
Cooperation and Control in Delegation Games

Oliver Sourbut , Lewis Hammond and Harriet Wood
University of Oxford

oly@robots.ox.ac.uk, lewis.hammond@cs.ox.ac.uk, harriet.wood@hertford.ox.ac.uk

Abstract
Many settings of interest involving humans and
machines – from virtual personal assistants to
autonomous vehicles – can naturally be mod-
elled as principals (humans) delegating to agents
(machines), which then interact with each other
on their principals’ behalf. We refer to these
multi-principal, multi-agent scenarios as delegation
games. In such games, there are two important fail-
ure modes: problems of control (where an agent
fails to act in line their principal’s preferences) and
problems of cooperation (where the agents fail to
work well together). In this paper we formalise
and analyse these problems, further breaking them
down into issues of alignment (do the players have
similar preferences?) and capabilities (how com-
petent are the players at satisfying those prefer-
ences?). We show – theoretically and empirically –
how these measures determine the principals’ wel-
fare, how they can be estimated using limited obser-
vations, and thus how they might be used to help us
design more aligned and cooperative AI systems.

1 Introduction
With the continuing development of powerful and increasing
general AI systems, we are likely to see many more tasks
delegated to autonomous machines, from writing emails to
driving us from place to place. Moreover, these machines are
increasingly likely to come into contact with each other when
acting on behalf of their human principals, whether they are
virtual personal assistants attempting to schedule a meeting or
autonomous vehicles (AVs) using the same road network. We
refer to these multi-principal, multi-agent scenarios as dele-
gation games. The following example is shown in Figure 1.
Example 1. Two AVs can choose between two differ-
ent routes on behalf of their passengers: A(utobahn) or
B(eachfront). Their objective functions are determined by
the speed and comfort of the journey (which may not be the
same objective as their passenger). Each AV receives utility 6
or 2 for routes A or B, respectively, with an additional penalty
of −3 or −2 if both AVs choose the same route (due to the
delays caused by congestion). The passengers’ preferences
are more idiosyncratic and as shown.

In delegation games there are two primary ways in which
things can go wrong. First, a (machine) agent might not act
according to the (human) principal’s objective, such as when
an AV takes an undesirable route – a control problem [Rus-
sell, 2019]. Second, agents may fail to reach a cooperative
solution, even if they are acting in line with their principals’
objectives, such as when multiple AVs take the same route
and end up causing congestion – a cooperation problem [Do-
ran et al., 1997; Dafoe et al., 2020].

A B

A 3, 3 6, 2

B 2, 6 0, 0

(a)

A B

A 2, 3 3, 3

B 4, 6 3, 0

(b) (c)

Figure 1: (a) The payoffs of the agents in Example 1; (b) the payoffs
of the principals; and (c) a graphical representation, with vertical and
horizontal arrows indicating control and cooperation, respectively.

Control and cooperation can in turn be broken down into
problems of alignment and of capabilities [Hubinger, 2020;
Christiano, 2018; Bostrom, 2014]. For example, in the con-
trol failure above, the first AV might drive undesirably by tak-
ing route A even though their passenger prefers the scenic
beachfront (an alignment problem), or the second AV might
undesirably take route B because it is incapable of calculating
the best route accurately (a capabilities problem). Similarly,
in the cooperation failure, the AVs might cause congestion be-
cause they cannot plan and communicate effectively enough
(a capabilities problem), or because their objectives are fun-
damentally at odds with one another, e.g., they cannot both
drive alone on route A (an alignment problem).

As one might expect, ensuring good outcomes for the
principals requires overcoming all of these problems. This
is made more challenging because most research considers
each in isolation – such as cooperation between agents with
the same objective [Torreño et al., 2017; Rizk et al., 2019;
Du et al., 2023], or alignment between a single princi-
pal and agent [Kenton et al., 2021; Taylor et al., 2020;
Russell, 2019] – despite this being an increasingly unrealistic
assumption for AI deployment. To ensure positive outcomes,
we cannot rely on solutions to only some of these problems.
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1.1 Contributions
In this work we provide the first systematic investigation of
these four failure modes and their interplay. More concretely,
we make the following three core contributions: measures
for assessing each failure mode that satisfy a number of key
desiderata (in Section 4); theoretical results describing the
relationships between these measures and principal welfare
(in Section 5); and experiments that validate these results and
explore how the measures can be inferred from limited obser-
vations (in Section 6). In doing so, we formalise and substan-
tiate the intuition that solving all four of these problems is, in
general, both necessary and sufficient for good outcomes in
multi-agent settings, which in turn has important implications
for the project of building safe and beneficial AI systems.

