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Abstract
Current languages for specifying multiagent proto-
cols either over-constrain protocol enactments or
complicate capturing their meanings. We propose
Langshaw, a declarative protocol language based
on (1) sayso, a new construct that captures who has
priority over setting each attribute, and (2) nono
and nogo, two constructs to capture conflicts be-
tween actions. Langshaw combines flexibility with
an information model to express meaning. We give
a formal semantics for Langshaw, procedures for
determining the safety and liveness of a protocol,
and a method to generate a message-oriented pro-
tocol (embedding needed coordination) suitable for
flexible asynchronous enactment.

1 Introduction
Our setting of interest is a decentralized multiagent system
(MAS) [Boissier et al., 2023] in which agents, each reflect-
ing its stakeholder’s autonomy, interact in a loosely coupled
manner. To achieve interoperation between agents indepen-
dently of their construction or reasoning presupposes that we
specify their interactions at a high level [Poslad, 2007].

Classically, agents interact by sending messages, each a
bundle of information, to one another. Achieving interoper-
ation requires (see Section 2) specifying (1) the information
each message conveys, (2) constraints on message ordering
and occurrence, and (3) the meaning of each message in men-
tal [Sadek et al., 1997] or social [Singh, 2000] constructs.

However, modeling interaction via messages is problem-
atic. First, a message is a low-level construct—the smallest
operational unit of interaction. Models based on messages
must contend with an explosion in possible messages and or-
ders, and the complexity of coordination. Second, there is not
always a natural mapping between messages and meanings.

In contrast to existing MAS approaches, we model commu-
nicative actions directly inspired by Austin’s (1962) speech
act theory, separately both from messages and meanings.
Approach. We propose Langshaw (after Austin’s middle
name), a declarative language for specifying protocols in
terms of communicative actions. Langshaw enables the pre-
cise and succinct specification of protocols via novel prim-
itives for expressing the information content and the social

arrangements needed for coordination. Respecting the funda-
mental Austinian doctrine of saying makes it so, Langshaw
introduces sayso to capture who can declare what informa-
tion (i.e., “make it so”). To support flexible interactions, the
saysos of agents over the same information are prioritized.
Langshaw also introduces primitives to directly capture con-
flict between actions. Moreover, to support flexible interac-
tions, Langshaw supports agents concurrently attempting ac-
tions. The semantics ensures the consistency of the system
state without unduly compromising flexibility.

Contributions. One, we introduce the Langshaw language
and give its semantics and efficient decision procedures for
checking the safety and liveness of Langshaw specifications.

Two, we bridge the gap between synchronous and asyn-
chronous communication. Assuming synchronous actions
simplifies specification and reasoning. We give Langshaw a
synchronous semantics. However, synchrony is an unrealistic
model for MAS intended to be deployed over asynchronous
infrastructures such as the Internet. We show how to compile
a Langshaw protocol into a protocol that can be enacted via
asynchronous messaging. Our compilation highlights Lang-
shaw’s simplicity and high-level nature: A compiled proto-
col may involve subtle coordination that would be difficult to
write by hand. We prove the correctness of the compiler.

2 Related Work and Novelty
Protocols are crucial to MAS engineering methodologies
[Cernuzzi and Zambonelli, 2004; Desai et al., 2005; Rooney
et al., 2004; Padgham and Winikoff, 2005], but are tradition-
ally expressed in semiformal notations such as AUML. Thus,
they fall short of the goals for engineering MAS [Winikoff,
2007]. Through its precision and flexibility, Langshaw offers
an opportunity to rethink MAS methodologies by capturing
stakeholder intuitions and helping realize implemented MAS.

Ferrando et al. [2019] specify protocols as trace ex-
pressions over messages. They study diverse communica-
tion models, ranging from fully synchronous to fully asyn-
chronous, but do not give a method to translate from one
model to another, as we do. Moreover, as is common, Fer-
rando et al. express the information content implicitly and
coordination explicitly, which limits flexibility. Ferrando et
al. [2017] devise techniques for the runtime verification of
protocols; here, we focus on static verification.
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BSPL (Blindingly Simple Protocol Language) [Singh,
2011a; Singh, 2011b; Singh, 2012] and HAPN (Hierarchical
Agent Protocol Notation) [Winikoff et al., 2018] mix infor-
mation content with coordination, gaining flexibility and con-
currency at the cost of unwieldiness. HAPN’s state-machine
model is compatible with our synchronous semantics. BSPL
supports flexible asynchronous enactments, and we show how
to compile Langshaw into BSPL to benefit from asynchrony.

Baldoni et al.’s (2014) 2CL specifies social meaning via
commitments and temporal and relational constraints. 2CL
does not model information or support asynchrony. Langshaw
supports encoding social meaning and thus helps support ac-
countability [Baldoni et al., 2023]. Its model enhances those
of Custard [Chopra and Singh, 2016] and Clouseau [Singh
and Chopra, 2020] via primitives to capture coordination.

