a novel
algorithm, SMART, for the problem based on a hy-
bridization of three innovative techniques. Two of
these techniques are based on dynamic program-
ming, where we show a powerful connection be-
tween the coalitions selected for evaluation and the
performance of the algorithms. These algorithms
use offline phases to optimize the choice of coali-
tions to evaluate. The third one uses branch-and-
bound and integer partition graph search to explore
the solution space. Our techniques bring a new
way of approaching the problem and a new level of
precision to the field. In experiments over several
common value distributions, we show that the hy-
bridization of these techniques in SMART is faster
than the fastest prior algorithms (ODP-IP, BOSS)
in generating optimal solutions across all the value
distributions.

1 Introduction
One of the main challenges in coalition formation is the coali-
tion structure generation (CSG) problem: partitioning the
agents into disjoint exhaustive coalitions so as to maximize
social welfare. (A coalition structure is a partitioning of
agents into coalitions.) This is a central problem in artifi-
cial intelligence and game theory that captures a number of
important applications such as collaboration among trucking
companies [Sandholm and Lesser, 1997], distributed sensor
networks [Dang et al., 2006], etc.

Many algorithms have been developed for this problem.
Dynamic programming algorithms [Yeh, 1986; Rahwan and
Jennings, 2008; Michalak et al., 2016; Changder et al., 2019;
Taguelmimt et al., 2022b] find an optimal solution if it is
computationally feasible to run them to completion. Anytime
algorithms [Sandholm et al., 1999; Dang and Jennings, 2004;
Rahwan et al., 2009; Ueda et al., 2010; Taguelmimt et al.,
2022a] provide intermediate solutions during the execution
and allow premature termination. Heuristic algorithms [Sen
and Dutta, 2000; Ueda et al., 2010; Krausburg et al., 2021;
Taguelmimt et al., 2021] focus on speed and do not guaran-
tee that an optimal solution is found.

Even though those algorithms perform well in practice
in some cases, hybrid algorithms [Michalak et al., 2016;
Changder et al., 2020; Changder et al., 2021; Taguelmimt
et al., 2023; Taguelmimt et al., 2024] that combine dy-
namic programming with integer partition graph search have
emerged as the dominant approach to find optimal solu-
tions to this problem. The fastest exact algorithms to date
are hybrid solutions called ODP-IP [Michalak et al., 2016],
ODSS [Changder et al., 2020], and BOSS [Changder et al.,
2021] that combine IDP [Rahwan and Jennings, 2008] and
IP [Rahwan et al., 2009]. IDP is based on dynamic pro-
gramming and computes the optimal solution for n agents by
computing an optimal partition of all the coalitions C of size
|C| ∈ {2, ..., 2n

3 , n}. In contrast, IP uses an integer represen-
tation of the search space and computes the optimal solution
by traversing in a depth-first manner multiple search trees
and uses branch-and-bound to speed up the search. How-
ever, the worst-case run time of the state-of-the-art hybrid
algorithms is determined by their respective dynamic pro-
gramming parts, which still need improvement. Also, the
hybridization of IDP and IP in these algorithms relies heav-
ily on the effectiveness of IP. Thus, the time required by the
algorithms grows considerably when IP is not fast enough.
Moreover, these algorithms exhibit very high run times for
some distributions.

In light of this, and to enable faster generation of optimal
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coalition structures, we develop a new algorithm that com-
bines three complementary techniques to guide the search.
The advantage of these techniques is threefold. The first
technique, Complementarity-Based Dynamic Programming
(CDP), enables SMART to have the best worst-case time per-
formance of all algorithms to date. GRadual seArch with Dy-
namic Programming (GRAD) enables it to find the optimal
solution quickly by exploring a minimum number of solution
subspaces which shortens the run time. Distributed Integer
Partition Search (DIPS) further accelerates the search by ex-
ploring the subspaces that are most likely to contain the opti-
mal solution. In short, our main contributions are:

• We develop a novel algorithm for optimal CSG that com-
bines three new techniques, resulting in a significant per-
formance improvement. Two of these techniques use
offline phases to optimize the search. Moreover, we
introduce a new complementarity principle in dynamic
programming, where the optimal solution is found by
combining the evaluation results of two distinct sets of
coalitions. We also propose another principle of gradual
search in dynamic programming, where percentages of
solution subspaces are searched separately. These prin-
ciples bring a new way of approaching the problem and
a new level of precision to the field.

• We devise the fastest dynamic programming algorithm
to date, which bounds the run time, and we propose a
new way to speed the search for optimal solutions, while
exploring only a part of the search space.

• We show that our algorithm outperforms existing algo-
rithms when generating optimal solutions. We show that
it is i) orders of magnitude faster in producing optimal
solutions, and ii) more stable in the run time when vary-
ing the distributions and the numbers of agents.

2 Preliminaries
The input to a CSG problem is a set of agents A and a char-
acteristic function v. We say that a CSG problem A =
{a1, a2, ..., an} is of size n. A coalition C in A is any non-
empty subset of A. The size of C is |C|, which is the number
of agents it contains. A size set is a set of coalition sizes. In a
CSG problem, a characteristic function v assigns a real value
to each coalition C. A coalition structure CS is a partition
of the set of agents A into disjoint coalitions. Given a set of
non-empty coalitions {C1, C2, ..., Ck}, CS = {C1, C2, ..., Ck},
where k = |CS|,

⋃k
j=1 Ci = A and for all i, j ∈ {1, 2, ..., k}

where i ̸= j, Ci ∩ Cj = ∅. Π(A) denotes the set of all
coalition structures. The value of a coalition structure CS
is V (CS) =

∑
C∈CS v(C). The optimal solution of the CSG

problem is the most valuable coalition structure CS∗ ∈ Π(A),
that is, CS∗ = argmaxCS∈Π(A)V (CS).