1.2 Related Work
Given the foundational nature of the problems we study in
this work, there is a vast amount of relevant prior research;
due to space constraints we mention only a few exemplars
on each topic. The principal-agent literature typically con-
siders settings with a single principal and agent [Laffont
and Martimort, 2002]. While there exist multi-agent vari-
ants such as competing mechanism games [Yamashita, 2010;
Peters, 2014], to the best of our knowledge no previous work
investigates the general requirements for high principal wel-
fare. Our setting is also similar to that of strategic delegation
[Vickers, 1985; Sengul et al., 2011], though we do not focus
on principals’ responses to each other’s choice of agents.

The degree of alignment between two or more agents can
be viewed as a measure of similarity between preferences.
Such measures have been introduced in areas such as mathe-
matical economics [Back, 1986], computational social choice
[Alcalde-Unzu and Vorsatz, 2015], and reinforcement learn-
ing [Gleave et al., 2021; Skalse et al., 2023], though these
works focus on either cooperation or alignment. In game the-
ory, there are several classical values that measure the degree
of (and costs from) competition in a game, such as the price of
anarchy [Koutsoupias and Papadimitriou, 1999] or coco value
[Kalai and Kalai, 2013]. Other works consider the robustness
of these values under approximate equilibria [Awasthi et al.,
2010; Roughgarden, 2015]. We take inspiration from these
ideas, extending them to settings in which the game we study
is a proxy for the game whose value we truly care about.

There have been several proposals for how to formally
measure the capabilities of an agent. These include formal
definitions of, e.g. general intelligence [Legg and Hutter,
2007], social intelligence [Insa-Cabrera et al., 2012], and
collective intelligence [Woolley et al., 2010]. In this work,
we focus on how capabilities at the individual and collec-
tive level can be distinguished and how they combine with
alignment to impact welfare. Similarly, definitions of coop-
eration also abound (see [Tuomela, 2000] for an overview)
though these are often informal and/or inconsistent [West et
al., 2007], whereas we require a mathematical formalisation
appropriate for applications to AI systems.

Finally, when it comes to estimating such properties from
data, there is a large literature on the problem of preference
elicitation/learning [Fürnkranz and Hüllermeier, 2011; Fis-
chhoff and Manski, 2000], including in general-sum games

[Conen and Sandholm, 2001; Gal et al., 2004; Yu et al.,
2019]. The latter setting is also studied in empirical game the-
ory [Wellman, 2006; Walsh et al., 2002; Waugh et al., 2011;
Kuleshov and Schrijvers, 2015], including in recent work on
inferring properties such as the price of anarchy [Cousins et
al., 2023]. Other works attempt to quantify the capabilities
of (reinforcement learning) agents by assessing their general-
isation to different environments [Cobbe et al., 2019] or co-
players [Leibo et al., 2021]. While such ideas are not our
focus, we make use of them in our final set of experiments.

2 Background
In general, we use uppercase letters to denote sets, and low-
ercase letters to denote elements of sets or functions. We use
boldface to denote tuples or sets thereof, typically associat-
ing one element to each of an ordered collection of players.
Unless otherwise indicated, we use superscripts to indicate
an agent 1 ≤ i ≤ n and subscripts j to index the elements
of a set; for example, player i’s jth (pure) strategy is denoted
by sij . We also use theˆsymbol to represent principals; for
example, the ith principal’s utility function is written ûi. A
notation table can be found for reference in Appendix A.

Definition 1. A (strategic-form) game between n players is
a tuple G = (S,u) where S =×i S

i is the product space
of (pure) strategy sets Si and u contains a utility function
ui : S → R, for each agent 1 ≤ i ≤ n. We write si ∈ Si and
s ∈ S to denote pure strategies and pure strategy profiles,
respectively. A mixed strategy for player i is a distribution
σi ∈ Σi over Si, and a mixed strategy profile is a tuple
σ = (σ1, . . . , σn) ∈ Σ :=×i Σ

i. We will sometimes refer
to pure strategy profiles in strategic-form games as outcomes.
We write s−i ∈ S−i :=×j ̸=i S

j and therefore s = (s−i, si),
with analogous notation for mixed strategies. We also abuse
notation by sometimes writing ui(σ) := Eσ

[
ui(s)

]
and

u(σ) :=
(
u1(σ), . . . , un(σ)

)
∈ Rn.

Formally, a solution concept maps from games G to sub-
sets of the mixed strategy profiles Σ in G. These con-
cepts pick out certain strategy profiles based on assumptions
about the (bounded) rationality of the individual players. The
canonical solution concept is the Nash equilibrium.