CArtAgO [Ricci et al., 2009] undergirds multiagent pro-
gramming frameworks such as JaCaMo [Boissier et al.,
2013]. CArtAgO agents coordinate via tuple spaces [Carriero
and Gelernter, 1989]. MAS programming models such as Ja-
CaMo, Jason [Vieira et al., 2007], and Jade [Bellifemine et
al., 2007; Bergenti et al., 2020] lack support for protocols.
Ricci et al. [2019] argue for decentralization and scalabil-
ity by combining MAS with the Web, but their interaction
model is limited to HTTP (as on the Web). Langshaw give an
abstract model for richer interactions, supporting asynchrony
while based on a conceptually central social state (Section 3).

Traditional approaches rely on a “synchronizer” in the in-
frastructure to decide which actions occurred in what order.
For example, in Weyns and Holvoet’s (2004) model, when
agents perform conflicting actions simultaneously, the envi-
ronment picks the successful ones. Such a synchronizer is not
a social entity. It may avoid an integrity violation by forcing
an ordering, but only arbitrarily. In Langshaw, such decisions
are handled socially—a good protocol would have the right
saysos to avoid the mishaps of concurrency.

3 Langshaw Syntax and Informal Semantics
We first conceive a Langshaw-based multiagent system as op-
erating one social artifact, the locus of its social state. Syn-
chronous (and concurrent) social actions by (agents playing)
roles in the system update this artifact. These updates respect
local consistency (only different roles make take conflicting
actions) and causality (an action may occur in a state only if
the the information it relies on is present there). The social
state is nothing but the set of such (performed) actions. The
purpose of a Langshaw protocol is to specify such a system.
Enacting the protocol means updating the social state.

Listing 1 illustrates Langshaw’s syntax (Table 1); we use it
to explain how a protocol is enacted. As shown, the Purchase
protocol specifies roles SELLER, BUYER, and SHIPPER.

Lines 4:–10: specify social actions, each to be performed
by a role; each action specifies one or more attributes (to
capture its meaning), including one or more key attributes
to uniquify instances. For example, BUYER may attempt the
action RFQ by providing bindings (values) for ID and item
and SELLER may attempt Quote by providing bindings for
ID, item, and price. Each Action is reified in an implicit ac-
tion attribute, which is bound if and only if that action has

Protocol −→ Name Roles Attrs Dos Saysos ⌊Nogos⌋ ⌊Nonos⌋
Roles −→ who R+

Attrs −→ what Info
Info −→ [A key]+ [Expr]∗

Expr −→ A | Expr and Expr | Expr or Expr
Dos −→ do Action+

Action −→ R : [B(Info)]+

Saysos −→ sayso [Ranking : A ]+

Ranking −→ R | R > Ranking
Nogos −→ nogo [Action ̸→ Action]+

Nonos −→ nono [Action Action]+

Table 1: Langshaw syntax. −→, |, ∗, + indicate production, choice,
zero or more repetitions, and one or more repetitions, respectively.
[ ] and ⌊ ⌋ indicate grouping and optionality, respectively. A , B, and
R are, respectively, sets of (terminal) attributes, actions, and roles.

Listing 1 Purchase in Langshaw.
1: P u r c h a s e / / Name of t h e p r o t o c o l
2: who Buyer , S e l l e r , S h i p p e r / / r o l e s
3: what ID key , R e j e c t o r D e l i v e r / /

Comple t ion
4: do / / How t o change t h e s o c i a l s t a t e
5: Buyer : RFQ( ID , i t em )
6: S e l l e r : Quote ( ID , i tem , p r i c e )
7: Buyer : Accept ( ID , i tem , p r i c e ,

a d d r e s s )
8: Buyer : R e j e c t ( ID , Quote )
9: S e l l e r : I n s t r u c t ( ID , Accept , i tem ,

a d d r e s s , f e e )
10: S h i p p e r : D e l i v e r ( ID , I n s t r u c t ,

i tem , a d d r e s s )
11: sayso / / S o c i a l a u t h o r i t y o ve r what
12: Buyer > S e l l e r : i t em
13: S e l l e r > Buyer : p r i c e
14: Buyer : a d d r e s s
15: S e l l e r : f e e
16: nono / / What p a i r s a r e i n c o m p a t i b l e
17: Accept R e j e c t
18: R e j e c t D e l i v e r
19: nogo / / What a c t i o n s p r e v e n t a n o t h e r
20: R e j e c t −/> I n s t r u c t

been instantiated for the specified key bindings. When an ac-
tion includes such an attribute, it indicates a reliance on the
first action. For example, Reject applies to an instance of
Quote. Accept could include Quote but item and price make
its meaning clearer.

