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Abstract
The challenge in constructing artificial social
agents is to enable the ability to adapt to novel
agents, and is called zero-shot coordination (ZSC).
A promising approach is to train the adaptive agents
by interacting with a diverse pool of collabora-
tors, assuming that the greater the diversity in other
agents seen during training, the better the generali-
sation. In this paper, we explore an alternative pro-
cedure by considering the behavioural predictabil-
ity of collaborators, i.e. whether their actions and
intentions are predictable, and use it to select a di-
verse set of agents for the training pool. More
specifically, we develop a pool of agents through
self-play training during which agents’ behaviour
evolves and has diversity in levels of behavioural
predictability (LoBP) through its evolution. We
construct an observer to compute the level of be-
havioural predictability for each version of the col-
laborators. To do so, the observer is equipped with
the theory of mind (ToM) capability to learn to in-
fer the actions and intentions of others. We then
use an episodic memory based on the LoBP met-
ric to maintain agents with different levels of be-
havioural predictability in the pool of agents. Since
behaviours that emerge at the later training phase
are more complex and meaningful, the memory is
updated with the latest versions of training agents.
Our extensive experiments demonstrate that LoBP-
based diversity training leads to better ZSC than
other diversity training methods.

1 Introduction
Building social agents that can coordinate with novel agents
is challenging [Stone et al., 2010; Dafoe et al., 2021;
Mirsky et al., 2022; Treutlein et al., 2021; Bowling and
McCracken, 2005; Bard et al., 2020] because artificial so-
cial agents need to adapt to diverse partners. To over-
come this challenge, recent works generate a pool of di-
verse artificial agents and train the adaptive agent to coop-
erate with agents from this pool. This kind of generative
framework to create high-quality training data [Jiang et al.,
2023] is actively studied in deep learning [Zha et al., 2023b;
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Figure 1: ToM based two-stage framework for training the adaptive
agent in ZSC. In the first stage, a pool of collaborators is constructed
via SP training. A ToM observer learns to predict the behaviours and
assigns the LoBP. Based on this, an episodic memory is updated so
that it maintains the diversity in the LoBP of the training pool. It
also selects meaningful behaviours emerged in the later stage (green
squares), instead of poor behaviours presented in the initial stage
(purple squares). In the second stage, the adaptive agent is trained
to cooperate with collaborators stored in the episodic memory.

Whang et al., 2023; Zha et al., 2023a; Jakubik et al., 2022;
Mazumder et al., 2022] and benefits different sub-fields such
as computer vision [Paul et al., 2021] and natural language
processing [Yu et al., 2022b; Brown et al., 2020]. In the
context of building adaptive agents, manipulating the process
of generating the training policies provides the advantage of
instilling different prior knowledge and inducing flexibility
in cooperating with the partner’s behaviour in the training
pool. To create a pool of diverse agents, existing works have
studied various schemes to generate pools that contain agents
with varying trajectories [Lupu et al., 2021; Lou et al., 2023;
Zhao et al., 2023], skills [Szot et al., 2023], or desires [Yu et
al., 2022a].

In this paper, we explore a new diversity scheme based on
the predictability of others in the team in training adaptive
agents in a zero-shot coordination setting. If an agent is only
trained with collaborators whose behaviours have high pre-
dictability, it will develop specific habits to cooperate with
this population and not readjust to novel partners, i.e. will
struggle when its new partners are less predictable. Nega-
tive effects also can happen when the adaptive agent is only
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trained with agents that are completely random in behaviour,
i.e. low in behavioural predictability, and bring no benefit
to the team since this can potentially lead the adaptive agent
to learn to achieve the task individually without cooperating
with others. Hence, we suggest maintaining agents with dif-
ferent levels of behavioural predictability (LoBP) in the pop-
ulation with which we train the adaptive agent. An agent
or a policy is unpredictable if its behaviour cannot be pre-
dicted from a third-person point of view—the theory of mind
observer—, and vice versa1. We continually train a theory of
mind observer to predict the behaviour, including one-step-
ahead primitive actions and intentions, of self-play agents to
assess the behavioural predictability of agents in a particu-
lar environment. Although recent research has considered
machine theory of mind as a crucial component for artificial
agents in cooperative multi-agent settings [Rabinowitz et al.,
2018; Papoudakis et al., 2021], using this model to maintain
the diversity of agents has not been studied.

