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Abstract
Whereas standard financial mechanisms for pay-
ment may take days to finalize, real-time payments
(RTPs) provide immediate processing and final re-
ceipt of funds. The speed of settlement benefits
customers, but raises vulnerability to fraud. We
seek to understand how bank nodes may strategi-
cally mitigate fraud risk in RTPs, through invest-
ment in fraud detection and restricting payments
eligible for real-time processing. To study this, we
introduce an agent-based model of the payment net-
work supporting both real-time and standard pay-
ments, and define a game among banks and fraud-
sters. Using empirical game-theoretic analysis, we
identify Nash equilibria in nine game configura-
tions defined by network attributes. Our analysis
finds that as banks become more liable for fraud,
they continue to allow RTPs but are more likely to
employ both restrictions and a high level of fraud
detection. Fraudsters, in response, switch from tar-
geting only RTPs to attempting fraud with any type
of payment and tend to exploit banks where they
have historically been most successful. We also
conduct a strategic feature gains assessment to fur-
ther understand the benefit offered by each of the
bank’s risk mitigation measures, which confirms
the importance of selective RTP restrictions. Fi-
nally, we find that in equilibrium bank strategic de-
cisions negatively affect fraudsters while minimally
impacting customers.

1 Introduction
A payment begins with the sender declaring its value and in-
tended recipient to its bank. From there, payment processing
unfolds over a series of defined steps, referred to as the clear-
ing and settlement, ending with the final receipt of the funds.
Customarily, these steps take a day or more to complete as a
result of batch processing and requirements for communica-
tion between banks. However, recent advancements in tech-
nology have allowed for increasingly faster processing and
the introduction of new, faster payment types.

Real-time payments (RTPs) execute the clearing and set-
tlement steps directly upon initiation of the payment, al-

lowing the payment’s receiver immediate access to the
funds [Committee on Payments and Market Infrastructures,
2016]. The total processing time for a RTP is about 10
seconds [Diadiushkin et al., 2019; European Central Bank,
2023]. Importantly, this convenience is available 24/7/365
rather than subject to business hours as with traditional pay-
ments. Many RTP systems are in use around the world today,
such as Zelle and FedNow in the United States.

The immediacy of RTPs benefits both senders and re-
ceivers of payments. Benefits may also extend to malicious
actors (fraudsters), who can exploit the limited ability of
fraud detection systems to handle this speed. A survey of
payment service providers found that current manual review
processes average 5 to 10 minutes [Diadiushkin et al., 2019],
too slow for RTPs. Thus, fraud detection for RTPs necessi-
tates reliance on fully automated quick checks, which tend to
be less accurate. A UK study found a 132% increase in fraud
the year the Faster Payment Service (FPS) was introduced,
though numbers for FPS alone were not available. RTPs also
attract a difficult-to-detect attack known as authorized push
payments (APP) fraud, wherein a customer is tricked into au-
thorizing a fraudulent payment. APP fraud was the second
largest type of payments fraud in the UK in 2018 [Taylor and
Galica, 2020].

Given the risk of fraud in RTPs, we seek to understand how
banks may mitigate fraud risk while providing these benefi-
cial payments to customers. We study this question using an
agent-based model of a payments network with banks, fraud-
sters, and customers modeled as nodes in the network, and
supporting the modeling of both real-time and standard pay-
ments. Within this model, we define a RTP fraud game played
by the bank and fraudster nodes. To mitigate risks—including
fraud risk—of RTPs, maximum threshold values above which
a payment cannot be sent in real time have been found to be
useful tools for banks [Weyman, 2016]. Thus, bank nodes
in our game make strategic choices regarding threshold value
setting and investment in RTP fraud detection. Fraudsters in
the game make strategic decisions determining targets of their
fraudulent payment attempts.

The game is analyzed using empirical game-theoretic
analysis (EGTA) to identify Nash equilibria for various game
configurations. To evaluate the benefit to banks for inclusion
of each risk mitigation technique, we introduce a process of
strategic feature gains assessment, which generalizes an ap-
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proach to assessing strategic factors previously employed in
an EGTA study by Mayo and Wellman [2021]. Finally, we
study outcomes in the network in strategic equilibrium to un-
derstand the impact on network participants.