Attributes are defined only in reference to their keys: it
makes no sense to talk of an item without its ID. Therefore,
we assume that if an attribute occurs in two actions, their
keys overlap and their intersection uniquely determines that
attribute. For a key attribute, a role may either generate a fresh
binding or reuse a previous binding from the social state. For
any other attribute, if it is bound in the social state relative to
a key binding, a role must use the same binding relative to
that key. For example, in a social state with RFQ with some
ID and item, a Quote or an Accept with the same ID must

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

203



contain the same item. If no such binding exists, the role may
generate a fresh binding for that attribute only if it has sayso
over that attribute, as Line 11: and those following illustrate.
For example, BUYER and SELLER can both generate item.

Attempts may be concurrent. When an agent attempts mul-
tiple actions, their bindings must be consistent with each
other and the social state. For example, BUYER may concur-
rently attempt several RFQs, each with a distinct binding for
ID. When multiple agents attempt actions concurrently, the
agents need not be consistent with each other, just within each
agent’s actions and between the agent and the social state.
For example, BUYER and SELLER may concurrently attempt
an RFQ and Quote by generating the same binding for ID
but different bindings for item (since they both have sayso
over item). In Langshaw, the saysos over the same attribute
must be prioritized over agents (indicated by >): here, by
Line 12:, BUYER’s sayso (being ranked higher) dominates.
Consequently, its attempt succeeds (updates the social state)
whereas SELLER’s attempt fails (is a noop).

If only one agent attempts any actions, then all its attempts
succeed and become part of the social state. If two or more
agents attempt actions, exactly those of their collected at-
tempts succeed where for each attribute not already bound
in the social state, the attempting role has the highest sayso
of all the roles concurrently attempting to produce a bind-
ing for that attribute. When attempts dominate each other (on
different attributes), neither affects the social state. For ex-
ample, if BUYER and SELLER concurrently attempt Accept
and Quote by each generating item and price for the same ID,
both attempts fail because BUYER’s sayso dominates for item
whereas SELLER’s sayso dominates for price.

Line 16: and those following specify pairwise conflicts be-
tween actions. Accept and Reject conflict, meaning that they
are mutually exclusive for the same bindings of ID. But since
they are both actions of BUYER, it can choose either one.

Line 19: and those following specify an asymmetric con-
flict. Once Reject is in the social state, Instruct may not be
performed. Importantly, Instruct may precede or occur simul-
taneously with Reject. This constraint is not needed in Pur-
chase but we insert it to explain the construct.

Consider safety. Concurrent conflicting attempts by two
agents can succeed, resulting in an inconsistent social state.
A safe protocol prevents such attempts. Purchase is safe. Ac-
cept and Reject are both actions of BUYER, which means that
if BUYER does one, it cannot do the other. Reject and Deliver
are actions of BUYER and SHIPPER, respectively, but there is
no social state in which both can be attempted concurrently.
To do Deliver, SHIPPER needs to know the binding address,
which can only happen if BUYER does Accept, which rules
out Reject because it would be a local conflict at BUYER.

Let protocol Unsafe Purchase be obtained from Listing 1
by omitting Line 17:: thus, both Accept and Reject may oc-
cur. Suppose Accept has occurred, followed by Instruct. Now
the social state is such that Reject and Deliver may both be at-
tempted concurrently by BUYER and SHIPPER, respectively.
Both BUYER and SHIPPER will succeed, thus violating the
specified nono between Reject and Deliver.

Consider liveness. Line 3: gives a completion criterion for
Purchase’s enactments as a list of attributes or disjunctions

of attributes; one or more of which are designated ⌜key⌝ and
distinguish enactments. Specifically, it says that an enactment
of Purchase, as identified by a binding for ID, is complete
when a binding exists for either Reject or Deliver.

A protocol violates liveness if at least one of its enactments
fails to complete. Purchase has two alternative branches for
an enactment, one ending with Reject and the other ending
with Deliver. Thus, on each branch, Purchase’s completion
criterion is satisfied, which means Purchase is live. Nonlive-
ness could result from too little sayso or where the saysos
induce a cyclic information dependency between the actions.

4 Formal Semantics
Semantic tableaux [Fitting, 1999] are a computational repre-
sentation for proofs. Each node is a social state of the system,
and the transitions are the successful concurrent actions at-
tempted. Each tableau captures all possible enactments of a
protocol: one per branch beginning from the root. Our se-
mantics (Figure 1) is framed as inference rules to derive all
possible transitions. Section 5 gives heuristics to produce a
small tableau, i.e., a tractable model of a protocol.

Figure 1 lists the inference rules for our semantics, based
on propositional logic. Below, m is an instance x : m[⃗a]

where a⃗ is its entire set of attributes. We write x : m[⃗k, p⃗] or
m[⃗k, p⃗] to mean role x performs m with attributes p⃗ and key
attributes k⃗ ⊆ p⃗. We omit the role where it is clear. S captures
the social state. Yx,y a means x has higher sayso over a than
y (both x and y have sayso). Yx a means x has sayso over a of
whatever priority. Braces { } capture sets. Subscripts on sets
and operators capture the obvious indices and ranges. An in-
stance mi[k⃗i, p⃗i] fitsm[⃗k, p⃗] if and only if their common key
attributes have the same bindings, i.e., mi[k⃗i∩k⃗] = m[k⃗i∩k⃗].