Definition 2. Given some σ−i in a game G, σi is a best
response (BR) for player i if ui(σ) ≥ maxσ̃i ui(σ−i, σ̃i).
We write the set of best responses for player i as BR(σ−i;G).
A Nash equilibrium (NE) in a game G is a mixed strategy
profile σ such that σi ∈ BR(σ−i;G) for every player i. We
denote the set of NEs in G by NE(G).

A social welfare function w : Rn → R in an n-player game
maps from payoff profiles u(s) to a single real number, ag-
gregating players’ payoffs into a measure of collective utility.
We again abuse notation by writing w(s) := w

(
u(s)

)
and

w(σ) := Eσ

[
w(s)

]
. In the remainder of this paper, we as-

sume use of the following social welfare function, though the
concepts we introduce do not heavily depend on this choice.

Definition 3. Given a strategy profile s, the average utilitar-
ian social welfare is given by w(s) = 1

n

∑
i u

i(s).
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3 Delegation Games
In this work, we make the simplifying assumption that there is
a one-to-one correspondence between principals and agents,
and that each principal delegates fully to their corresponding
agent (i.e. only agents can take actions). Our basic setting of
interest can thus be characterised as follows.
Definition 4. A (strategic-form) delegation game with n
principals and n agents is a tuple D = (S,u, û), where G :=

(S,u) is the game played by the agents, and Ĝ := (S, û) is
the game representing the principals’ payoffs as a function of
the agents’ pure strategies.

We refer to G as the agent game and Ĝ as the principal
game. For instance, G and Ĝ from Example 1 are shown in
Figures 1a and 1b respectively. When not referring to princi-
pals or agents specifically, we refer to the players of a dele-
gation game. We denote the welfare in a delegation game for
the principals and agents as ŵ(s) and w(s), respectively.
Definition 5. Given a game G and a social welfare function
w, we define the maximal (expected) welfare achievable un-
der w as w⋆(G) := maxσ w(σ). We define the ideal welfare
under w as w+(G) := w(u+) where u+[i] = maxs u

i(s).
Similarly, we denote w•(G) := minσ w(σ) and w−(G) :=
w(u−) where u−[i] = mins u

i(s). We extend these defini-
tions to delegation games D by defining w†(D) := w†(G)

and ŵ†(D) := w†(Ĝ), for † ∈ {⋆,+, •,−}. When unam-
biguous, we omit the reference to D.

Note that the maximal and ideal welfare may not be equiva-
lent. For instance, in Example 1 we have w⋆ = 4 but w+ = 6.
The former is the maximum achievable among the available
outcomes, while the latter is what would be achievable if
all principals were somehow able to receive their maximal
payoff simultaneously. We return to this distinction, repre-
sented graphically in Figure 2, later. In general, our depen-
dent variables of interest will be the principals’ welfare regret
ŵ⋆ − ŵ(σ) and the difference ŵ+ − ŵ⋆.

w− w• w(σ) w⋆ w+

Figure 2: The range of social welfares in a game G.

4 Control and Cooperation
In Section 1, we distinguished between alignment and capa-
bilities as contributors to the level of both control and co-
operation. Our goal is to investigate how variations in the
alignment and capabilities of agents impact the welfare of the
principals. We therefore require ways to measure these con-
cepts. Before doing so, we put forth a set of natural desiderata
that we argue any any such measures should satisfy.1

(D1) Alignment and capabilities – both individual and collec-
tive – are all ‘orthogonal’ to one another in the sense that
they can be instantiated in arbitrary combinations.

1Formalisations of these desiderata are given as part of results in
Section 5.1.

(D2) Two players are perfectly individually aligned (mis-
aligned) if and only if they have identical (opposite)
preferences. Two or more players are perfectly collec-
tively aligned if and only if they have identical prefer-
ences.

(D3) If a set of agents are maximally capable, they achieve
maximal agent welfare. If they are also maximally indi-
vidually aligned, then maximal principal welfare is also
achieved.

(D4) If a set of players are perfectly collectively aligned, then
their maximal welfare is their ideal welfare.

(D5) Individual measures are independent of any transforma-
tions to the game that preserve individual preferences,
and collective measures are independent of any transfor-
mations that preserve collective preferences (as captured
by some measure of social welfare).

4.1 Control
We begin by considering the control of a single agent by a
single principal. In essence, we wish to capture the degree
to which an agent is acting in line with its principal’s prefer-
ences. As we – and others [Bostrom, 2014; Christiano, 2018;
Hubinger, 2020; Armstrong and Mindermann, 2018] – have
noted, this can be decomposed into a question of: a) how sim-
ilar the agent’s preferences are to the principal’s; and b) how
capable the agent is of pursuing its preferences.