The integer partition graph [Rahwan et al., 2007] (see Fig-
ure 1) divides the search space into subspaces that are repre-
sented by integer partitions of n. Given n agents, each integer
partition of n is represented by a node, where the nodes are
divided into levels. Each level l ∈ {1, 2, .., n} contains nodes
representing integer partitions of n that contain l parts. For
instance, level 3 contains nodes where integer partitions of

n have 3 parts. Two adjacent nodes are connected if the in-
teger partition in level l can be reached from the one in level
l−1 by splitting only an integer. Each integer partitionP rep-
resents a set of coalition structures in which the sizes of the
coalitions match the parts of P . For example, the node [1,1,2]
represents all coalition structures that contain two coalitions
of size 1 and one coalition of size 2. Figure 1 shows a four-
agent example of the integer partition graph.

For the remainder of this paper, we use the terms solution
subspace and node interchangeably.

[1, 1, 1, 1]

[1, 1, 2]

[1, 3] [2, 2]

[4]L1 :

L2 :

L3 :

L4 :

Π[4] :{{a1, a2, a3, a4}}

Π[2,2] : {{a1, a2}, {a3, a4}}
{{a1, a3}, {a2, a4}}
{{a1, a4}, {a2, a3}}

Π[1,3] : {{a1}, {a2, a3, a4}}
{{a2}, {a1, a3, a4}}
{{a3}, {a1, a2, a4}}
{{a4}, {a1, a2, a3}}

Π[1,1,2] : {{a1}, {a2}, {a3, a4}}
{{a1}, {a3}, {a2, a4}}
{{a1}, {a4}, {a2, a3}}

{{a2}, {a3}, {a1, a4}}
{{a2}, {a4}, {a1, a3}}
{{a3}, {a4}, {a1, a2}}

,

,

,

Π[1,1,1,1] : {{a1}, {a2}, {a3}, {a4}}

4 = 2 + 2

Split 4
4 = 1 + 3

Split 4

3 = 1 + 2

Split 3

2 = 1 + 1

Split 2

2 = 1 + 1

Split 2

Figure 1: A four-agent integer partition graph.

3 SMART: A Novel CSG Algorithm
The SMART algorithm is based on three techniques (CDP,
GRAD and DIPS) that combine dynamic programming with
integer partition graph search. SMART introduces new ways
of searching the integer partition graph of solutions.

3.1 Complementarity-Based Dynamic
Programming (CDP)

CDP is an algorithm that determines the optimal coalition
structure. To compute the optimal structure, CDP evaluates
different sets of coalitions through two processes (Figure 2),
and computes the best partition of each coalition, meaning
the best way to split it into potentially multiple subcoalitions.
The highest valued coalition structure returned by these pro-
cesses is an optimal solution. To determine the coalitions to
evaluate (that is, for which to compute the best partitions) and
ensure that the optimal solution is found, the CDP algorithm
uses an offline phase of preprocessing. This phase defines
the best pair of coalition size sets to evaluate, such that when
combined, the entire solution space is searched. This means
that by evaluating these specific sets of coalitions, the CDP
algorithm can guarantee that it has considered every possible
grouping of agents.

CDP’s Offline Phase
The offline phase is one of the key components of the CDP
algorithm, which is responsible for determining the coalitions
to evaluate in the two processes of the algorithm. This is done
by considering the coalition sizes, as illustrated on the integer
partition graph (Figure 1). To understand how this works, let
us consider an example of four agents. Dividing a coalition
of size 2 into two coalitions of size 1, when searching for the
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solutions, corresponds to an upward movement in the inte-
ger partition graph from the node [2, 2] to the node [1, 1, 2]
(2=1+1). By choosing to split in this graph a subset of inte-
gers starting from the bottom node, that is, by considering the
edges that result from splitting a subset of sizes, a subset of
nodes in the integer partition graph becomes reachable from
the bottom node, which means that the nodes are connected
to the bottom node through a series of edges. Thus, to search
a certain number of subspaces, several sets of coalition sizes
could be considered, with a different run time for each set.
For example, by splitting only the sizes 2 and 4 starting from
the bottom node, that is, by deciding to evaluate all the coali-
tions of sizes 2 and 4 and not those of size 3, all the nodes in
the integer partition graph are reachable from the bottom node
through a series of edges that result from splitting the coali-
tion sizes 2 and 4. Hence, the set of sizes {2, 4} generates
100% of subspaces, as does the set {2, 3, 4}, but with a lower
run time. Hence, some sets of sizes may be more beneficial
than others. To find the best size set pair, we propose the Size
Sets Definition (SSD) algorithm. The SSD algorithm starts by
estimating the time required to evaluate the coalitions of each
size from 2 to n. This time corresponds to the evaluation time
of all the different ways of splitting the coalitions of each size.
The estimated time of a splitting is the computational cost as-
sociated with this hardware operation, which is a fixed value
like any other operation, such as an addition or a subtraction.
Then, SSD computes the best pair of coalition size sets that
searches all the subspaces with minimum run time.