We find that as bank liability for RTP fraud increases, they
adopt both threshold values and fraud detection with higher
probability. When banks utilize both mitigation techniques,
fraudsters switch from attempting fraud only in RTPs to con-
sidering any payment type. In selecting banks to target, fraud-
sters tend to rely heavily on information on historical success.
Our strategic feature gains assessment highlights the impor-
tance of controlling the bank threshold value for mitigating
initial fraud risk. By analyzing equilibrium outcomes, we find
that bank strategies are effective at disrupting fraudsters with
minimal negative impact to customers.

The main contributions of this work are:
• an agent-based model of a payment system consisting of

standard and real-time payments supporting the model-
ing of fraudulent activity;

• a game-theoretic analysis of RTPs fraud risk mitigation;
and

• a process for strategic feature gains assessment to ana-
lyze the impact of available strategy options.

2 Related Work
An early use of directed graphs to model trust in the con-
text of transactions was an auction application by Ghosh et
al. [2007]. Related models were applied to informal borrow-
ing networks [Karlan et al., 2009] and other applications, and
later unified by Dandekar et al. [2011] as a general formal-
ism for credit networks. Subsequent work explored strategies
for issuing credit (i.e., determining trust levels) in such net-
works [Dandekar et al., 2015]. Cheng et al. [2016] expanded
the formalism to including interest rates, referring to the aug-
mented model as financial credit networks (FCNs).

General discussions of RTPs describe their distinction from
standard payments, and potential benefits and risks for par-
ticipants [Committee on Payments and Market Infrastruc-
tures, 2016; Hartmann et al., 2019]. There are several
studies of the design of RTP systems [Guo et al., 2015;
Kulk, 2021; Guo and Ma, 2023], including blockchain imple-
mentations [Arshadi, 2019; Zhong et al., 2019]. Additional
work focuses on risks posed by immediacy and 24/7 avail-
ability of RTPs. This includes difficulties with performing
maintenance and repair, bank runs in times of distress [Wey-
man, 2016], fraud detection [Diadiushkin et al., 2019], and
liquidity needs [Hellqvist and Korpinen, 2021].

Studies of existing RTP systems analyzed their effects on
the broader payment ecosystem. A study of the FPS in the
United Kingdom found heavy use of FPS for standing or-
ders and credit card bills, but almost no effect on point-of-sale
transactions [Greene et al., 2014]. Another study compared
the adoption of RTP systems in six countries identifying the
most important factors for successful adoption [Hartmann et
al., 2019]. It also found the greatest impact of RTPs was on
traditional credit transfers and the use of checks.

To better understand the adoption of RTPs, two prior works
analyzed related proxy systems. Bech et al. [2017] identified

parallels in the adoption of real-time gross settlement sys-
tems for processing whole sale payments and RTPs, partic-
ularly noting both experienced a 15-year gap between first
introduction and prominent worldwide up-take. Hayashi and
Toh [2020] noted the importance of mobile banking as a gate-
way for accessing RTPs and identified gaps in usage that will
need to be addressed for wide adoption of RTPs.

Lastly, there exists a large body of research related to
the use of machine learning based techniques for fraud de-
tection [West and Bhattacharya, 2016; Ryman-Tubb et al.,
2018], including deep learning [Lin et al., 2021]. Recent
work also explores faster methods for fraud detection, some
of which is motivated by RTPs [S.N. John et al., 2016;
Said and Hajami, 2021; Madhuri et al., 2023].

3 Payments Network Model
We describe the elements of our model of the payment sys-
tem, building on FCNs [Cheng et al., 2016], which imple-
ments the payment network infrastructure on which the RTP
fraud game is played.

3.1 Bank and Customer Nodes

Banks and customers are represented by nodes in the net-
work. There are b bank nodes, B = {B1, . . . , Bb}, and n
customer nodes, C = {C1, . . . , Cn}. Each customer node is
connected to a bank node by edges as shown in Figure 1. The
dashed debt edge represents customer deposits held by the
bank, with value denoting the amount of deposits held (i.e.,
what the bank owes the customer). The customer’s willing-
ness to hold additional deposits in its account is represented
by a solid credit edge, essentially a credit line bounding what
the bank can owe the customer. Such bounds may reflect de-
posit insurance limits or other customer preferences. Figure 1
shows customer node C1 with 100 units currently in its bank
account at bank node B1 and a willingness to hold 100 addi-
tional units.