Alignment
How can we tell if principal i’s and agent i’s preferences are
similar? First, we must be more precise about what we mean
by preferences. Following our assumption that agents may
play stochastically, we view preferences as orderings over
distributions of outcomes σ ⪯ σ′ ⇔ u(σ) ≤ u(σ′).2 To
compare the preferences of principal i (⪯̂i

) and agent i (⪯i)
we can therefore compare ûi and ui. It is well-known, how-
ever, that the same preferences can be represented by differ-
ent utility functions. In particular, u and u′ represent the same
preferences if and only if one is a positive affine transforma-
tion of the other [Mas-Colell et al., 1995].

In order to meaningfully measure the difference between
two utility functions, therefore, we must map each to a canon-
ical element of the equivalence classes induced by the prefer-
ences they represent. We define such a map using a normali-
sation function ν : U → U , where U := R|S| represents the
space of utility functions in a game G. There are many pos-
sible choices of normalisation function, but in essence they
must consist of a constant shift c and a multiplicative factor
m [Tewolde, 2021], which together define the affine relation-
ship. To satisfy our desiderata, we place additional require-
ments on m and c, as follows.
Definition 6. For each player i in G, we define their nor-
malised utility function ν(ui) = ui

ν as:

ui
ν :=

{
0 if m

(
ui − c(ui)1

)
= 0

ui−c(ui)1
m(ui−c(ui)1) otherwise,

2Note that in strategic-form games, (mixed) strategy profiles are
equivalent to distributions over the domain of players’ utility func-
tions, but in general this need not be the case.
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where c : U → R is an affine-equivariant shift function and
m : U → R is any strictly convex norm.

For notational convenience, we sometimes write ci :=
c(ui)1 and mi := m(ui−ci), with equivalent notation ĉi and
m̂i when applied to ûi, resulting in ûi

ν . Then ui = miui
ν+ci.

Lemma 1. For any u, u′ ∈ U , uν = u′
ν if and only if ⪯=⪯′.

Given ûi
ν and ui

ν , a natural way to measure the degree of
alignment between the ith principal and agent is to compute
some kind distance between ûi

ν and ui
ν . To do so, we use a

norm of the difference between ûi
ν and ui

ν , which gives rise
to the following pseudometric over U . In order to contrast
this principal-agent alignment measure with our later align-
ment measure over n players, we sometimes refer to this as
individual (as opposed to collective) alignment.
Definition 7. Given a delegation game D, the (individual)
alignment between agent i and their principal is given by
IAi(D) = 1 − 1

2m(ûi
ν − ui

ν), where m is the same (strictly
convex) norm used for normalisation.

The choice of m and c determine which differences be-
tween payoffs are emphasised by the measure. One way to
make this choice is by writing m = ∥·∥d, where d is a distri-
bution over S. But how should one choose d and ∥·∥?

Beginning with d, a first intuition might be to consider
a distribution over the equilibria of the game. Assuming
agents act self-interestedly, there are certain outcomes that
are game-theoretically untenable; divergences between pref-
erences over these outcomes could reasonably be ignored.
This intuition, however, conflicts with one of our primary
desiderata (D1), which is to tease apart the difference between
alignment and capabilities – in the next subsection, we show
that agents’ individual capabilities determine the equilibria of
the game. Instead, we argue that the outcome of a game does
not change the extent to which preferences (dis)agree, and so
in general assume that d has full support.

Our primary requirements on ∥·∥ are that m is strictly con-
vex and is the same in Definitions 6 and 7. These restrictions
are required in order to satisfy all of our desiderata, but re-
laxations are possible if fewer requirements are needed (see
Appendix E.2 for more discussion).

Capabilities
One obvious way of creating a formal measure of an agent’s
capabilities is to consider the number of (distinct) strategies
available to them. In the cases of boundedly rational agents
or multi-agent settings, however, it can beneficial to restrict
one’s action space, either for computational reasons [Well-
man, 2006], or by pre-committing to avoid temptation [Gul
and Pesendorfer, 2001], or to force one’s opponent to back
down [Rapoport and Chammah, 1966]. Alternatively, one
could invoke a complexity-theoretic measure of capabilities
by considering the time and memory available to each agent,
though in this work we aim to be agnostic to such constraints.

Instead, inspired by the seminal work of [Legg and Hutter,
2007], we view an individual agent’s capabilities as the de-
gree to which it is able to achieve its objectives in a range of
situations, regardless of what those objectives are. In game-
theoretic parlance, we consider the rationality of the agent.
We can naturally formalise this idea by defining an agent’s

capabilities as the degree of optimality of their responses to a
given partial strategy profile σ−i.
Definition 8. Given some σ−i in a game G, a mixed strategy
σi is an ϵi-best response (ϵi-BR) for player i if:

ui(σ) ≥ min
σ̃i

ui(σ−i, σ̃i)

+ (1− ϵi)
(
max
σ̃i

ui(σ−i, σ̃i)−min
σ̃i

ui(σ−i, σ̃i)
)
.