Then, SSD goes through each possible pair of coalition
size sets, and for each pair, it constructs two integer parti-
tion graphs by only dividing the integers that belong to each
set of sizes (Figure 2). The edges that result from dividing the
sizes of the set connect a number of nodes to the bottom node.
For a particular pair of sets, in case the generated nodes of the
second set of sizes cover all the missed nodes of the first set,
meaning that all the solution subspaces are obtained by the
first or second set, the SSD algorithm tests whether the pair
minimizes the run time. If so, this pair becomes the best pair.
The run time of a set of sizes is the sum of the evaluation
times of the coalitions of the size set. Given this, the run time
of a pair of size sets is the highest run time of the size sets
that comprise it.

Algorithm 1 shows how SSD computes the best pair of
coalition size sets. The sets of sizes are represented in bi-
nary format, with numbers of n − 2 bits that represent sizes
between 2 and n − 1. The coalitions of size 1 and n are
not evaluated because the size 1 coalitions are never split and
the coalition of size n is always split. For example with five
agents, the sets of sizes are {2, 3} and {2, 4}, are represented
by the binary numbers 0112 and 1012, respectively.

These steps are all executed offline, meaning that we run
the SSD algorithm only once for each problem size n (not
once for each problem instance) to set up CDP. For example
with ten agents, the best pair of coalition size sets that SSD
returns is BS1 = {2, 4, 6, 10} and BS2 = {2, 8, 10}, which
together search all the subspaces.

Algorithm 1: Size Sets Definition (SSD) Algorithm
Input: A problem size n, the required time to evaluate

the coalitions of each size.
Output: The best pair BS1,BS2 of coalition size sets

to search the entire solution subspaces. BS1
and BS2 are in binary format.

1 BS1 ← 2n−2 − 1 ▷ Initially, the best sizes include all
the coalition sizes, i.e. {2, .., n− 1}

2 BS2 ← 2n−2 − 1
3 x← GeneratedSubspaces(2n−2 − 1) ▷

GeneratedSubspaces(2n−2 − 1) returns the set of
subspaces for a problem of n agents

4 t∗1 ← SetT ime(2n−2 − 1) ▷ SetT ime returns the run
time for a set of sizes. The best time for searching
the subspaces is initialized to the run time of
considering all the sizes

5 t∗2 ← SetT ime(2n−2 − 1)
6 for i = 1 to 2n−2 − 1 do ▷ i corresponds to a set of

coalition sizes represented in binary format
7 y ← GeneratedSubspaces(i)
8 v ← x \ y ▷ v contains the missed nodes when

considering the set i
9 t1 ← SetT ime(i)

10 if t1 < t∗1 or t1 < t∗2 then ▷ the set i has a chance
to improve the result

11 for j = i+ 1 to 2n−2 − 1 do
12 y ← GeneratedSubspaces(j)
13 if v ⊆ z then ▷ the set j generates all the

missed nodes of the set i
14 t2 ← SetT ime(j)
15 if t1 < t∗1 and t2 ≤ t∗2 or t2 < t∗2 and

t1 ≤ t∗1 then ▷ the pair of sets {i, j}
improves the result

16 BS1 ← y, BS2 ← z
17 t∗1 ← t1, t∗2 ← t2

18 Add n to BS1 and BS2 ▷ n is always considered.
19 Return BS1,BS2

CDP’s Online Phase
The CDP algorithm uses these sets to compute the optimal
coalition structure each time a problem instance is to be
solved. CDP starts, in a first step, by constructing two ta-
bles, the partition table Pt that stores the optimal partition of
each coalition C in Pt(C) and the value table Vt that stores the
optimal value of each coalition C in Vt(C). Pt(C) and Vt(C)
are computed for each coalition C by evaluating all possible
ways of splitting C into two coalitions and checking whether
it is beneficial to split it or not. For example, for a coalition of
size 4, we evaluate its splitting into a coalition of size 1 and
a coalition of size 3 (4=1+3) and into two coalitions of size 2
(4=2+2). This evaluation is done by the two CDP processes,
which each consider the coalitions whose sizes belong to the
sets returned by SSD. In each process, CDP starts evaluating
the smallest coalitions first, as the result of this evaluation is
used for evaluating larger coalitions (see Algorithms 2 and
3). In a second step, each process of CDP computes the best
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Algorithm 2: The CDP algorithm
Input: Set of all possible coalitions and the value

Vt(C) of each coalition C. A number of agents
n. Sets of coalition sizes BS1 and BS2 to
consider by CDP.

Output: An optimal coalition structure CS∗ and its
value.

▷ Begin parallel
▷ CDP runs in parallel given BS1

1 CS∗1, V∗
1 ← Computing Optimal CS(Vt, n,BS1)

▷ CDP runs in parallel given BS2
2 CS∗2, V∗

2 ← Computing Optimal CS(Vt, n,BS2)
▷ End parallel

3 if V∗
1 > V∗

2 then
4 V∗ ← V∗

1 , CS∗ ← CS∗1
5 else
6 V∗ ← V∗

2 , CS∗ ← CS∗2
7 Return CS∗, V∗

coalition structure, among the searched subspaces, by com-
puting the best partition of the grand coalition A. Hence, the
optimal solution that CDP finds is the highest-valued coali-
tion structure produced by these processes (Figure 2).

Theorem 1 establishes that when considering any pair of
coalition size sets, the presence of a path between each node
and the bottom node in one of the two integer partition graphs
associated with the respective size sets guarantees finding an
optimal coalition structure.

Theorem 1. When considering any pair of coalition size sets
to evaluate, if there is a path between each node and the bot-
tom node of one of the two integer partition graphs generated
by the two size sets, CDP will fully search the solution sub-
spaces. Thus it finds an optimal coalition structure.