In Z-SOCIAL, Z captures what bindings can be inferred
from the social state relative to a (potential or actual) message
instance. For an instance m[⃗k, p⃗], the bindings of its attributes
occurring in a fitting instance in the present social state can
be inferred (i.e., are known). Z-SUBSET and Z-UNION state
that Z bindings are closed under subset and union.

In ATTEMPT, an instance is attemptable by x if (1) it in-
cludes any bindings already established (for the key) in the
social state and (2) x has sayso over the remaining attributes.

In ABIDE, an instance abides by another if: if the bindings
of their common key attributes agree, then the bindings of
all their common attributes also agree. Any nono and nogo
constraints are ignored here and captured in FEASIBLE.

UNSOCIAL-M states that an instance is unsocial (i.e., so-
cially inconsistent) if there is an instance in the social state
with which it does not abide. UNSOCIAL-N states that an in-
stance is unsocial if an instance in the social state has a nono
or a nogo (asymmetric) constraint toward that instance.

FEASIBLE-1 states that an instance is feasible if (1) it is
attemptable and (2) its attribute bindings are not inconsistent
with the social state. In FEASIBLE, a set of instances is feasi-
ble if each instance is feasible and for each pair of instances
performed by the same role, they are not related by a nono and
each instance in a pair abides by the other. This is a crucial
design decision in Langshaw: Feasibility avoids only local
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Z-SOCIAL
Smi[a⃗i] mi[a⃗i] fitsm[⃗a]

Z(m[⃗a], a⃗i ∩ a⃗)
·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ··

Z-SUBSET
Z(m[⃗a], q⃗i) q⃗ ⊆ q⃗i

Z(m[⃗a], q⃗)
·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ··

Z-UNION
{Z(m[⃗a], q⃗i)}ni=1

Z(m[⃗a],∪n
i=1q⃗i)

·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ··

ATTEMPT
Z(m[⃗k, p⃗], q⃗) ¬Z(m[⃗k, p⃗], y⃗) Yxy⃗

attemptable x : m[⃗k, q⃗ ∪ y⃗]
·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ··

ABIDE
mi[a⃗i] fitsm[⃗a] → mi[p⃗i∩p⃗]=m[p⃗i∩p⃗]

mi[a⃗i] abidesm[⃗a]
·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ··

UNSOCIAL-M
Smi[a⃗i] ¬mi abidesm

unsocialm[⃗a]
·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ··

UNSOCIAL-N

Smi[a⃗i] mi[a⃗i] fitsm[⃗a]
nogo(mi,m) ∨ nono(mi,m)

unsocialm[⃗a]
·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ··

FEASIBLE-1
attemptablem[⃗a] ¬ unsocialm[⃗a]

feasiblem[⃗a]
·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ··

FEASIBLE

{feasiblexi : mi[a⃗i]}ni=1
∧xi=xj¬ nono(mi,mj) ∧mi abidesmj

feasible{xi : mi[a⃗i]}ni=1

·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ··

DOMINATES

mi[a⃗i] fitsm[⃗a] p ∈ a⃗i ∩ a⃗
¬Z(m[⃗a], p) Yxi,xp

xi :mi[a⃗i] dominatesx :m[⃗a]
·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ··

JOINT
feasible{mi[a⃗i]}ni=1 ∧i̸=j¬mi dominatesmj

jointly-feasible{xi : mi[a⃗i]}ni=1

·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ··

COMMUNICATION
jointly-feasible{mi[a⃗i]}ni=1

Sxi : mi[ai]
n
i=1

Figure 1: Synchronous semantics for Langshaw.

incompatibilities. A protocol may be incorrect (e.g., unsafe)
because of nono conflicts across roles. Since such errors can-
not be avoided in a decentralized architecture, proper saysos
are essential in a protocol that remains correct in asynchrony.

DOMINATES captures that mi dominates m if they have the
same bindings for their common key attributes, a common
unbound attribute p, and xi has sayso priority on p over x.
(Thus, mi and m can dominate each other.) Dominance goes
away once the conflicting sayso attribute (y above) is bound.

JOINT states that a feasible set of instances whose mem-

bers do not dominate another is jointly feasible. If mi and
m dominate each other, at most one can be part of a jointly
feasible set. Note that joint feasibility is closed under subsets.

4.1 Generating Enactments from a Tableau
The preceding rules (dotted lines) show inference within a
single social state: no S assertions are inferred, hence no state
change. COMMUNICATION (solid line) shows the progress of
time. A set of jointly feasible actions may be concurrently
performed and the resulting social state records each of the
actions as having occurred via S assertions.