We write the set of such best responses for player i as
ϵi-BR(σ−i;G). An ϵ-Nash equilibrium (ϵ-NE) in a game G
is a mixed strategy profile σ such that σi ∈ ϵi-BR(σ−i;G)
for every every player i, where ϵ = (ϵ1, . . . , ϵn). We denote
the set of ϵ-NEs in G by ϵ-NE(G).

In essence, ϵi captures the fraction of their attainable util-
ity that player i manages to achieve. Note that if ϵi = 0
then ϵi-BR(σ−i;G) = BR(σ−i;G) and if ϵi = 1 then
ϵi-BR(σ−i;G) = Σi. Similarly, when ϵ = 0 then
ϵ-NE(G) = NE(G), and when ϵ = 1 then ϵ-NE(G) = Σ.
Definition 9. Given a delegation game D, the individual ca-
pability of agent i are ICi(D) := 1 − ϵi ∈ [0, 1] where ϵi is
the smallest value such that agent i plays an ϵi-BR in G.

Unlike other formulations of bounded rationality, such as a
softmax strategy or randomisation with some fixed probabil-
ity, Definition 9 – which is analogous to satisficing [Simon,
1956; Taylor, 2016] – is agnostic as to the precise mechanism
via which players are irrational, and thus serves as a general-
purpose descriptor of a player’s (ir)rationality level.3

4.2 Cooperation
In order to achieve good outcomes for the principals, it is not
sufficient for the agents to coordinate with their principals
individually, they must also coordinate with one another. In-
deed, it is easy to show that the principals’ welfare regret can
be arbitrarily high in the only NE of a game, despite perfect
control of each agent by its principal.
Lemma 2. There exists a (two-player, two-action) delegation
game D such that for any x > 0, however small, even if
IA(D) = 1 and IC(D) = 1, we have only one NE σ, and
ŵ⋆−ŵ(σ)
ŵ+−ŵ−

= 1− x.

To achieve low principal welfare regret, we need to have a
sufficiently high degree of cooperation, both in terms of: a)
collective alignment (the extent to which agents have simi-
lar preferences); and b) collective capabilities (the extent to
which agents can work together to overcome their differences
in preferences).

Alignment
Intuitively, it should be easier to achieve high welfare in a
game where the players have similar preferences than one
in which the players have very different preferences. At
the extremes of this spectrum we have zero-sum games and
common-interest games, respectively. This intuition can be
formalised by generalising Definition 7 to measure the degree
of alignment between n utility functions, rather than two.

3Our choice of ϵi-best responses could also be weakened to, e.g.
ϵi-rationalisability [Bernheim, 1984; Pearce, 1984].
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Definition 10. Given a delegation game D, the collective
alignment between the agents is given by:

CA(D) = 1−
∑
i

mi∑
j m

j
·m(µw − ui

ν),

where µw :=
∑

i u
i−ci∑

i m
i is a proxy for the agents’ (normalised)

welfare, recalling that mi := m(ui − ci).
Intuitively, we consider the misalignment of each agent

from a hypothetical agent whose objective is precisely to pro-
mote overall social welfare. This misalignment is weighted
by mi, the idea being that the ‘stronger’ agent i’s preferences
(and hence the larger mi is), the more their misalignment with
the overall welfare of the collective matters. While it may not
be immediately obvious why we use µw instead of ν(w), the
former will allow us to derive tighter bounds and can easily
be shown to induce the same ordering over mixed strategy
profiles as w (and hence also ν(w)).
Lemma 3. For any σ,σ′ ∈ Σ, µw(σ) ≤ µw(σ′) if and only
if w(σ) ≤ w(σ′).

Unfortunately, collective alignment (even when paired
with perfect control) is insufficient for high principal wel-
fare. The most trivial examples of this are equilibrium se-
lection problems, but we can easily construct a game with a
unique NE and arbitrarily high welfare regret, even when we
have perfect control and arbitrarily high collective alignment.
These issues motivate our fourth and final measure.
Lemma 4. There exists a family of (two-player, k-action) del-
egation games D such that even if IAi(D) = 1, ICi(D) =
1 for each agent, and there is only one NE σ, we have
limk→∞ CA(D) = 1 but limk→∞

ŵ⋆−ŵ(σ)
ŵ+−ŵ−

= 1.