Our training framework is presented in Fig. 1. In the first
stage, a training pool of diverse agents is developed via self-
play reinforcement learning (RL), and we pick the agents for
a training pool for the next stage based on LoBP-based selec-
tion criteria. In the second stage, the adaptive agent is trained
to cooperate with the agents in this training pool. We focus
on the first stage, where the training pool is generated to have
diverse LoBP. Our proposed approach includes (1) a theory
of mind observer, which assigns a behavioural predictabil-
ity score for agents in the pool; and (2) an episodic mem-
ory, which supports the construction of the training pool with
diverse LoBP and favours agents that have meaningful be-
haviours that appeared in the later stage of training. We con-
ducted experiments on the Overcooked environment [Carroll
et al., 2019] and demonstrated that the LoBP-based mech-
anism of selecting a training pool helps the adaptive agent
learn to cooperate better with unseen partners compared to
other diversity-based baselines.

To summarise, our contributions are:

• A generative training framework with a theory of mind
observer and episodic memory that employs the be-
havioural predictability to create a pool of diverse agents
and is helpful to train the adaptive agent;

• Empirically showing our method produced the adaptive
agents that outperform state-of-the-art methods on dif-
ferent cooperative tasks when paired with novel part-
ners;

• An in-depth analysis of the pool of agents developed
during the selection process.

2 Related Works
Adaptability of reinforcement learning agents in social
setting and zero-shot coordination. Creating a pool of
agents and training an adaptive agent to best respond to this

1We note that in case the actual entropy of agents’ behaviour
can be computed, the maximum behavioural predictability which is
extensively studied in human mobility research [Song et al., 2010;
Lu et al., 2013] can also be used as an alternative criterion within
our framework.

pool is emerging research to achieve zero-shot coordination.
Approaches following these lines attempt to address the prob-
lem of coordinating with humans without collecting and us-
ing human data [Strouse et al., 2021]. This is opposed to tra-
ditional approaches [Carroll et al., 2019] where the adaptive
agents should be trained with human proxies before cooper-
ating with humans, which is often expensive. The automated
process of generating a pool of artificial agents often benefits
from approaches that encourage diversity, either by diversify-
ing the population during training or by collecting agents. To-
wards enhancing the ability to generalise for artificial intelli-
gence, this focuses on addressing the question of determining
the data on which deep neural networks should undergo train-
ing to achieve effective generalisation [Yarats et al., 2022;
Jiang et al., 2023], i.e. highlighting the role of training data
to the adaptability of agents. In other words, if the model is
exposed to diverse datasets, it can generalise and behave bet-
ter in testing with situations that are unseen during training.

Maintaining diversity in the self-play pool. The first work
proposed in this line is [Strouse et al., 2021], in which the
pool of agents is constructed by selecting agents at three dif-
ferent stages of learning. This method used self-play rein-
forcement learning [Tesauro, 1994; Silver et al., 2018] to
train independent self-play agents. After the training process,
the self-play agents selected for the pool are diverse in their
performance on the task. They have (a) low performance,
i.e. at the beginning of training; (b) high performance, i.e.
at the final stage of training; and (c) medium performance,
i.e. have the rewards are the average of high and low per-
formance. Although this is a simple approach, the adaptive
agent trained on this pool surprisingly behaves well when co-
ordinating with novel partners. Yu et al. [2022a] employed
the human bias into the pool of agents via hand-crafting a
reward system used in training, i.e. the desire or motivation
of agents. For each self-play agent, the reward is computed
by weighting pre-defined events. The weights are then ran-
domised so that agents in the pool have different motivations
during training. We note that the event-based reward system
in this work is built based on human judgement of events in
scenarios of Overcooked. Hence, this approach is specifically
designed for the Overcooked benchmark and requires human
effort to construct the diversity scores.