Figure 1: An example of customer node C1 with 100 units deposited
at bank node B1 and a willingness to hold an additional 100 units in
the account for a maximum of 200 units at any given time.

Banks are responsible for routing payments in the network
on behalf of their customers through the interbank network.
We model this as a fully connected network of credit edges,
representing all banks’ willingness to interact with one an-
other. Bank nodes are capable of routing both standard and
real-time payments through this network. An example of the
interbank network connecting two bank nodes, B1 and B2, is
shown in Figure 2. In this simple network, bank node B1 has
one customer C1 with 100 units currently in its account and
bank B2 has a customer C2 with 50 units currently deposited.
Each bank node has a willingness to route up to 1,000 units
to the other.
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Figure 2: A small example network with two bank nodes, each with
a single customer node, who are connected by the interbank net-
work.

3.2 Modeling Payments
Payments are implemented by a series of updates to the edges
between parties involved: the sender, receiver, and their re-
spective banks. The payment type is differentiated by the
timing of these updates.

Real-Time Payments
When a customer node (sender) initiates a payment, it is re-
flected by a decrease in the value on the debt edge by the
amount of the payment. This represents the customer draw-
ing on their deposits to make the payment. The sender now
holds fewer deposits in its account, so its willingness to hold
additional deposits must increase by the amount of the pay-
ment captured by an increase on the value of its credit edge.
The sender’s bank node then routes the payment to the re-
ceiver’s bank, creating a debt edge from the sender’s bank to
the receiver’s bank of the payment’s amount. The action of
routing a payment decreases the receiver bank’s willingness
to interact with the sender bank in the future by the amount
of the payment, decreasing the value on the credit edge from
the receiver bank to the sender bank. Finally, we model the
receiver obtaining the funds in their bank account by an in-
crease of the value on the debt edge from the receiver’s bank
to the receiver equal to the payment amount. With an in-
crease in the amount of deposits in its account, the receiver’s
willingness to hold additional deposits must decrease by the
amount of the payment reflected by a decrease in the value on
the receiver’s credit edge.

In an RTP scenario, these processing steps all occur instan-
taneously and thus all edges will be updated as described in
the same time step the payment was initiated. An example
of customer node C1 making a RTP of 20 units to C2 in time
step t = 1 is shown in Figure 3 with the initial state of the net-
work shown in Figure 2. As can be seen, all edges on the path
between the sender and receiver node have been updated.

Figure 3: An example of C1 sending a RTP of 20 units to C2 in time
step t = 1, resulting in all updates to the edges occurring at t = 1.
The initial network configuration is shown in Figure 2.

.

Standard Payments
To model the delay between payment initiation and comple-
tion of payment processing for a standard payment, we sim-
ply delay some of the edge updates. Specifically, when a pay-
ment is initiated, only the credit and debt edges between the
sender and its bank node are updated. The remaining steps go

into the sender bank’s payment queue, representing the de-
layed processing. At a later time period, called the clearing
period, the unprocessed payments in the bank queues are re-
moved and applied to the network. At this time, the edges of
the interbank network and between the receiver and its bank
will be updated as described for RTPs.

The same payment of 20 units from customer node C1 to
C2 is shown now as a standard payment in Figure 4. While
the payment updates unfold over several time steps, the final
impact of the payment on the network remains the same.

Figure 4: Customer node C1 makes a standard payment of 20 units
to C2 in time step t = 1, which completes in the next clearing period
X .

3.3 Modeling Fraud
Fraud in this network is committed by a fraudster node draw-
ing on customer node’s deposits to make payments within
the network, referred to as impersonating a customer node.
When a fraudster node impersonates a given customer, it cre-
ates a fraud edge connecting the two nodes. The value on the
fraud edge is equal to the amount of fraud committed by the
fraudster while impersonating the customer. Since the other
nodes are unaware the payment is truly fraudulent, the steps
for each type of payment outlined above remain the same.
Figure 5 illustrates an example of fraudster node F1 imper-
sonating C1 to make a fraudulent RTP of 20 units to C2. As
shown, this creates a fraud edge with 20 units connecting F1

and C1, while the remaining edge updates appear the same
as the non-fraudulent RTP shown in Figure 3. A standard
payment of 20 units would look similar to Figure 4 with the
addition of the fraud edge.

Figure 5: Fraudster node F1 impersonates customer C1 to make a
fraudulent RTP of 20 units to customer C2.