Capabilities
One way to model collective capabilities is as ‘internal’ to the
game G. Under this conceptualisation, we assume that the
ability of the agents to cooperate is captured entirely by their
actions and payoffs in G. For example, if the agents were able
to coordinate in G using a commonly observed signal γ, then
this would be modelled as them playing a different game G′,
in which each agent’s action consists of a choice of action in
G given their observation of γ.4

This approach, however, conflates the agents’ collective
alignment with their collective capabilities. In order to tease
these concepts apart, we require a way to measure the extent
to which the agents can avoid welfare loss due to their self-
ish incentives. Perhaps the best known formalisation of this
loss is the price of anarchy [Koutsoupias and Papadimitriou,
1999], which captures the difference in welfare between the
best possible outcome and the worst possible NE.5 Inspired
by this idea, we measure the collective capabilities of a group
of agents as follows.

4Thus, in a true prisoner’s dilemma, the ‘only thing to do’ (and
therefore trivially the cooperative action) is to defect. The idea here
is that if the agents possessed better cooperative capabilities, they
would not be faced with an actual prisoner’s dilemma to begin with.

5Considering the worst case enables us to capture the welfare
loss from equilibrium selection problems even in common-interest
games.

Definition 11. Let wϵ := minσ∈ϵ-NE(G) w(σ). Given a del-
egation game D where the agents have individual capabili-
ties ϵ, the collective capabilities of the agents are CC(D) :=
δ ∈ [0, 1] if and only if the agents achieve welfare at least
wϵ + δ · (w⋆ − w0), where recall that 0-NE(G) = NE(G).6

Note that if ϵi ≥ ϵ̃i for every 1 ≤ i ≤ n, then we must
have wϵ ≤ wϵ̃; a special case is w0 ≥ wϵ. Thus, the individ-
ual irrationality of the agents can only lower the (worst-case)
welfare loss. On the other hand, we can see that greater col-
lective capabilities can potentially compensate for this loss.

As in the case of individual capabilities, we provide a mea-
sure that is agnostic to the precise mechanism via which the
agents cooperate, be it through commitments, communica-
tions, norms, institutions, or more exotic schemes. Rather,
we take as input the fact that agents are able to obtain a cer-
tain amount of welfare, and use this quantify how well they
are cooperating. At one extreme, they do no better than wϵ, at
the other they get as close to the maximal welfare w⋆ as their
individual capabilities will allow.

5 Theoretical Results
We begin our theoretical results by proving that the measures
defined in the preceding section satisfy our desiderata, before
using them to bound the principals’ welfare regret.

5.1 Desiderata
The fact that we define alignment as a feature of the under-
lying game, and capabilities are a feature of how the game
is played means that capabilities and alignment are naturally
orthogonal. The potentially arbitrary difference between the
principals’ and agents’ utility functions is the key to the other
parts of the following result.
Proposition 1 (D1). Consider a delegation game D with
measures IA(D), IC(D), CA(D), and CC(D). Holding fixed
any three of the measures, then for any value v ∈ [0, 1] (or
v ∈ [0, 1]n for IA or IC), there is a game D′ such that the
fourth measure takes value v (v) in D′ and the other mea-
sures retain their previous values.

D2 follows chiefly from classic results linking preferences
over mixed strategy profiles to sets of utility functions that are
positive affine transformations of one another.

Proposition 2 (D2). For any 1 ≤ i ≤ n, IAi = 1 (IAi = 0) if
and only if ⪯i= ⪯̂i

(⪯i= ⪰̂i
). Similarly CA = 1 if and only

if ⪯i=⪯j for every i, j ∈ N .
The first half of D3 is straightforward. The subtlety in the

second half is that – perhaps counterintuitively, at first – per-
fect capabilities (both individual and collective) and perfect
alignment between the principals and their agents is not suffi-
cient for the principals to achieve maximal welfare (unlike the
agents). Rather, the resulting solution will be one (merely) on
the Pareto frontier for the principals.

In essence, this is because individual alignment does not
preserve welfare orderings ⪯w, only individual preference

6As remarked in Footnote 3, the use of ϵ-NEs is not intrinsic to
our definition of (collective) capabilities and could be weakened to,
e.g. ϵ-rationalisable outcomes.
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orderings ⪯i. Recalling that m̂i and mi quantify the mag-
nitudes of ûi and ui respectively, we can see that, in gen-
eral, the aggregation over agents’ utilities (used to measure
their success at cooperating) may not give the same weight to
each party as the aggregation over principals’ utilities (used
to measure the value we care about). Alternatively, the varia-
tion in magnitudes mi can be viewed as capturing a notion of
fairness (used to select a point on the Pareto frontier), which
may not be the same as in Ĝ unless m̂i = r · mi for some
r > 0. Further discussion on this point can be found in Ap-
pendix E.3.

Proposition 3 (D3). If IC = 1 and CC = 1 then any strategy
σ the agents play is such that w(σ) = w⋆. If IA = 1 then σ is
Pareto-optimal for the principals. If, furthermore, m̂i = r·mi

for some r > 0 for all i, then ŵ(σ) = ŵ⋆.