Proof. The splitting operations of CDP are represented with
edges in the integer partition graph (Figure 2). An edge that
connects two adjacent nodes, and results from splitting an in-
teger x into two, represents the evaluation of all coalitions of
size x by CDP. If there is a path between the bottom node of
the integer partition graph and a node N , then all the coali-
tions that need to be split to find the best solution in N are
evaluated. As all the nodes are at least connected to one of the
bottom nodes of the two integer partition graphs generated by
the pair of size sets, CDP fully searches each subspace.

Algorithms 2 and 3 detail the pseudocode of CDP. CDP
runs in parallel on the two coalition size sets obtained from
the offline phase. In Algorithm 3, CDP computes the opti-
mal coalition structure that belongs to the subspaces searched
considering each set. Then, the optimal solution is the highest
valued solution of the two (see lines 3-7 of Algorithm 2).

3.2 Gradual Search with Dynamic Programming
(GRAD)

The GRAD algorithm uses multiple parallel processes to
search for the optimal solution, each with a set of coalition
sizes as input with which it explores a certain percentage of

the search space. These percentages that we detail in Sec-
tion 6 are hyperparameters that can be adjusted to fine-tune
the algorithm.

GRAD’s Offline Phase
GRAD also uses an offline phase to compute, for each con-
sidered percentage ω, the best coalition size set that allows
one to search this percentage of subspaces with the shortest
run time. To find these sets, we introduce the Size Optimiza-
tion for diFferent percenTages (SOFT) algorithm. For each
size set S , SOFT constructs the corresponding integer parti-
tion graph GS by only dividing the integers that belong to the
set S . GS is thus partial, as shown in the example of Fig-
ure 2. If this number of generated nodes in GS is at least an
ω fraction of the total number of subspaces and S minimizes
the run time, then S becomes the best set. Algorithm 4 shows
how SOFT computes the best coalition size sets. For exam-
ple with n = 10 agents and ω = 90%, the best coalition size
set that SOFT returns is {2, 4, 6, 10}; it searches 92.86% of
subspaces (Figure 2.a).

GRAD’s Online Phase
Once these size sets are computed by the SOFT algorithm,
each process of GRAD is tuned with the corresponding size
set. To solve the problems, GRAD builds a partial integer
partition graph with all subspaces and no edges and launches
each process with its size set and this partial graph as input
(Algorithm 5). Each process of GRAD evaluates all the coali-
tions whose sizes belong to the best size set obtained from the
offline phase and computes their best partitions. The GRAD
process evaluates all possible ways of splitting each coalition
of the selected sizes into two coalitions and tests whether it is
beneficial to split or not. The coalitions are evaluated starting
with the smallest ones (Figure 2.a). The result of this evalua-
tion is stored in the partition table Pt and the value table Vt.
Once all the coalitions have been evaluated, the GRAD pro-
cess returns the best coalition structure among the searched
subspaces. This is determined by computing the best parti-
tion of the grand coalition A using the partition and value
tables generated during the evaluation process.

When the optimal solution is in the subspaces explored by
a process of GRAD that searches a specific percentage of sub-

Algorithm 3: Computing Optimal CS
Input: The value table Vt. A number of agents n. Set

of coalition sizes BS to consider by CDP.
Output: An optimal coalition structure CS∗ and its

value.
1 for s ∈ BS do
2 foreach C ⊆ A, where |C| = s do
3 foreach C1, C2 ⊆ C, where C1 ∪ C2 = C and

C1 ∩ C2 = ∅ do
4 if Vt(C1) + Vt(C2) > Vt(C) then
5 Vt(C)← Vt(C1) + Vt(C2)
6 Pt(C)← {C1, C2}

7 CS∗ ←Partition(A,Pt), V∗ ← Vt(A) ▷ the
pseudocode of Partition is in the appendix

8 Return CS∗, V∗
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1, 1, 1, 1, 1, 1, 1, 1, 1, 1

1, 1, 1, 1, 1, 1, 1, 1, 2

1, 1, 1, 1, 1, 1, 1, 3 1, 1, 1, 1, 1, 1, 2, 2

1, 1, 1, 1, 1, 1, 4 1, 1, 1, 1, 1, 2, 3 1, 1, 1, 1, 2, 2, 2

1, 1, 1, 1, 1, 5 1, 1, 1, 1, 2, 4 1, 1, 1, 1, 3, 3 1, 1, 1, 2, 2, 3 1, 1, 2, 2, 2, 2

1, 1, 1, 1, 6 1, 1, 1, 2, 5 1, 1, 1, 3, 4 1, 1, 2, 2, 4 1, 1, 2, 3, 3 1, 2, 2, 2, 3 2, 2, 2, 2, 2

1, 1, 1, 7 1, 1, 2, 6 1, 1, 3, 5 1, 2, 2, 5 1, 1, 4, 4 1, 2, 3, 4 2, 2, 2, 4 1, 3, 3, 3 2, 2, 3, 3

1, 1, 8 1, 2, 7 1, 3, 6 2, 2, 6 1, 4, 5 2, 3, 5 2, 4, 4 3, 3, 4

1, 9 2, 8 3, 7 4, 6 5, 5

10

(a)

1, 1, 1, 1, 1, 1, 1, 1, 1, 1

1, 1, 1, 1, 1, 1, 1, 1, 2

1, 1, 1, 1, 1, 1, 1, 3 1, 1, 1, 1, 1, 1, 2, 2

1, 1, 1, 1, 1, 1, 4 1, 1, 1, 1, 1, 2, 3 1, 1, 1, 1, 2, 2, 2

1, 1, 1, 1, 1, 5 1, 1, 1, 1, 2, 4 1, 1, 1, 1, 3, 3 1, 1, 1, 2, 2, 3 1, 1, 2, 2, 2, 2