4 RTP Fraud Game Initialization
We describe the formation of the initial payments model in
which the RTP fraud game will be played, as well as the
strategy sets available to the strategic agents. As the game
is played, the initial network will dynamically update as a re-
sult of behavior described in Section 5.

4.1 Customer Nodes
We initialize n = 200 customer nodes with initial deposits
drawn from an exponential distribution with an average value
of 10,000. Each customer node is also initialized with its
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own preferences for RTPs usage as both a sender and receiver.
A given customer will be willing to only receive RTPs with
probability λ and with probability 1 − λ be willing to ac-
cept any type of payment. Furthermore, some customers may
have an aversion to utilizing a new, unfamiliar technology to
send payments. To capture this, each customer node has its
own personal threshold, CT i ∈ {200, 400, 600, 800, 1000},
uniformly randomly chosen during initialization. A customer
node in the network is unwilling to send a payment in real
time if its value exceeds the customer’s personal threshold.
In our model, the maximum payment value is 1,000, so a cus-
tomer with CT i = 1, 000 is always willing to send RTPs.

Lastly, we note that customers may not necessarily always
desire to send an eligible payment in real time due to personal
preference and payment requirements. We model this with
the urgency parameter such that with probability u = 0.5
an eligible payment is sent in real time and with probability
1−u it is sent as a standard payment. The urgency parameter
universally applies to all customer nodes.

4.2 Bank Nodes

A set of b = 4 banks nodes is initialized to form the interbank
network and each bank is initialized with its own standard
payments queue, Qi. In our game, banks have an infinite will-
ingness to route payments on behalf of their customers. Bank
nodes have access to two fraud detectors, one for each type
of payment. The focus of our work is to understand the use
rather than emphasize a particular method of fraud detection,
and thus we abstract away implementation details by model-
ing both detectors as black boxes. Each detector is character-
ized only by the probability (γ) it correctly labels a payment
as fraudulent or not fraudulent relative to its true label. Bank
node Bi’s standard payments fraud detector γS

i is initialized
with a random draw from U [0.8, 0.9] and its RTPs detector
γR
i by the bank node’s chosen strategy as described below.

Bank Strategy Set
During initialization, each bank node will select from a set
of two-part strategies that control RTPs usage and fraud de-
tection. The first part of the strategy sets a bank threshold
BT i ∈ {0, 200, 400, 600, 800, 1000} which is the maximum
payment value bank Bi allows to be sent in real time. A
threshold BT = 0 does not allow any RTPs, threshold BT =
1000 does not restrict RTPs, and the remaining choices of-
fer varying degrees of limitation. The threshold choices of
bank nodes is assumed to be public information that attracts
customers to the bank. The second part of the strategy is the
bank’s investment level in RTPs fraud detection, which sets
the bank node’s RTP fraud detection capabilities for the dura-
tion of the game and incurs a one-time cost. A higher invest-
ment allows for a more accurate fraud detector (higher γR),
but at a higher cost to the bank. To capture the challenges of
speed, fraud detection accuracy for RTPs at every investment
level is strictly less than that of standard payments. Table 1
shows the mapping of investment level choices to one-time
cost and γR setting for the game, derived from the bank’s γS

setting. The strategy set for bank nodes contains all 24 com-
binations of threshold choices and investment levels.

investment level cost (units) γR =
none 0 —
low 1,000 0.65× γS

high 3,000 0.9× γS

Table 1: A mapping of the investment level of a bank node in RTPs
fraud detection to the one-time incurred cost and RTPs fraud detec-
tion capability (γR) for the game.

4.3 Fraudster Nodes
The network is initialized with m = 1 fraudster node. The
fraudster node maintains a history of its success committing
fraud at each bank node to inform its strategic behavior. At
the start of the game, the fraudster is assigned its first cus-
tomer node to impersonate (victim) based on its selected strat-
egy.

The strategies of the fraudster node determine its bank and
payment type targeting rules. We assume given the oppor-
tunity, the fraudster node will always prefer to send RTPs to
exploit the limits of fraud detection in the quicker payment
scheme. If banks severely restrict RTPs, however, it may be
beneficial for the fraudster to gamble on the imperfect nature
of standard payments fraud detection rather than completely
miss an opportunity to attempt fraud. Thus, the fraudster will
choose between one of two rules: attempt RTPs only (RTP-
only) or be willing to attempt a standard payment if a RTP is
not possible (Any).