Maintaining diversity in the population-based training.
Compared to self-play training, population-based training
[Jaderberg et al., 2017] allows more control over the popu-
lation of collaborators to develop the pools. Direct measure-
ment on the output of policies such as the Jensen-Shannon
divergence is employed to create a strategy that obtains the
population with agents that have diverse trajectories (TrajDiv)
in [Lupu et al., 2021]. In MEP [Zhao et al., 2023], the en-
tropy rewards were derived to encourage the agents to behave
not only differently from others in the population but also dif-
ferently from themselves. Utilising the intrinsic rewards for
conditional policy to act differently according to different dis-
crete inputs was common used in single reinforcement learn-
ing [Eysenbach et al., 2018]. Szot et al. [2023] adopt this
technique to create a pool of agents that has a specific iden-
tity and agents are trained to have different behaviours (BDP).
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Figure 2: Constructing the Training Pool with the support of the Theory of Mind Observer. Our framework consists of three modules:
(1) the generative training algorithm that is used to generate a population of collaborators; (2) the theory of mind observer that is continually
trained on the behaviour data collected by rolling out collaborators in the population; and (3) the episodic memory which is constructed based
on the level of behavioural predictability by storing the pairs of the weight and its LoBP score. The theory of mind observer computes the
behavioural predictability so that the episodic memory can be updated with this information.

In [Lou et al., 2023], the adaptive agent is trained frequently
with versions of the policies in the pool during the training
period. This method classified agents during the training pro-
cess into different sets based on their performance to evenly
select agents. All the listed methods do not explore the use of
behavioural predictability as a criterion to select a diverse set
of agents in the training pool.
Modelling other agents and machine theory of mind.
Understanding others is a crucial ability for artificial agents
to engage in social interactions [Albrecht and Stone, 2018].
This ability to attribute mental states, widely known as the-
ory of mind in psychology research [Premack and Woodruff,
1978; Baron-Cohen et al., 1985], has recently been studied
in AI [Rabinowitz et al., 2018]. Based on the assumption
that novel partners seen during execution also are predicting
others’ behaviour, in [Knott et al., 2021], the adaptive agent
is trained to cooperate with a theory of mind-based policy
that is cloned from human data. However, the machine the-
ory of mind has not been used to maintain the diversity of
behavioural predictability in the pool of training agents as in
our work.

3 Preliminaries
3.1 Notations
Let us consider the multi-player Markov Decision Process
(MDP) [Boutilier, 1996] as a tupleM = ⟨N ,S,A,P,R, γ⟩
where N = {1, . . . , N} is the set of N agents that operate in
the scene, S is the state space,A = A1∪· · ·∪Ai · · ·∪AN is
the joint action space andAi is the action space of the agent i,
P : S ×A×S 7→ [0, 1] is the transition probability function,
R is the reward function and γ is the discounted factor.

In this paper, we focus on tasks that involve two agents. For
simplicity, we call them the adaptive agent, which is the agent

that we can train to control during execution, and the collab-
orator, which is its partner that the adaptive agent needs to
adapt to. It is worth noting that the adaptability of AI agents
can be characterised as the ability to adapt to a variety of fac-
tors, such as environmental changes or objective changes. In
our work, we consider the adaptive agent in social interac-
tions, i.e. cooperating with different collaborators. At each
time step t, each agent i will observe the state st ∈ S to take
action ait ∈ Ai accordingly. The joint action of agents is de-
noted as at ∈ A, and the trajectory of an agent at each time
step t is τt = (s0,a0, . . . st,at). Here, we study teaming in
cooperative tasks; hence, the team will receive the team re-
wards rt ∈ R, withR : S ×A 7→ R.