A tableau begins from a root node—no S assertion. Any
action there relies entirely on its performer’s sayso. Under
COMMUNICATION, each jointly feasible set forks a tableau
branch. Where a branch terminates (i.e., at a state with no
more feasible actions) forms a unique history.

4.2 Verifying Correctness Properties
Properties of interest, e.g., liveness and safety, are concerned
with the reachability or otherwise of a state through an enact-
ment. These properties are expressed via propositional com-
binations of the actions (and attributes). We assert a property
at the root. A consistent branch that ends provides an example
of the property at the root. A branch that hits a contradiction
is closed; a tableau closes if all its branches close, which in-
dicates the property is inconsistent and its negation is proved.

For liveness, we derive a formula from its what line—for
the simple case, this means each protocol attribute becomes
bound. To this end, we expand the social state to include
bound attributes. For example, from SDeliver we can infer
S ID and S item. A liveness violation occurs precisely when
at least one of the attributes remains unbound. For example,
in Listing 1, ¬ S ID∨ (¬ SReject∧¬ SDeliver). A consistent
branch is a counterexample since our formula is negated. But
if every branch closes, liveness is established.

For safety, an integrity violation is when two actions of dif-
ferent performers with a nono constraint occur. In Listing 1,
Reject and Deliver are such actions. A safety violation occurs
for any such pair of actions. The negation of this property
means that safety is preserved. We place the negated prop-
erty, ¬ SReject ∨ ¬ SDeliver , at the root of the tableau. If
any branch of the tableau closes, i.e., runs into a contradic-
tion, we determine that safety is violated.
Theorem 1. Liveness and safety properties based as above
on the what and nono parts of a protocol are verified by
negating and checking for contradiction.
Argument. Follows from the construction of the tableau.

5 Reducing the Tableau
A tableau produced naively would include a branch for ev-
ery jointly feasible set of actions at a state (node), leading to
an exponential explosion of mostly redundant information.
If we take the branches as individual actions, we will end
up unrolling every feasible interleaving of the actions, also
leading to an exponential explosion. How can we effectively
reduce that redundancy? Our idea is to consolidate branches
where possible and retain enough (heuristically, typically a
few) branches to cover all semantically distinct possibilities.
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5.1 How Actions Relate in a Protocol
Three cases are relevant. First, mutually unrelated pairs of ac-
tions may occur in any combination or order. We can discard
all but one branch in which they are performed: a single-shot
concurrent performance would lead to a shallower tableau,
but any arbitrary interleaving would produce the same social
state. Second, where one action enables another, the tableau
would simply unfold such that an action would not become
attemptable unless the right S assertions were present.

Third, where two actions may interfere with each other,
we must include enough branches in the tableau so that each
alternative is included. We capture potential interference as
hampers below. If an action m1 may disable m2 (as based on
a nono or a nogo) or prevent its concurrent performance (as
based on sayso priority), we must include both possibilities
with m1 or m2 going first and the other action being disabled
or allowed later. We must recognize such cases even if one of
the actions is not presently enabled and make sure we do not
prematurely eliminate it. Figure 2 formalizes this reasoning.

In ENABLE, action xi : mi enables action x : m if mi is
a potential precursor to m. That is, x lacks sayso on some
attribute p of m that is not established from the social state
(i.e., ¬Z(m[⃗a], p)) but xi has sayso on p and p appears in
mi. Action mi enables action m if there is a chain of one
or more direct enablements from mi to m. CHAIN expresses
that enablement is transitively closed.

Action mi may hamper action m in two ways. The first
case is if there is a nono or a nogo assertion involving mi and
m. Accept and Reject and Reject and Deliver are examples.
BLOCK captures this case. The second case is when xi has
priority over x for an attribute p that is not yet established in
the social state, exactly as specified by dominates. Quote and
Accept is an example pair. DELAY captures this case.

FUTURE extends hampers to accommodate future (poten-
tial) interference. Action mi hampers action m if mi hampers
action mj and m enables mj .

5.2 Computing Jointly Feasible Sets of Actions
Identify all feasible actions at a state. Next, group these ac-
tions into jointly feasible sets, reflecting two intuitions.

First, [Colors] when an action hampers another, the tableau
must include both orders and maximally group nonhampering
actions to reduce its size. To this end, create a graph whose
vertices are the feasible actions and an edge indicates one
hampers another. A coloring [Brélaz, 1979] finds sets of ver-
tices with no edge between them. Each set is jointly feasible
(no action in a set hampers another), but maximality maps
to minimum graph coloring, which is NP-Hard. We apply
Brélaz’s polynomial-time approximation to compute Colors.

Second, [Concs] when an action hampers another, the two
can be performed concurrently if they have different perform-
ers, there is a nono between them (nogos are OK), and neither
performer dominates the other on some unbound attribute that
is common to the actions. This gives the set Concs.