The fraudster in the game targets bank nodes, but does not
differentiate between customer nodes of a targeted bank. We
assume information regarding customer and bank relation-
ships is accessible to the fraudster at negligible cost. The
fraudster node selects the bank node to target using its strat-
egy, and then randomly selects a victim from customers of the
target bank. When a payment attempt is caught, the fraudster
will select a new victim, potentially of a different target bank
depending on the strategy being followed.

There are two main bank targeting rules the fraudster
chooses from: threshold and success. The threshold rule
simply targets the bank with the highest RTPs threshold. The
success rule targets the bank where the fraudster has been
most successful in the past, modeled as a multi-armed bandit
problem and implemented using the Upper Confidence Bound
algorithm [Auer et al., 2002]. Specifically we calculate the
target bank (b∗) as:

argmax b

∑t
s=1 Ib(s)=bXb(s)

Nb(t)
+ ρ×

√
log(t)

Nb(t)
,

where t is the current time step, Nb(t) is the number of times
bank b has been targeted, and Xb is 1 to indicate a successful
attempt at b and 0 otherwise. A larger value for ρ indicates
greater exploration than exploitation. We test three versions
of this strategy defined by ρ ∈ {0.2, 1, 2} denoted successρ.
For both rules, if multiple banks fit the criteria, one bank is
uniformly randomly chosen as the target each time.

The last targeting rule, random, randomizes over thresh-
old and success each time a new victim is selected. We test
two versions of this strategy defined by ρ ∈ {0.2, 2} used for
the success rule which we refer to as randomρ. With two
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payment targeting rules and six bank targeting rules, there
are 12 possible fraudster node strategies.

4.4 Network Formation
The network is formed by assigning customer nodes to bank
nodes using bank and customer RTP thresholds. We assume
customers prefer a bank that allows them to send RTPs with
values at least equal to their personal threshold and if no such
bank exists, would prefer a bank offering the highest possible
threshold. Customers are assigned to their preferred bank and
in the event multiple fit the criteria, one such bank will be
randomly selected. Upon assignment to a bank, customers
deposit all their initial funds creating a debt edge from the
bank node to the customer node as outlined in Section 3.1.
Customer nodes in our game have an infinite willingness to
hold additional deposits in their account.

5 RTPs Fraud Game
The RTPs fraud game unfolds over T = 2, 880 time steps
with each time step containing payment creation, fraud de-
tection, and possible network updates. Every 96 time steps
(the clearing period), the bank queues are cleared to update
the network as described in Section 3.2 before new payments
are created. At the end of the game, the payment queues are
cleared for the final time and bank and fraudster nodes receive
a payoff for the performance of their selected strategies.

5.1 Payment Creation
During the payment creation phase, η = 20 customer nodes
are randomly selected, without replacement, to make a pay-
ment. With probability µ = 0.7 a fraudster node is one
of the η selected. The value of the payment is drawn from
v = U (0,min(1000, d)] where d is the amount of deposits
currently in the sender’s bank account. The payment receiver
is randomly selected from the customer nodes in the network.
The payment type is determined by the sender, its bank, and
v as outlined below.

Customer Node Payments
Consider a payment sent by customer node C1 belonging to
bank B1. If the receiver only accepts RTPs, the payment
must be sent in real time or the attempt will be canceled due
to incompatibility and considered a missed opportunity for a
transaction within the network. The payment can be sent in
real time only if v ≤ CT 1 and v ≤ BT 1. If the receiver
is willing to accept any type of payment, it will be sent as a
standard payment if the sender is unwilling (v > CT 1) and/or
unable (v > BT 1) to send it in real time. Otherwise, we con-
sider the urgency the customer has for the timely processing
of this payment as described in Section 4.1.

Fraudster Node Payment Type
The fraudster node is constrained only by the sending bank’s
threshold and as mentioned, always prefers RTPs when pos-
sible. Thus, the fraudster with a victim belonging to bank
node B1 will attempt a RTP if v ≤ BT 1. Otherwise, the
payment type is dictated by the receiver’s preferences and the
fraudster’s strategy. If the receiver is willing to accept any
payment and the fraudster is following the Any strategy, a

standard payment attempt will be made. Otherwise, the pay-
ment attempt is canceled triggering the fraudster’s selection
of a new victim.