1, 1, 1, 1, 6 1, 1, 1, 2, 5 1, 1, 1, 3, 4 1, 1, 2, 2, 4 1, 1, 2, 3, 3 1, 2, 2, 2, 3 2, 2, 2, 2, 2

1, 1, 1, 7 1, 1, 2, 6 1, 1, 3, 5 1, 2, 2, 5 1, 1, 4, 4 1, 2, 3, 4 2, 2, 2, 4 1, 3, 3, 3 2, 2, 3, 3

1, 1, 8 1, 2, 7 1, 3, 6 2, 2, 6 1, 4, 5 2, 3, 5 2, 4, 4 3, 3, 4

1, 9 2, 8 3, 7 4, 6 5, 5

10

(b)

Figure 2: Illustration of CDP on a 10-agent integer partition graph. CDP evaluates the coalitions of size s ∈ BS1={2, 4, 6, 10} (Figure 2.a)
and those of size s ∈ BS2={2, 8, 10} (Figure 2.b) in parallel. With the set BS1 (resp. BS2), CDP explores all the subspaces in Figure 2.a
(resp. Figure 2.b), except the red ones. Nevertheless, CDP covers all the subspaces using BS1 and BS2. Hence, no node is missed by both
sets, that is, no node is red in both figures.

spaces ω < 100%, the process finds it with the shortest run
time and enables the other GRAD processes to instantly prune
certain subspaces without exploring them. To prune the sub-
spaces, we introduce the upper bound UB(N ) of a subspace
N , which is the highest value a coalition structure of this sub-
space can possibly reach. UB(N ) =

∑
i∈Integers(N ) Maxi,

where Maxi is the maximum value a coalition of size i can
take and Integers(N ) is the set of integers that form the cor-
responding integer partition of the subspaceN . For instance,
for N = [1, 4, 5], Integers(N ) = {1, 4, 5} and UB(N ) =∑

i∈{1,4,5} Maxi = Max1 + Max4 + Max5. By compar-
ing the upper bounds of the subspaces, the GRAD processes
identify those that have no chance of improving the solution
quality and prune the corresponding nodes that do not have a
better upper bound than the last best solution found (Line 10
in Algorithm 6). Moreover, after evaluating all the coalitions
of size x, a GRAD process updates the integer partition graph
by adding the edges that result from splitting x into two in-
tegers (Line 8 in Algorithm 6). For example in Figure 2.b,
after evaluating all the coalitions of size 8, all the green edges

are added to the graph. Hence, a number of nodes become
reachable from the bottom node through a series of edges,
and the corresponding subspaces are fully searched. Thus,
the GRAD process prunes them (Line 9 in Algorithm 6). The
subspace pruning, using the upper bounds and the connec-
tion to the bottom node, are repeated each time a process of
GRAD finishes evaluating the coalitions of each size. Hence,
as the size x increases, more subspaces are pruned from the
graph. Thus, when all subspaces are pruned, GRAD finishes
and returns the optimal solution.

3.3 Distributed Integer Partition Graph Search
(DIPS)

DIPS searches the solution subspaces using the integer parti-
tion graph. First, DIPS computes the upper bounds of the sub-
spaces and searches them based on their upper bounds. Then,
whenever a CDP or GRAD process finishes, while there are
still unexplored nodes, DIPS uses that process for a different
problem space to parallelize its search. The new process uses
the same search technique in DIPS. Thus, the subspaces of
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Algorithm 4: The SOFT Algorithm
Input: A CSG problem size n, the required times to

evaluate the coalitions of sizes 2 to n-1 for
splitting, and the percentage ω of solution
subspaces.

Output: The best set of coalition sizes BS to search at
least the percentage ω of the solution
subspaces. BS is in binary format.

1 BS ← 2n−2 − 1 ▷ Initially, the best set includes all
the coalition sizes, i.e. {2, .., n− 1}. 2n−2 − 1 is the
binary representation of this set.

2 x← NumberOfSubspaces(2n−2 − 1) ▷ The
functionNumberOfSubspaces returns the number
of subspaces for a CSG problem with n agents

3 t∗ ← SetT ime(2n−2 − 1) ▷ SetT ime returns the run
time for a set of sizes. t∗ is initialized to the run time
when considering all the coalition sizes, which is the
worst time

4 for i = 1 to 2n−2 − 1 do ▷ i corresponds to a set of
coalition sizes represented in binary format

5 y ← NumberOfSubspaces(i) ▷ y represents the
number of generated subspaces in i

6 if y ≥ x× ω and SetT ime(i) < t∗ then ▷ the set
i generates at least the needed percentage of
subspaces

7 BS ← i
8 t∗ ← SetT ime(i)
9 Add n to BS ▷ n is always considered.

10 Return BS

Algorithm 5: The GRAD algorithm
Input: Set of all possible coalitions and the value

Vt(C) and Pt(C) of each coalition C. A
number of agents n. Sets of coalition sizes
BSi to consider by GRAD.

Output: An optimal coalition structure CS∗ and its
value.

1 for i = 1 to |BS| do ▷ |BS| is the number of
considered percentages.

2 Generate a partial integer partition graph IG with
all subspaces and with no edges
▷ Begin parallel
▷ GRAD process runs in parallel given BSi

3 CS∗, V∗ ← Search Process(Pt,Vt, n,BSi, IG)
▷ End parallel

4 Return CS∗, V∗

solutions will gradually be distributed between several pro-
cesses as they are released by CDP or GRAD, which share
the subspaces, their upper bounds, and their sorting. This
way, each subspace is searched by only one process.