3.2 Zero-shot Coordination
The aim of a zero-shot coordination (ZSC) algorithm is to
find a policy πadapt : S 7→ Ai for the adaptive agent to
cooperate well with unseen agents. Formally, let us con-
sider a set C of all collaborators with their policies denoted
as πcolab. This set consists of two sub-sets Ctrain which
contains agents seen by the adaptive agent during training
and Chold−out which is the set of agents used during evalua-
tion. When the adaptive agent is paired with the collaborator
πcolab ∼ Chold−out sampled from the hold-out set, it acts to
obtain the expected return of the team, hence, the objective of
the adaptive agent πadapt is

J(πadapt, πcolab) = E

[
T∑

t=0

γtrt(st, a
adapt
t , acolabt )

]
where T is the length of an episode. The adaptive policy that
the zero-shot coordination algorithm seeks when trained with
only collaborators sampled from Ctrain is
πadapt
∗ = argmax

πadapt

Eπcolab∼Chold−out

[
J(πadapt, πcolab)

]
.
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3.3 Tackling Zero-shot Coordination via
Generative Training Framework

To tackle the zero-shot coordination problem, recent works
proposed using a generative strategy in training the adaptive
agent [Strouse et al., 2021; Lupu et al., 2021; Szot et al.,
2023]. This training scheme has two stages as follows. In
the first stage, a set (pool) of collaborators Ctrain are gen-
erated. Since this set of collaborators is only used in train-
ing the policy of the adaptive agent πadapt, we denoted it as
TrainingPool. In the second stage, the policy of the adaptive
agent πadapt is trained to cooperate with agents selected from
this TrainingPool to achieve cooperative tasks. If the train-
ing pool is diverse, the policy of the adaptive agent πadapt

found in the second stage can cooperate with novel partners
in evaluation.

We follow this two-stage training framework to train the
adaptive agent. One distinct advantage of this framework is
controlling the training data’s diversity and quality. The gen-
erative procedure in the first stage allows us to manipulate or
select the set of collaborators so that the adaptive agent can
meet a diverse set of partners during training.

4 Proposed Approach
4.1 Overview
Our approach focuses on the first stage, i.e. generating the
pool of training agents, of the two-stage training framework
described in Section 3.3. Each agent in the pool is a policy
which is parameterised by the weights, denoted by ψ. Given
the set of Ne initial weights {ψi

0}i=1...Ne , we aim to generate
a new set of weights called TrainingPool = {ψh}h=1...H ,
i.e. a pool of agents, with H is the size of the pool. This
pool of H agents is then used to train an adaptive agent to
cooperate with different types of novel partners.

We define the TrainStep(·) as a procedure that up-
dates weights ψk of Ne agents, i.e. {ψi

k+1}i=1...Ne ←
TrainStep({ψi

k}i=1...Ne). Iteratively executing this training
procedure will create different versions of agents. We denote
the number of iterations as K. We note that the TrainStep(·)
procedure can follow any tradition of updating the weights
and go through multiple update steps. Here, we choose to use
the RL self-play procedure [Silver et al., 2018]. However,
we do not restrict our approach to select agents induced by
this type of policy training; therefore, one can explore using
a population-based procedure under our framework.

We propose an algorithm that alternates between train-
ing and selecting the training weights to construct the
TrainingPool. This is done by a theory of mind model and
episodic memory. Briefly, at each iteration, we update Ne

weights and store them in the memory via LoBP-based up-
dating mechanism. So, our episodic memory keeps growing
until we have H agents. After this, we replace agents to keep
the memory size as H . We continually train a ToM model
fToM
θ (·) to predict the behaviour of policies on behavioural

data collected from the population. Then, the behavioural
predictability of each agent is computed based on comparing
the prediction of the ToM model with the ground truth be-
haviour. Finally, we construct the episodic memory that uses

Algorithm 1: Constructing the Training Pool (Fig. 2)

Input : {ψi
0}i=1...Ne is the set of Ne randomly

initialised weights; ToM Agent fToM
θ (·);M

is the episodic memory; K is the number of
iterations.

Output: TrainingPool = {ψh}h=1...H with H is the
number of collaborators in the training pool.