The proof of D4 follows naturally from Definition 10. The
final desideratum (D5) is simple in the case of individual pref-
erences (due to the form of our normalisation function). In
the case of collective preferences (i.e. the ordering ⪯w over
mixed strategies induced by w), we make use of the fact that
the relative magnitude of the agents’ utility functions in both
games must be the same (which is closely related to the ‘fair-
ness’ condition m̂i = r ·mi in Proposition 3).

Proposition 4 (D4). If CA = 1 then w⋆ = w+.

Proposition 5 (D5). Given a delegation game D1, let D2 be
such that ⪯i

1=⪯i
2 and ⪯̂i

1 = ⪯̂i

2 for each 1 ≤ i ≤ n. Then
IA(D1) = IA(D2) and IC(D1) = IC(D2). Moreover, if D2

is such that ⪯w
1 =⪯w

2 and the ui are affine-independent, then
CA(D1) = CA(D2) and CC(D1) = CC(D2) as well.

5.2 Bounding Welfare Regret
The primary question we investigate in this work is how the
principals fare given the different levels of control and co-
operation in the game played by the agents. We begin by
characterising the principals’ welfare in terms of the agents’
utilities, and the alignment of each agent with its principal.

Proposition 6. Given a delegation game D, we have:

ŵ⋆− ŵ(σ) ≤ 1

n

∑
i

ri
(
ui(ŝ⋆)−ui(σ)

)
+

4K

n
m̂⊤(1− IA),

where ri := m̂i

mi , m̂[i] = m̂i, K satisfies ∥uν − u′
ν∥∞ ≤

K ·m(uν − u′
ν) for any u, u′ ∈ U , and ŵ(ŝ⋆) = ŵ⋆.

Using this result, we can bound the principals’ welfare
regret in terms of both principal-agent alignment and the
agents’ welfare regret, which is in turn a function of the
agents’ capabilities. As we saw in Propositions 3 and 5, the
‘calibration’ between the principals and agents – as captured
by the potentially differing ratios ri – remains critical for en-
suring we reach better outcomes in terms of principal welfare.

Theorem 1. Given a delegation game D, we have that:

ŵ⋆ − ŵ(σ) ≤ 4K

n
m̂⊤(1− IA) + r∗ ((w0 − wϵ)

+ (1− CC)(w⋆ − w0)) +R(σ),

where IC = 1 − ϵ, r∗ ∈ [mini r
i,maxi r

i], R(σ) :=
1
n

∑
i(m̂

i − r∗mi)
(
ui
ν(ŝ⋆)− ui

ν(σ)
)

is a remainder ac-
counting for collective misalignment and unequal ri, and K
and ri are defined as in Proposition 6. Note that when all ri
are equal or CA = 1 then there is an r∗ with R(σ) = 0.

Before continuing, we note that unlike in the single-agent
case, even small irrationalities can compound to dramatically
lower individual payoffs (and thus welfare) in multi-agent set-
tings, as formalised by the following lemma.

Lemma 5. For any ϵ ≻ 0, there exists a game G such that
w0 = w+ but for any x > 0, however small, wϵ − w− < x.

In many games, however, the players’ welfare will be much
more robust to small mistakes. For example, suppose that
G is (ϵ,∆)-robust, in the sense that all ϵ-NEs are contained
within a ball of radius ∆ around a (true) NE [Awasthi et al.,
2010]. Then it is relatively straightforward to show that:

w0 − wϵ ≤
2∆

n

∑
i

max
s,s′

|ui(s)− ui(s′)|.

Indeed, in many settings, the price of anarchy can be bounded
under play that is not perfectly rational [Roughgarden, 2015].
While our bound above is highly general, assuming further
structure in the game may allow us to tighten it further.

Theorem 1 characterises the principals’ welfare regret in
terms of three of our four measures. Our next result char-
acterises the gap between the ideal and maximal welfare in
terms of our fourth measure: collective alignment.

Proposition 7. For any game, w+−w⋆ ≤ K
∑

i m
i

n (1−CA),
where K is defined as in Proposition 6.

This bound can be applied to either the agent or principal
game; we denote the collective alignment in the latter as ĈA.
While it is possible characterise the difference between ĈA
and CA in terms of IA, a tighter bound on ŵ+− ŵ(σ) can be
obtained by considering the collective alignment between the
principals and simply summing the right-hand terms of the
inequalities in Theorem 1 and Proposition 7.