DIPS progressively prunes the subspaces that do not have
a better upper bound than the last best solution found. To
search a subspace of solutions, a DIPS process constructs
several search trees to explore the coalition structures. The

Algorithm 6: Search Process
Input: The partition and value tables Pt and Vt. A

number of agents n. Set of coalition sizes BS
to consider by the process. A partial integer
partition graph.

Output: An optimal coalition structure CS∗ and its
value.

1 for s ∈ BS do
2 foreach C ⊆ A, where |C| = s do
3 foreach C1, C2 ⊆ C, where C1 ∪ C2 = C and

C1 ∩ C2 = ∅ do
4 if Vt(C1) + Vt(C2) > Vt(C) then
5 Vt(C)← Vt(C1) + Vt(C2)
6 Pt(C)← {C1, C2}
7 Compute the best solution, CS∗, V∗, from Pt and Vt

8 Add to the integer partition graph the edges that
result from splitting the size s

9 Prune the subspaces connected to the bottom node
▷ these subspaces are already explored

10 Prune the subspaces that do not have a better upper
bound than the last best solution found

11 if all the subspaces are pruned then
12 Return CS∗, V∗

nodes of these trees represent coalitions and each path from
the root to a leaf represents a coalition structure. Moreover,
DIPS applies a branch-and-bound technique to identify and
avoid branches that have no chance of containing an optimal
solution. An example of this step is given in Figure 3 in the
appendix.

4 Hybridization: The SMART Algorithm
We combine CDP, GRAD, and DIPS to make the coalition-
Size optiMization and subspAce ReconfiguraTion (SMART)
algorithm. Initially, SMART sorts the subspaces by their
upper bounds. The DIPS algorithm starts searching with
the subspace that has the highest upper bound. Then, DIPS
prunes out the subspaces that are either already searched by
CDP or GRAD, or that do not have a better upper bound than
the last best solution found. CDP and GRAD evaluate the
coalitions of the computed sizes obtained from their respec-
tive offline phases and allow subspace pruning through in-
termediate solutions. Whenever a process in CDP or GRAD
finishes evaluating the coalitions of any size, they prune out
the subspaces that are connected to the bottom node of the
integer partition graph through a series of edges because the
optimal coalition structure among these subspaces is found by
CDP or GRAD. Hence, DIPS does not need to search them.
Figure 3 shows how DIPS distributes the search.

Algorithm 7 shows the pseudocode of SMART. We now
introduce the following results.
Lemma 1. CDP is faster than or at least as fast as IDP.

Proof. Let SIDP be the set of sizes used by IDP [Rahwan
and Jennings, 2008]. SIDP is hand tuned and is always equal
to {2, 3, .., 2n

3 , n} for n agents. Let S1 and S2 be the sets
of sizes used by CDP, which are tuned automatically by the
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DIPS
process

GRAD
process 1

GRAD
process 2

2,4,4 1,2,2,6 3,3,4 1,1,1,3,4 1,3,6 2,2,3,3 1,2,2,5 1,4,5

Figure 3: Illustration of the subspace distribution technique. The
subspaces are sorted according to their upper bounds. The subspace
[2,4,4] is the highest upper bound node and [1,4,5] is the lowest up-
per bound node. First, DIPS starts by searching the highest upper
bound subspaces. Then, each time a GRAD or CDP process is re-
leased, DIPS uses the process to expand the parallelism of its search.
For example in this Figure, when the released “GRAD process 1” is
used by DIPS to search the node [1,1,1,3,4], the “DIPS process”
searches another node.

SSD algorithm. S1 and S2 are configured to be the pair of
sets with the shortest resulting run time. We now show that
IDP can not have a better run time than CDP. Let time(Si)
be the run time produced by the set i. Suppose now that there
exists a number of agents for which SIDP is the best set of
sizes to consider and that no pair of sets can produce a better
run time. In this case, as the sets S1 and S2 find the short-
est run time, they must coincide with SIDP , meaning that
max(time(S1), time(S2)) = time(SIDP ). Hence, the SSD
algorithm would find the sets S1 = SIDP and S2 is not nec-
essary because SIDP is sufficient to search the entire solution
space and the statement follows.

Lemma 1 shows a notable property of CDP, and hence
of SMART. In particular, it enables us to prove the fol-
lowing theorem. To the best of our knowledge, ODP-
IP [Michalak et al., 2016], ODSS [Changder et al., 2020],
and BOSS [Changder et al., 2021] are the fastest prior opti-
mal algorithms for the CSG problem.

Theorem 2. In the worst case, SMART is faster than or at
least as fast as ODP-IP, ODSS, and BOSS.

Proof. SMART uses the CDP algorithm, which relies on hav-
ing the best pair of coalition size sets that enables fast search
of optimal results. By Lemma 1, CDP is faster than IDP. Re-
call that the fastest exact algorithms are the hybrid solutions,
ODP-IP, ODSS, and BOSS, that combine IDP and an inte-
ger partition-based algorithm. However, this combination is
highly dependent on the efficiency of the integer partition-
based algorithm, which in the worst case requires search-
ing all the coalition structures in O(nn) time [Rahwan et al.,
2009], which is infeasible in a reasonable time. Thus, in the
worst case, the run time of such hybrid algorithms is deter-
mined by the dynamic programming approach. Hence, for
hard problems, SMART represents the fastest solution as the
dynamic programming algorithm used (CDP) is faster than
IDP used by the other algorithms. Formally, let TSMART

be the time complexity of SMART, where TSMART =
min(O(nn), time(GRAD), time(CDP )) ≤ time(CDP )
and let TOther be the time complexity of the other al-
gorithms, where TOther = min(O(nn), time(IDP )) =

time(IDP ). Given that time(CDP ) ≤ time(IDP ) by
Lemma 1, TSMART ≤ TOther.