5.2 Fraud Detection and Network Updates
Payments not canceled in the creation phase go through the
sender bank’s black box fraud detectors. Bank node Bi’s
fraud detector labels the payment correctly with respect to
the true label with probability γi and incorrectly with proba-
bility 1 − γi. If a payment is a RTP γR

i is applied and if it
is a standard payment, γS

i . Payments labeled fraudulent are
canceled regardless of the true label and remaining payments
are used to update the network according to payment type as
described in Section 3.

5.3 Payoffs
The payoff to bank nodes is composed of the effects of ser-
vices offered and the effects of invoking fraud detection.
Bank node Bi receives the following payoff:

δ1ID i + δ2VAi − αVRF i − VSF i − RFI i − βVFP i.

By offering RTPs, a bank attracts some amount of customer
deposits (ID). Though the deposits themselves are a bank li-
ability, they represent partial assets in the form of continued
business from customers which we capture with δ1 = 0.5.
Banks in the network route some total amount of payments
in the network on behalf of customers, VA, on which banks
may be able to charge small fees represented by δ2 = 0.01.
When fraud occurs, bank nodes are liable for the full amount
of standard payment fraud (VSF) and may hold some liability
for RTPs fraud (VRF) as described in Section 6.1. Choosing
to invest in fraud detection results in a one-time cost to banks
(Table 1) denoted here by RFI. Lastly, imperfect fraud detec-
tors may lead to some payments erroneously being labeled
fraudulent and subsequently being canceled. So called false
positives represent missed opportunities for routing and may
lead to frustration and less frequent business by customers.
To account for this potential cost we define VFP as the total
value of false positive payments and define β = 0.2.

The fraudster node seeks only to maximize the fraud it
successfully commits, reflected by a payoff equal to the to-
tal value of fraud it commits across all banks and payment
types over the course of the game.

6 Experiments
6.1 EGTA
We analyze the RTPs fraud game using EGTA [Wellman,
2016; Tuyls et al., 2020], a method employing extensive sim-
ulation of strategy profiles in a game to identify Nash equilib-
ria. A strategy profile is selected for simulation, and bank and
fraudster nodes in our model are assigned to play the strate-
gies according to the profile in the game described in Sec-
tion 5, after which nodes receive a payoff. This process iter-
ates many times such that each profile is simulated in 3,000
random generations of the game and payoffs for the strate-
gies in the profile are calculated from the sample average of
payoffs observed over the many simulation runs. EGTA em-
ploys an iterative procedure to select profiles for simulation,
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seeking to identify symmetric mixed-strategy Nash equilibria
while avoiding an exhaustive search of the profile space [Cas-
sell and Wellman, 2013; Fearnley et al., 2015]. To under-
stand how the Nash equilibria are affected by attributes of
the network, we perform the EGTA analysis on nine different
configurations of the RTPs fraud game defined by customer
demand (λ ∈ {0.25, 0.5, 0.75}) and bank liability for RTPs
fraud (α ∈ {0, 0.5, 1}).

6.2 Strategic Feature Gains Assessment
To better assess the individual benefit of each of the fraud risk
mitigation techniques to bank nodes, we introduce the strate-
gic feature gains assessment. The assessment aims to under-
stand the benefit to an agent in a game provided by gaining
access to a set of strategies united by commonalities such as
the basis for decision making or their effect on agent behavior.
For a game with strategy set S, we define this set of strategies,
the deviation set, as ∆ ⊂ S. We also define the set of initial
strategies agents may access, the base set, as Ω ⊂ S which
is disjoint from ∆. Finally, we define σ as a strategy profile
in the game, σ∗ as denoting a Nash equilibrium, and ui(σ) as
the payoff obtained by agent i for playing strategy profile σ.
The payoff to agent i for deviating to strategy s while the
other agents play according to σ is denoted ui(σ−i, si). The
steps of the assessment are defined as follows:

1. Define ∆ and Ω

2. Obtain σ∗(Ω) using EGTA

3. Gain from ∆ = maxs∈∆ ui(σ
∗
−i, si)− ui(σ

∗)

When a game contains agents belonging to multiple roles,
such as banks and fraudsters, we may only wish to perform
the assessment on one role. In this case, agents of the non-
assessed role (here fraudsters) retain use of their full strategy
set. Performing this assessment with different Ω and ∆ sets
can provide a point of comparison between different scenar-
ios or different information sets.