We construct a reduced tableau by including branches
whose action sets are in Colors ∪ Concs.
Theorem 2. A reduced tableau is closed for a property con-
structed from Boolean combinations of S assertions if and
only if the full tableau is closed for that property.

ENABLE

mi[a⃗i] fitsm[⃗a] ¬Z(m[⃗a], p)
Yxi

p ¬Yx p p ∈ p⃗i ∩ p⃗

xi : mi[a⃗i] enables x : m[⃗a]
·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ··

CHAIN
mi[a⃗i] enables m[⃗a] m[⃗a] enables mj [a⃗j ]

mi[a⃗i] enables mj [a⃗j ]
·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ··

BLOCK

mi[a⃗i] fitsm[⃗a]
nono(mi,m) ∨ nogo(mi,m)

xi : mi[a⃗i] hampers x : m[⃗a]
·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ··

DELAY
xi : mi[a⃗i] dominates x : m[⃗a]

xi : mi[a⃗i] hampers x : m[⃗a]
·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ··

FUTURE
mi[a⃗i] hampersmj [a⃗j ] m[⃗a] enablesmj [a⃗j ]

mi[a⃗i] hampers m[⃗a]
·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ··

Figure 2: Reasoning about enablement and interference.

Argument. If: All branches in a reduced tableau are jointly
feasible and occur in the full tableau. Only if: A branch
closes based on the S assertions on it. Since the nogo and
sayso constraints are incorporated into the tableau construc-
tion of Figure 1, the only closures (contradictions) observed
on a branch pertain to nono constraints. Suppose the reduced
tableau lacks an equivalent branch. By Concs, it must include
branches for the nono constraints, let Sm be the first asser-
tion that it does not include. Therefore, it must include an
action Sm′ that disables Sm. By our coloring construction,
that means Sm should have been in a different color from
Sm′. Therefore, there is a branch including Sm on which no
Sm′ precedes it. Hence, we have a contradiction.

Theorem 2 is important because it means all verification of
properties based on S (including safety and liveness, as seen
in Section 4.2) can be carried out on a reduced tableau.

6 Compilation into Asynchronous Protocols
For concreteness, we adopt BSPL for specifying asyn-
chronous messaging protocols. As Listing 2 shows, a BSPL
protocol lists roles, a completion criterion, and one or more
messages. Each message specifies information dependencies
via adornments ⌜in⌝ , ⌜out⌝ , and ⌜nil⌝ . Each role has a lo-
cal state and may send a message only if it is compatible
with its local state. Specifically, let m be a message schema
x 7→ y : m[p⃗I , p⃗O, p⃗N ], where p⃗I , p⃗O, p⃗N are sets of its pa-
rameters adorned ⌜in⌝ , ⌜out⌝ , and ⌜nil⌝ , respectively. An
instance of m is a message that has bindings only for the
⌜in⌝ and ⌜out⌝ parameters; x may send an instance of m only
if the bindings of the ⌜in⌝ parameters are known (already
present in its local state), bindings of the ⌜out⌝ parameters are
unknown (but added to the local state upon sending), bindings
of the ⌜nil⌝ parameters are unknown (and not added to the lo-
cal state). For example, to send an Accept, BUYER must know
ID and item and not know price. Moreover, Accept and Reject
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Listing 2 A simple protocol to explain BSPL constructs.
1: Accept − R e j e c t / / P r o t o c o l name
2: r o l e s B , S / / r o l e s Buyer and S e l l e r
3: p a r a m e t e r s out ID key , out done

/ / c o m p l e t i o n c r i t e r i o n
4: S 7→ B : O f f e r [out ID key , out i tem , out

p r i c e ] / / Message
5: B 7→ S : Accept [ in ID key , in i tem , in

p r i c e , out done ]
6: B 7→ S : R e j e c t [ in ID key , in i tem , in

p r i c e , out done ]

SEND
Kxp⃗I ¬Kxp⃗O ¬Kxp⃗N

Lx(x 7→ y : m[p⃗I , p⃗O, p⃗N ]) Kxp⃗O

RECEIVE
Lx(r = x 7→ y : m[p⃗I , p⃗O, p⃗N ])

Lyr Kyp⃗I Kyp⃗O

Figure 3: Asynchronous semantics for BSPL.

are mutually exclusive because each includes done as ⌜out⌝ .
Figure 3 shows Singh and Christie’s (2021) tableau-based

asynchronous semantics of BSPL. Each tableau branch (se-
quence of message send and receive events) is an enactment.
Kx captures that x knows specified parameter bindings. Lx

means x sent or received a message, simulating a channel.
Initially, each role knows no bindings. What is known to each
role grows monotonically: the bindings are immutable, and
each message sent and received adds to a role’s knowledge.