1 {Di
0}i=1...Ne ← Roll-out({ψi

0}i=1...Ne) ;
2 Dtrain

0 ,Deval
0 ← {Di

0}i=1...Ne ;
3 {σi

0}i=1...Ne ← ToMEval(Deval
0 ) ;

4 M← UpdateMemory(M, {⟨ψi
0, σ

i
0⟩}i=1...Ne) ;

5 for k ← 0 to K − 1 do
6 Run the training procedure

{ψi
k+1}i=1...Ne ← TrainStep({ψi

k}i=1...Ne) ;
7 // LoBP Assessment (4.2):
8 {Di

k+1}i=1...Ne ← Roll-out({ψi
k+1}i=1...Ne) ;

9 Dtrain
k+1 ,D

eval
k+1 ← {Di

k+1}i=1...Ne ;
10 θk+1 ← ToMUpdate(fToM

θ (·), θk;Dtrain
k+1 ) ;

11 {σi
k+1}i=1...Ne ← ToMEval(Deval

k+1) ;
12 // Update Episodic Memory (4.3):

13 UpdateMemory(M, {⟨ψi
k+1, σ

i
k+1⟩}i=1...Ne) ;

14 end
15 Collect all weights inM to the TrainingPool ;
16 return TrainingPool

this information to collect the weights to the training pool.
The proposed episodic memory stores pairs of the weight and
its LoBP score.

The framework is shown in Fig. 1, and the overall algo-
rithm is shown in Algo. 1. Details on the behavioural pre-
dictability and the ToM observer are presented in Section 4.2,
and the episodic memory with its updating mechanism is in-
troduced in Section 4.3.

4.2 Theory of Mind Observer and the Assessment
of Behavioural Predictability

Behavioural Predictability
In this section, we will present how to compute the be-
havioural predictability of a policy, given information about
the trajectories generated by this policy. This quantity is
computed by a theory of mind observer, which is the model
fToM
θ (·) parameterised by the weight θ. The ToM observer is

trained to predict the actions and intentions of others. Given
a weight ψi

k which represents the version k of the agent i in
the pool, we collect the behavioural data Di

k by rolling out
the policy with respect to the weight ψi

k in the environment to
get M trajectories, then query the prediction about the next-
step action and intention (ãt+1, g̃t+1) = fToM

θ (τt) from the
theory of mind agent. The behavioural predictability of the
policy with respect to the weight ψi

k is computed by

σi
k = − 1

M

∑
τt∼Di

k

[la(τt) + lg(τt)] , (1)

where
la(τt) = −logp(ãt+1 = at+1|τt), and
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lg(τt) = −logp(g̃t+1 = gt+1|τt)
are the cross-entropy losses of the ToM model in predicting
next-step primitive actions la and in predicting goals or inten-
tions lg, respectively. Intuitively, if the trained observer does
not predict well the behaviour generated by a policy (la or lg
is high), then this policy can be considered as having a low
behaviour predictability (σ is low), and vice versa.

According to our criterion, two arbitrary agents x and
y with weights ψx and ψy , respectively, are considered as
equal/similar in terms of LoBP if the gap between their pre-
dictability scores σx and σy is sufficiently small, i.e. |σx −
σy| < δBP for a small δBP ∈ R+. We note that different
approaches can be used to achieve diversity in behavioural
predictability. One can build an agent model specifically for
solving the task and use parameters to vary the predictability
of agents in the pool. Due to simplicity, we propose to use
episodic memory to promote LoBP diversity in Section 4.3.

Training the Theory of Mind Observer
In our approach, the ToM observer is continually trained
along with the development of weights {ψi

k+1}i=1...Ne .
First, by rolling out policies with weights {ψi

k+1}i=1...Ne

in the environment, we collected the behavioural data
{Di

k+1}i=1...Ne as shown in the 8th line of the Algo. 1.
Second, this behavioural data obtained from the roll-out pro-
cedure {Di

k+1}i=1...Ne is divided into two sets Dtrain
k+1 and

Deval
k+1 by a fixed ratio (Alg. 1, line 9th). Finally, the ToM ob-

server is trained on the training set Dtrain
k+1 (ToMUpdate(·) in

10th of Alg. 1). It then computes the behavioural predictabil-
ity σi

k on the evaluation set Deval
k+1 (ToMEval(·) in line 11th

of Alg. 1).

4.3 LoBP-based Episodic Memory
Design of LoBP-based Episodic Memory
We design the LoBP-based memory as an episodic memory
M that contains H slots (equal the size of the TrainingPool)
and is organised into B segments. Each slot stores a pair of
weights and the behavioural predictability score ⟨ψ, σ⟩.We
refer to this pair as the value of the memory slot, which
can be updated, i.e. written or erased. Each segment S ∈
{S1, . . . , SB} contains several slots with a similar level of be-
havioural predictability as defined in Section 4.2. The num-
ber of segmentsB and the LoBP interval δBP are empirically
chosen and fixed during the process.