6 Experiments
While our primary contributions are theoretical, we support
these results by: i) empirically validating the bounds above;
and ii) showing how the various measures we introduce can
be inferred from data. In our experiments we define ν using
c(u) = Es[u(s)] and m(u) = ∥u∥2 and limit our attention
to pure strategies, due to the absence of scalable methods for
exhaustively finding mixed ϵ-NEs in large games.

6.1 Empirical Validation
In order to visualise the results in the preceding section, we
conduct a series of experiments in which we monitor how
the principals’ welfare changes based on the degree of con-
trol and cooperation in the delegation game. An example is
shown in Figure 3, in which we change one measure, setting
all others to 0.9. At each step we generate 25 random del-
egation games (with approximately ten outcomes), compute
the set of strategies s such that w(s) ∈

[
wϵ + CC · (w⋆ −
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Figure 3: We report mean principal welfare (in red) normalised to
[ŵ−, ŵ+], with ŵ• and ŵ⋆ in green. The lower bounds on welfare,
given by Theorem 1, and on ŵ⋆ (compared to ŵ+), given by Propo-
sition 7, are in orange and blue, respectively. Shaded areas show
90% confidence intervals.

w0), wϵ + (w⋆ − w0)
]

where ϵ = 1 − IC, and record the
mean principal welfare over these strategies.

As expected, we see a positive relationship for each mea-
sure. Given the ease of coordinating in relatively small
games, alignment is more important in this example than ca-
pabilities, as can be seen from the gentler slope of the welfare
curve as IA increases, and in how ĈA places an upper limit
on principal welfare under otherwise ideal conditions.

In Appendix C.1 we include further details and plots for
games ranging between 101 and 103 outcomes, with values of
the fixed measures ranging between 0 to 1. We find that the
overall dependence of principal welfare upon each measure is
robust, though the tightness of the bounds is reduced in larger
games and for lower values of the fixed measures.

6.2 Inference of Measures
Previously, we implicitly assumed full knowledge of the del-
egation game in defining our measures. In the real world, this
assumption will rarely be valid, motivating the question of
when and how we might infer their values given limited ob-
servations. Concretely, we assume access to a dataset D of
(pure) strategy profiles and payoff vectors (s,u, û) ∼i.i.d. d.

Inferring alignment is relatively straightforward, as we can
simply approximate each ui and ûi by using only the strate-
gies D(S) ⊆ S contained in D, for which we know their val-
ues. Inferring capabilities is much more challenging, as they
determine how agents play the game and therefore limit our
observations. Fundamentally, measuring capabilities requires
comparing the achieved outcomes against better/worse alter-
natives, but if agents’ capabilities are fixed we might never
observe these other outcomes. Moreover, only observing the
agents acting together (alone) leaves us unable to asses how
well they would perform alone (together), due to the orthog-
onality of individual and collective capabilities.

While there are many relaxations that might overcome
these issues, perhaps the simplest and weakest is to assume
that: a) all utilities are non-negative; and b) we receive obser-

Figure 4: We report the mean absolute error of estimates of the four
measures. The red, orange, blue, and green lines represent games
with 10k outcomes for k ∈ {1, 2, 3, 4}, respectively. Shaded areas
show 90% confidence intervals.

vations of the agents acting both alone and together. We can
then estimate (upper bounds of) IC and CC as follows.
Proposition 8. Given a game G, if ui(s) for every i and s ∈
S, and d has maximal support over the outcomes generated
when agents act together/alone (respectively), then:

CC ≤ lim
|D|→∞

mins∈D(S) w(s)

maxs∈D(S) w(s)
, and

ICi ≤ lim
|D|→∞

min
s∈D(S)

ui(s)

maxs̃i∈D(Si) ui(s−i, s̃i)
.

In Figure 4 we evaluate the accuracy of these estimates us-
ing samples generated from 100 randomly generated delega-
tion games of various sizes. Consistent with our previous ar-
guments, it is far easier to infer alignment than capabilities in
the setup we consider, though we leave open the question of
whether stronger assumptions and/or different setups might
allow us to gain improved estimates of the latter.

7 Conclusion
We formalised and studied problems of cooperation and con-
trol in delegation games – a general model for interactions
between multiple AI systems on behalf of multiple humans
– breaking these down into alignment and capabilities. We
showed how these concepts are both necessary and sufficient
for good outcomes, and how they can be inferred from data.

We focused on strategic-form games to make our theoret-
ical contributions clearer and more general (as other game
models can typically be reduced to strategic-form). Future
work could develop more specific results in more complex,
structured models, such as Markov games, which could have
applications in multi-agent reinforcement learning. Other ex-
tensions include games where: a) the correspondence be-
tween principals and agents is not one-to-one; and b) the prin-
cipals can also take actions. Finally, to more directly help us
build safe and beneficial AI systems, we must develop better
methods for inferring the concepts in this work from data.
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