The result of this hybridization is threefold: (1) CDP is
faster than the dynamic programming algorithm IDP (results
reported in Section 6). This allows SMART to be faster
in the worst case than the state-of-the-art algorithms ODP-
IP [Michalak et al., 2016] and BOSS [Changder et al., 2021]
because the CDP part of SMART is faster than the IDP al-
gorithm used by ODP-IP and BOSS, and the worst case time
performance of these algorithms is determined by their dy-
namic programming parts; (2) GRAD gradually searches the
best size sets for each percentage of solution subspaces. This
allows SMART to reach the number of subspaces needed to
guarantee finding an optimal solution with the best run time;
(3) The integer partitions are distributed among several pro-
cesses, enabling an efficient and faster search in the integer
partition graph.

Algorithm 7: The SMART algorithm
Input: Set of all possible coalitions and the value

v(C) of each coalition C for n agents. Sets of
coalition sizes BS1, BS2 to consider by CDP
and BSi to consider by GRAD.

Output: An optimal coalition structure CS∗ and its
value.

1 Generate a partial integer partition graph with all
subspaces and with no edges

2 Sort the subspaces by their upper bounds
▷ Begin parallel
▷ CDP runs in parallel with DIPS and GRAD

3 CS∗, V∗ ← CDP(v, n,BS1,BS2)
4 Return CS∗, V∗

▷ GRAD runs in parallel with DIPS and CDP
5 CS∗, V∗ ← GRAD(v, n,BSi)
6 Return CS∗, V∗

▷ DIPS runs in parallel with CDP and GRAD
7 foreach promising subspace PS do
8 DIPS searches the subspace PS
9 Return CS∗, V∗

▷ End parallel

5 Analysis of SMART
In this section, we prove that the SMART algorithm is com-
plete in Theorem 3. Then, we analyze the computational
complexity of the algorithms in detail.

Theorem 3. The SMART algorithm always finds the optimal
solution.

Proof. Each node in the integer partition graph is searched
by SMART using the CDP, GRAD, and DIPS algorithms.
A node represents a subspace, which contains a number of
coalition structures that match the parts of the subspace. The
SMART algorithm returns the final solution when all nodes
have been searched or pruned. For a particular node that con-
tains the optimal coalition structure, the only way for SMART
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not to search it is for DIPS or GRAD to prune it without
any of the three algorithms searching it. However, DIPS or
GRAD will only prune nodes that have no chance of contain-
ing the optimal solution. Thus, such a node would never be
pruned, and one of the three algorithms would always com-
pletely search the node that contains an optimal solution.

Time complexity of the SSD algorithm. For each problem
size n, the SSD algorithm tests all possible pairs of coali-
tion size sets. For each set of coalition sizes, SSD recon-
structs the integer partition graph by dividing only the in-
tegers that belong to that set and tests whether it is benefi-
cial to pair that set with another set or not. To test this for
one set, CDP pairs it with all the other sets. The total num-
ber of sets that SSD evaluates is 2n−2 − 1. We denote by
I(s) the number of integer splits performed for a set s and
by p(n, s), the number of subspaces generated by the set s.
The total number of operations performed by SSD for one
set is T (n) =

∑2n−2−1
s=1 I(s) =

∑2n−2−1
s=1

∑
N I(N , s),

where I(N , s) is the number of integer splits performed on
node N . The number of splits into two for a certain inte-
ger i is i

2 , the highest integer to split is n, and the highest
possible number of integers in a single node is n, which is
the number of integers of the node that represents the sin-
gleton coalition structure. Thus, I(N , s) ≤ n × n

2 , and

T (n) ≤
∑2n−2−1

s=1 p(n, s) × n × n
2 . However, the growth

rate of the number of nodes in the integer partition graph,
which is the same as the growth rate of integer partitions of

n, is O( e
π
√

2n
3

n ) [Wilf, 2000]. Hence,

T (n) ≤
∑2n−2−1

s=1 O( e
π
√

2n
3

n ) × n × n
2 ≤ (2n−2 − 1) ×

O( e
π
√

2n
3

n )× n× n
2 .

As a result, the total number of operations of SSD when test-

ing one set is O(n2 × 2n × e
π
√

2n
3

n ). SSD tests 2n−2 − 1

different sets. Thus, the time complexity of SSD is O(22n ×

n2 × e
π
√

2n
3

n ).
Time complexity of the SMART algorithm. SMART com-
bines three algorithms–CDP, GRAD, and DIPS, and runs
them in parallel. The worst-case run time of dynamic pro-
gramming on this problem is O(3n) [Yeh, 1986]. CDP and
GRAD are based on dynamic programming. They run in par-
allel on several sets of sizes and terminate when all sets are
fully evaluated. Thus, the time complexity of both CDP and
GRAD isO(3n). The worst-case run time of DIPS, which, in
the worst-case, requires us to search all coalition structures,
is O(nn). As a result, the time complexity of SMART is
min(O(3n),O(3n),O(nn)) = O(3n).