Maintaining Diverse Level of Behaviour Predictability
and Favouring Complex Behaviour
In this paper, we use a simple yet efficient mechanism to up-
date the episodic memory and discard seen policies to guar-
antee a pool of agents with diversity in LoBP. The memory
update mechanism, i.e. UpdateMemory(·) procedure, is de-
scribed in Algo. 2. In detail, when a new policy with its
behavioural predictability score, i.e. ⟨ψi

k, σ
i
k⟩, comes to the

update mechanism of the episodic memory, we will first erase
the earliest memory value (making the slot empty) in the seg-
ment that has largest size (line 6th of Algo. 2), then write
the weight and its predictability score ⟨ψi

k, σ
i
k⟩ to the related

segment. To guarantee there is no bias in the identity of the
agent, we shuffle the agent set as in the 1st line of Algo. 2.

Algorithm 2: UpdateMemory

Input : {ψi
k}i=1...Ne is the set of Ne weights;

M is the episodic memory.
Output: M

1 for i in shuffle({1 . . . Ne}) do
2 ifM is not full then
3 M← ⟨ψi

k, σ
i
k⟩ ;

4 else
5 Discard the earliest came value ⟨ψ, σ⟩f to the

segment that has the maximum size Sm, i.e.
⟨ψ, σ⟩f ∈ Sm s.t. Sm = argmaxSj

(|Sj |)
where Sj ∈ {S1, . . . , SB} is the segment and
|Sj | is the size of Sj ;

6 M← ⟨ψi
k, σ

i
k⟩ ;

7 end
8 end
9 return UpdatedM

Diversity in the level of behavioural predictability. To
exploit all the capacity of the memory, when the memory has
not reached its limitation of size, we will write the pairs of
the policy’s weight and its behavioural predictability score
⟨ψi

k, σ
i
k⟩ into a slot in corresponding segments without any

selection. When the episodic memory is full, to maintain the
diversity in the LoBP and avoid overloading, we erase one
value of the slot in the segment with the maximum size and
write to the corresponding segment. We recall from the pre-
vious section that each segment in the episodic memory con-
tains weights with similar levels of behavioural predictability.

Favouring complex and meaningful behaviour. Because
behaviour displayed in the late stage of training is often more
complex and meaningful than in the early stage, the update
mechanism will keep later samples and discard earlier sam-
ples from memory. In other words, this mechanism results in
first-in-first-out (FIFO) property for each segment.

5 Experiments
5.1 Experiment Setting
We conducted experiments on different scenarios of Over-
cooked which is a benchmark to assess the zero-shot coor-
dination ability of the adaptive agents. In this game, there
are two agents that need to collaborate to achieve a cook-
ing task. The Overcooked game was first introduced to
study the coordination of AI in [Carroll et al., 2019]. Each
agent can take one action in the set of 6 actions A =
{up, down, left, right, interact}. During one episode, agents
try to deliver as many dishes as possible before the end of
the episode, reaching an end after T = 400 timesteps. To
make one dish, agents have to collect ingredients and put
them into the pot to cook. After 20 time steps of cooking on
the stove, the dish is ready and can be delivered to a counter
located at a fixed place in the room. In our experiments, all
scenarios (Asymmetric Advantages, Coordination Ring) have
sparse rewards, i.e. the team reward is only given to agents at
the delivery time (successfully achieving the task).
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FCP TrajDiv MEP BDP Our Our (intent.)
Asym. 271.33 (23.88) 251.714 (17.19) 273.636 (19.92) 278.484 (14.29) 293.55 (10.77) 298.824 (9.86)
Coord. 103.444 (10.02) 107.54 (9.075) 111.9 (8.076) 112.3 (16.537) 120.87 (6.84) 120.37 (4.34)

Table 1: Rewards in tasks when adaptive agents are paired with reinforcement learning agents trained via self-play process.