In SEND, an instance of x 7→ y : m[p⃗I , p⃗O, p⃗N ] is enabled
for emission by x if and only if x knows p⃗I but does not know
p⃗O or p⃗N . Concomitantly with the emission, the sender pro-
duces and comes to know the bindings for p⃗O. In RECEIVE, a
message from x to y is enabled for reception by y if and only
if x has (previously) sent that message. Concomitantly with
reception, y comes to know the bindings for p⃗I and p⃗O.

Each tableau branch takes up one of the allowed observa-
tions (emission or reception of a message) and maps to an
enactment. A tableau contains all possible observation orders.

6.1 Compiling Langshaw
We now describe how to compile Langshaw specifications
into BSPL in a manner that respects the demands of asyn-
chrony. Langshaw roles map to BSPL roles, attributes to pa-
rameters, actions to messages, saysos to data flows, and nonos
to integrity constraints. Resolving the saysos and nonos re-
quires parameters and messages not present in Langshaw.
Completion Requirements. Langshaw completion re-
quirements are a sequence of disjunctive clauses. Each at-
tribute (atom in a clause) yields a BSPL parameter of the
same name. Each disjunction is replaced by a parameter rep-
resenting the achievement of any of its terms. When generat-
ing protocol messages, we append messages that are enabled
when any of the clause terms is completed to notify each role
that the clause is satisfied.

Listing 3 (full version online; URL below) shows some
lines generated from Purchase. The what line yields two

Listing 3 Purchase: Completion requirements.
1: p a r a m e t e r s out ID key , out done0
2: . . .
3: Buyer 7→ S e l l e r : R e j e c t # done0 [ in ID key

, in R e j e c t , out done0 ]

Buyer Seller (S)

RFQ[nil item, out item@S]

Quote[in item@S, out item]

Buyer Seller (S)

RFQ[out item, nil item@S]

Quote[nil item@S, in item]

Figure 4: Sayso delegation pattern showing alternative enactments.

clauses. ID maps to BSPL parameter ID. And, Reject or De-
liver maps to done0. Each role gets a message for each of its
actions. We also create messages to convey important facts to
other roles: e.g., Reject maps to messages indicating that the
primary Reject has been sent and the what line satisfied.
Generating Messages from Actions. Each action yields a
BSPL message schema, whose sender is the performer and
whose receiver is a role that needs the content of the message.

• Each attribute (including the attributes reifying the ac-
tions) becomes a message parameter.

• The adornment of each parameter depends on whether
the action’s role (message’s sender) has sayso.

• Each combination of parameter adornments yields a dif-
ferent morph, i.e., message schema variant.

• The above possibilities are constrained via a series of
filters to remove incorrect and redundant combinations.

Modeling Sayso in BSPL. We model sayso in BSPL via
delegation. That is, since BUYER has priority over SELLER
to bind item, it must either bind item, or bind a newly added
delegation parameter (item@Seller) to empower SELLER to
bind it. Conversely, SELLER cannot bind item until BUYER
has delegated that authority. Figure 4 illustrates the delegation
pattern with message sequence diagrams. The pattern is in-
herently asymmetric: traditionally the priorities are arbitrary
[Mattern, 1990] whereas our priorities have a social basis.
Filtering Out Improper Schemas. The above steps pro-
duce redundant or incorrect morphs. We apply a series of
filters to exclude such cases. For instance, reasoning about
causality is needed to ensure enactability and reasoning about
priority to avoid race conditions.
Conflicts and Data Flow. To generate BSPL messages, we
model a nono constraint by adding ⌜nil⌝ parameters to each of
the conflicting messages. For example, in Purchase, the Re-
ject and Deliver actions conflict, so we add nil Deliver to
each generated Reject morph, and nil Reject to each gen-
erated Deliver morph, as shown in Listing 4. Likewise, we
model a nogo constraint (a ̸→ b) by placing a ⌜nil⌝ parameter
on the message for the disabled action, i.e., b[. . . ⌜nil⌝ a]. This
approach echoes the idea of disabling an action until informa-
tion is received to proceed [Singh, 1996].
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Listing 4 Realizing the Reject and Deliver conflict.
1: B 7→ S : R e j e c t [ in ID key , in Quote , out

R e j e c t , nil Accept , nil Deliver ]
2: Sh 7→ S : D e l i v e r [ in ID key , in

I n s t r u c t , in i tem , in a d d r e s s , out
D e l i v e r , nil Reject ]