6 Empirical Evaluation
We now evaluate the effectiveness of SMART by comparing
it to the prior state-of-the-art algorithms ODP-IP and BOSS.
We implemented SMART in Java and for ODP-IP and
BOSS, we used the codes provided by their authors for the
comparisons. They are also written in Java. The algorithms
were run on an Intel Xeon 2.30GHz E5-2650 CPU with

256GB of RAM. For GRAD, we considered values of ω ∈
{10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%}.
We also designed and tested a different version of ODP-IP,
namely POI (Parallel ODP-IP), that we developed to inte-
grate parallelism in the baseline version of ODP-IP in order
to improve its performance. It uses the same number of
processes as SMART (see the appendix for more details).
This does not affect the theoretical guarantees but improves
the practical performances of the algorithm.

We conducted the experiments on common benchmark
problems. We show results on nine value distributions. Re-
sults on other distributions are in the appendix. We com-
pared the algorithms using the following value distributions:
Modified Normal [Rahwan et al., 2012], Beta, Exponen-
tial, Gamma [Michalak et al., 2016], Normal [Rahwan et
al., 2007], Uniform [Larson and Sandholm, 2000], Modi-
fied Uniform [Service and Adams, 2010], Zipf, SVA Beta and
Weibull [Changder et al., 2020]. The experiments shown in
the remainder of the paper are also representative of those in
the appendix. For each distribution and number of agents,
we ran each algorithm 50 times. Figure 4 reports the run
times of SMART, BOSS, ODP-IP and POI. On all distribu-
tions, SMART was the fastest for all numbers of agents. For
example, after 2 seconds, with the Normal distribution for
24 agents, SMART returns optimal solutions roughly 92%
faster than BOSS, 91% faster than ODP-IP and 54% faster
than POI, while outperforming them by multiple orders of
magnitude as can be seen in Figure 4. The reason for this is
twofold. First, when problems are hard to solve (see, for in-
stance, the results for Exponential), the CDP part of SMART
finishes before the other algorithms as it presents the best
worst-case time performance. The second reason is that for
problems where the search of a specific percentage of the so-
lution subspaces is sufficient to find the optimal solution, the
combination of GRAD and DIPS achieves the best run time.
On one hand, GRAD searches that percentage of subspaces
with the best run time. On the other hand, DIPS distributes
the search to further accelerate it. Notice that the relative
contribution of each technique depends on the specific prob-
lem instance. Generally, for easier-to-solve instances, DIPS
and GRAD play a more significant role in finding the opti-
mal solution, as they target specific subspaces with the upper
bound for DIPS and percentages for GRAD. As the problem
becomes more difficult, CDP becomes increasingly impor-
tant for searching a larger portion of the solution space, as
it aims to search the entire solution space. In the worst-case
scenario, CDP is the fastest technique to search the entire so-
lution space. Hence, all algorithms have a goal and help each
other achieve it as explained in Section 4. Additional experi-
mental insights are described in the appendix.

We also report the empirical performance of CDP, which,
as discussed earlier in this paper, determines the worst-case
run time of SMART. We compared CDP to the dynamic pro-
gramming algorithm IDP [Rahwan and Jennings, 2008] used
by prior hybrid algorithms, and to the fastest dynamic pro-
gramming algorithm to date, ODP [Michalak et al., 2016].
Notice that ODP, which stands for Optimal DP, is optimal in
the sense that it evaluates a minimum number of coalitions to
find the optimal solution, not in the sense of run time, mean-
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Figure 4: Run time of SMART, BOSS, ODP-IP, and POI.

Number of Agents Execution Time
CDP IDP ODP P-IDP
(t1) (t2)

20 1.7 3.7 2.2 2.0
21 7.4 15.9 10.3 7.9
22 12.3 24.7 19.8 15.7
23 57 131 79 69
24 205 507 382 257
25 427 887 675 593
26 1781 3659 2846 2267
27 3390 7078 5508 5196

Table 1: Time in seconds of CDP, IDP, ODP, and P-IDP. The time
gain is shown in the appendix.

ing that the number of evaluated coalitions is optimal. This
does not mean that the resulting run time is optimal. We also
compared CDP to a parallel version of IDP (P-IDP). P-IDP
uses the same technique presented in [Cruz et al., 2017] and
uses two processes to evaluate the coalitions. The evalua-
tion of the coalitions of the same size can be distributed be-
cause the coalitions of the same size are independent of each
other. Hence, for every coalition size s, each process of P-
IDP evaluates half of the coalitions of size s. Table 1 shows
the results. The run time of these algorithms depends only
on the number of agents. As can be seen, CDP outperforms

IDP by at least 50%. Moreover, CDP is also faster than ODP
and P-IDP (See the appendix for the time difference between
CDP and P-IDP). This experimentally confirms that SMART
offers the best worst-case run time. This superior speed ap-
pears to translate into the superior practical performance of
the SMART algorithm as well. With the most difficult dis-
tributions, such as Gamma (see Figure 4), the SMART algo-
rithm is significantly faster than the other algorithms.

7 Conclusion

In this paper, we developed an optimal algorithm, SMART,
for the coalition structure generation problem. Our method
contributes and combines a number of ideas and techniques.
First, we introduced several results concerning the choice of
coalitions to evaluate. We used those results to build offline
phases to optimize the choice of coalitions to evaluate. Sec-
ond, we developed three techniques that have different pros.
Two of them use the results of the offline phases. The third
one uses branch-and-bound and integer partition graph search
to explore the solution space. Finally, we combined these
techniques by showing how they can assist one another dur-
ing the search process. Experiments showed that SMART is
faster than the fastest prior algorithms on all of the instance
distributions for all numbers of agents.
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