FCP TrajDiv MEP BDP Our Our (intention)
Onion and Delivery 310.67 286.0 333.33 321.33 333.33 328.66

Delivery 307.33 346.0 216.67 318.00 346.0 322.0
Onion Everywhere 215.33 253.33 230.0 255.00 248.0 270.67

avg. 277.78 295.11 260.00 298.0 309.11 307.11

Table 2: Rewards in tasks when adaptive agents are paired with scripted agents with different behaviour preferences.

5.2 Baselines
We consider state-of-the-art baselines in two branches of ap-
proaches that employ the generative two-stage training frame-
work. They are different in classes of training methods
used in stage 1: (1) the self-play (SP) training and (2) the
population-based training (PBT).

• SP training method: fictitious co-play (FCP) [Strouse et
al., 2021] that used RL SP strategy to train and a reward-
based rule to select collaborators into the training pool.

• Population-based training method: (1) Trajectory Diver-
sity (TrajDiv) [Lupu et al., 2021]; (2) Maximum entropy
population-based training (MEP) [Zhao et al., 2023];
and (3) Behaviour diversity play (BDP) [Szot et al.,
2023]. All three methods utilise PBT to develop the
training pool but use different criteria for maintaining
the diversity of the pool.

We consider two versions of our approaches where the LoBP
score is only computed by action prediction, i.e. there is no
lg in Eq. 1, and where both action and intention prediction
are taken into account. To evaluate our approaches, we fol-
lowed the literature on experimental designs. We first com-
pare adaptive agents in cooperating with reinforcement learn-
ing agents that are developing via self-play procedure. We
used different seeds to generate the pool of agents to train
the agents used to evaluate the adaptive agents in the test
phase. We then evaluate the coordination skill of adaptive
agents with the scripted agents and the human proxies.

5.3 Cooperating with RL Agents
To evaluate the ability to cooperate with novel agents, we
trained a new set of RL agents by self-play training. This
set is trained with different seeds from the training process of
SP agents in the FCP pool and our pool of agents. The new
RL self-play agents used to evaluate the adaptive agents are
randomly selected during SP training. Hence, although they
shared the same training algorithm (RL self-play process), the
sets of agents used in train (Ctrain) and test (Chold−out) are
different. Our approach outperforms other baselines on this
task. During SP training, the RL agents exhibit behaviours
with diverse predictability while learning skills. Therefore,
training by our approach helps social agents to adapt well to

these behaviours. The performances when pairing adaptive
agents with hold-out RL agents are shown in Table 1.

5.4 Cooperating with Scripted Agents
In this section, we constructed scripted agents that have high
behaviour preferences. We considered interactions between
the adaptive agent and three types of behaviour: (1) plac-
ing onion in pot and delivery when the soup is cooked; (2)
delivery when the soup is cooked; and (3) putting onion ev-
erywhere. While the first two types of agents have mean-
ingful behaviour, the third procedural agent’s behaviour ob-
structs the team from achieving high performance. This type
of useless predictable behaviour can appear in the RL self-
play training, however, they often in the early phase and will
be discarded from the episodic memory due to the usefull pre-
dictable behaviour when the SP agents begin to learn near-
optimal behaviour. More visualisation of this phenomenon is
shown in Fig. 4. The results are shown in Table 2.

5.5 Cooperating with Human Proxy Agents
General Human Proxy
We use the behaviour cloning method [Bain and Sammut,
1995] to train the policy πproxy that imitates the behaviour
of humans in scenarios of Overcooked. These policies are
referred to the human proxies. The human data used in our
works are human interactions in experiments established in
[Carroll et al., 2019]. The results are shown in Table 3 (per-
formance of our method is higher and statistically significant
different to performance of baselines with p < 0.05).