Next, we model the protocol’s data flow by specifying the
recipients of each message schema. A role can observe any
attribute (including an action) that features in an action it can
perform and any attribute present in the what line of the pro-
tocol. Information is shared at the granularity of actions, not
attributes piecemeal, so we determine which roles can see
what action. We generate a separate message schema for each
of the desired data flows. Since BSPL does not support mul-
ticast, we emulate any multicast with separate messages. The
first message schema (to one role) has the relevant param-
eters as ⌜out⌝ ; message schemas to other roles include the
same parameters as ⌜in⌝ . As described above, every message
is given a least one ⌜out⌝ parameter.
Theorem 3. For any asynchronous messaging enactment
produced by a BSPL protocol generated through our method,
there is a corresponding synchronous enactment produced by
the Langshaw semantics.
Argument. We derive messages using Langshaw’s semantics.
Each action maps to a message and each attribute to a param-
eter with the constraints (nono, nogo, and sayso dominance)
via crafted ⌜nil⌝ parameters. We filter the schemas accord-
ing to rules derived from the delegation model of sayso, i.e.,
constraining the available actions according to DOMINATES.
Thus, the generated BSPL protocol allows moves correspond-
ing to any Langshaw action. Due to our filters, it cannot
make any moves prevented by the sayso constraints. Although
Langshaw allows concurrent actions and BSPL does not al-
low multicast, the effect of multicast is achieved through ad-
ditional messages: such messages can be delayed, as allowed
by the BSPL’s asynchronous semantics, but not disabled. We
capture Langshaw’s disjunctive completion requirements via
messages producing a designated parameter.

6.2 Empirical Results
We implemented our verifier for Langshaw protocols in
Python. Table 2 shows the performance (averaged over 10
runs) of testing liveness (including the time for constructing
a tableau) for several protocols from the literature. The times
for safety are similar, though slightly faster in most cases.

The results show that the Langshaw verifier is effective.
The node and branch numbers are sometimes fractions, due
to unordered sets in the implementation randomizing the se-
lection and thus producing different numbers of nodes and
branches in different runs of the verifier.

7 Discussion: Conclusion and Perspectives
Specifying coordination constraints for MAS can be nontriv-
ial. Langshaw’s abstractions force a designer to think of coor-
dination in social terms. The synchronous semantics provides
a simplified model for a MAS engineer while maintaining the

Protocol Nodes Branches Time (ms)
Redelegation 4 1 3.5
Unsafe Purchase 49.5 19.9 901.5
PO-. . . -Ship 12.3 2.4 92.6
Either-Offer 3 1 1.5
Refund 12.2 4.6 99.0
Purchase 28.2 8.1 480.1
Unsafe 5 3 3.2
Block-Contra 3 1 0.8
Nonlive 1 1 0.2
CompositeKey 3 1 2.5
RFQ-Quote 6 2 6.5
Rescind 7.5 2.5 23.7
Block-Contra v2 17 8 25.8

Table 2: Statistics of Langshaw protocol liveness verification. Pur-
chase, Unsafe Purchase, and Nonlive are as specified above. The re-
maining protocols are in the online supplement (URL below). Time
to verify is given in milliseconds. All except Unsafe Purchase and
Unsafe were safe; all except Nonlive were live. Our experimental
rig was an ASUS Zenbook S13 with an AMD Ryzen 7 6800U CPU
and 16GB of LPDDR5 RAM, running Linux.

realism and power of asynchrony in that conflicting action at-
tempts by multiple agents may succeed though they violate
a nono constraint. Thus, it does not obviate correctness con-
cerns arising in asynchrony and thereby facilitates translation
to an asynchronous protocol.

For now, the best approach to implement agents to partici-
pate in Langshaw protocols is to (1) verify a Langshaw proto-
col; (2) compile it to BSPL; and (3) apply a BSPL program-
ming model such as Kiko [Christie et al., 2023]. Research
into native programming models for Langshaw is needed.
Both BDI-based and the newer hypermedia-based program-
ming models [Vachtsevanou et al., 2023] are promising as
direct programming models for Langshaw because they nat-
urally complement Langshaw’s information orientation.

The engineering MAS community has long debated the
relative merits of synchrony and asynchrony [Singh, 1999].
Langshaw bypasses some of the debate by showing that a syn-
chronous semantics can be a pathway to asynchrony. Popular
approaches provide constructs such as artifacts [Ricci et al.,
2009] or the environment [Weyns et al., 2007] that provide a
unitary view of the state of a MAS. Though they may be ac-
cessed through low-level asynchronous means, their unitary
view reflects a central point. Blockchain provides a shared
state between otherwise independent entities [Mendling et al.,
2018]. Langshaw’s synchronous semantics provides a basis
for interaction governed by sayso, which is more conducive
to business meaning [Christie et al., 2021] than arbitrary or-
dering, and enables maximal concurrency given a protocol.

Theoretical studies of protocols, e.g., [Mallya and Singh,
2007; Ferrando et al., 2019], may need to be revisited in
light of Langshaw. Further, the problem of verifying protocol-
based agents [Baldoni et al., 2006] remains largely unad-
dressed for information-based representations.

Online supplement. The code and all examples are avail-
able online at https://gitlab.com/masr/langshaw
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pages 43–64, Montréal, May 2019. Springer.

[Fitting, 1999] Melvin Fitting. Introduction. In Marcello
D’Agostino, Dov M. Gabbay, Reiner Hähnle, and Joachim
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