Specific Human Proxies
We also evaluate the adaptive agents on different human prox-
ies. To construct different human proxies, we first meta-
trained a general proxy π̄proxy on trajectories of 12 individ-
uals. We then fine-tuned this π̄proxy on trajectories of others
6 individuals to obtain the specific proxies for each of them
{πproxy

0 , πproxy
1 , πproxy

2 , πproxy
3 , πproxy

4 , πproxy
5 }. This type

of training is adopted from [Duan et al., 2017]. These poli-
cies are assumed to reflect the behaviour of individuals. The
results are shown in Figure 3. Our approaches produce adap-
tive agents that gain higher team rewards on average when
cooperating with these policies.
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FCP TrajDiv MEP BDP Our Our (intent.)
Asym. 229.33 (24.02) 231.862 (25.26) 240.73 (23.66) 254.6 (17.99) 260.864 (14.54) 276.796 (14.31)
Coord. 88.466 (10.36) 100.266 (11.69) 103.934 (2.14) 105.266 (13.33) 102.8 (14.73) 114.4 (15.00)

Table 3: Rewards obtained in tasks when adaptive agents are paired with human proxy.
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Figure 3: Rewards obtained when the adaptive agent that is trained
by our approach and other baselines is paired with different specific
human proxies {πproxy

j }j=0...5. The lighter colour means the higher
team reward obtained.

Low Perf. High Perf.
FCP 12 12 (med) + 12 (high)
Our 7 29

Our (intent) 5 31

Table 4: Comparison of portions in the pool of agents. Our method
selects a small number of random agents than FCP.

5.6 Analysis of the Pool of Agents
Agents selected by Level of Behavioural Predictability
In this section, we analyse in detail the pool of agents that
are generated by using the LoBP criteria. Fig. 4(a) shows
that all SP agents were chosen to the training pool. Our train-
ing pool contains agents that are diverse in the level of be-
havioural predictability (Fig. 4(b)). To analyse the difference
between the FCP pool and the LoPB-based pool, we divided
the training process of the SP agents into three stages. The
early stage is the period before the SP agent obtains half of
the maximum training rewards. Following this stage are the
middle and high stages where the SP agents obtain higher
rewards. Table 4 shows that our pool mainly contains the
weights of agents in the middle and high stages of training,
i.e. the number of high-performance and meaningful in our
pool is higher than the FCP pool. This helps the adaptive
agents focus more on learning to cooperate with the agents
that deliver complex behaviour instead of random behaviour
often appearing in the early training phase. To further discus-
sion, training good ToM observer can improve the efficiency
of our approach, i.e. the ability of the ToM observer also af-
fects to the settings where there are more agents or complex
environment.

Pure Pools Comparison
We further compared our pool with two other pools: Init Pool,
in which all agents act unpredictably, and Final Pool, in which
all agents are well-trained. The results are shown in Fig. 5.
We evaluate adaptive agents on three sets: (1) a set of random
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6
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Figure 4: Episodic memory contents (y-axis indicates the number of
agents). All agents are chosen (a) and the pool contains behaviours
with different level of predictability σ (as shown in (b)).
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Figure 5: Comparison of rewards obtained when the adaptive agents
that were trained with our training pool (first two columns), with a
pool that contains only unpredictable agents (3rd column) and a pool
that have all well-trained agents (4th column) are paired with agents
that are unpredictable (1st row), well-trained (2nd row), and mixed
behaviour (3rd row). The lighter colour the higher reward.

agents (Fig. 5 (1st row)), a set of trained agents (Fig. 5 (2nd
row)), and a mix of different reinforcement learning agents
during self-play training (Fig. 5 (3rd row)). There is a con-
trast between the performance of adaptive agents trained on a
random pool and the trained pool because they focus on dif-
ferent types of collaborators. The adaptive agent trained with
only pool that have unpredictable behaviour behaves worst.
Our adaptive agents obtained better results when paired with
trained and mixed agents, and better performance than the
adaptive agent trained on a well-trained pool when paired
with random agents.

6 Conclusions
In this paper, we tackle the ZSC by the generative training
framework, in which a pool of agents is auto-generated in the
first stage and the adaptive agent is trained to cooperate with
agents in this pool to achieve the task in the second stage.
We focus on the first stage and propose to use a novel way to
promote the diversity of the training pool using the levels of
behavioural predictability. To realise the concept, we design
a ToM observer equipped with a episodic memory to moni-
tor the pool generation process. We demonstrated that agents
trained to cooperate with this training pool can better adapt to
novel partner meaning they are more robust and trustworthy
compared to diversity based methods.
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