We perform the four assessments listed in Table 2 on the
nine configurations of the RTPs fraud game. Assessments A1
and A2 seek to understand the gains to a bank node with ac-
cess to both mitigation techniques after initially starting with
just one: either setting a threshold (BT) or investing in fraud
detection (FDI). Assessments A3 and A4 focus on the sce-
nario where banks begin without any mitigation measures, in
both the no RTPs and unrestricted RTPs cases, to see which
technique they employ first when forced to choose only one.

assessment base set deviation set
A1 BT only BT and FDI
A2 FDI only FDI and BT
A3 no RTPs FDI or BT
A4 BT=1000, FDI=none FDI or BT

Table 2: A description of each assessment performed describing the
strategies in the base and deviation sets, with BT denoting threshold
setting and FDI denoting fraud detection investment setting.

The assessment introduced here is a generalization of an
approach employed by Mayo and Wellman [2021] in their

EGTA study of eliminating debt cycles among agents in a fi-
nancial network. In the model studied in that work, agents
must decide to agree or disagree to a potential cycle elimina-
tion using a strategy from a set of strategies that make the
strategic decision using information available to the agent,
for example debts owed. For analysis, the strategies were
grouped by information employed for the decision and the
groups were referred to as features. For example, the as-
sets included all strategies using agent asset holdings to make
the elimination decision. The feature analysis sought to un-
derstand the importance of each feature for decision making.
Similar to our assessment, gains were measured by the max-
imum payoff gain to an agent for deviating from the equi-
librium in a base set to a strategy in a feature group which
functioned as the deviation set. However, the feature analy-
sis defined the base and deviation sets more stringently such
that Ω ∪ ∆ was the full strategy set S. Furthermore, if two
strategies employed the same information, they must both be
in the same feature group. Our generalization allows some
strategies to be left out entirely from the assessment as in A3
and A4 and provides more flexibility for defining the mem-
bership of each set.

6.3 Effects on the Network
Finally, we analyze the effects of the equilibria on the network
by measuring outcomes for various network participants over
1,000 runs of the game. In the event of a mixed-strategy equi-
librium, nodes are assigned to play a pure strategy from a
weighted draw according to the equilibrium distribution. We
compare these outcomes to those in the two settings: where
banks do not offer RTPs and where bank nodes do not restrict
RTPs, nor invest in fraud detection.

7 Experiment Results
7.1 Nash Equilibria
We find that bank nodes in our game select strategies with
higher value thresholds, but often balance this with the use of
fraud detection when banks are liable for RTP fraud. Specifi-
cally, when banks are not liable for RTP fraud, they do not re-
strict customer access to RTPs, nor do they employ fraud de-
tection. With partial liability, bank nodes begin to set thresh-
olds and invoke fraud detection. Interestingly, the equilibrium
show a strategic trade-off between customer access to RTPs
and the cost of fraud detection in this setting. Bank nodes
tend to either invoke fraud detection to avoid restricting cus-
tomer RTP usage or set a threshold value instead of incurring
the cost for fraud detection. When bank nodes become li-
able for the full amount of RTPs fraud, they exhibit a higher
probability of both setting a threshold and investing in good
fraud detection. In this case, the trade-off between fraud de-
tection costs and customer RTP restriction is only seen when
customer demand for RTPs is low. We find that customer de-
mand for RTPs has a smaller effect on bank equilibria than
RTP fraud liability, with greater customer demand resulting
in only slight increases in threshold values selected.

In response to the banks’ strategic decisions, the fraud-
ster in our network tends to target banks based on historical
success, either with success or random strategies, with a
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high degree of exploitation. The fraudsters prefers to follow
RTP-only unless bank nodes implement both fraud mitiga-
tion measures, invoking fraud detection and setting a thresh-
old value. In this case, more barriers to successful RTPs fraud
forces the fraudster to adopt the Any strategy.

7.2 Strategic Feature Gains Assessment
While both mitigation techniques appear in the equilibria of
bank nodes, the strategic feature gains assessment highlights
the particular importance of control over customer RTP use.
The results from A1 and A2, shown in Figure 6, demonstrate
greater gains to bank nodes when starting by setting a thresh-
old (BT) and gaining the ability to invest in RTP fraud detec-
tion (FDI) compared to the reverse scenario. When thresh-
olds are set first, the addition of FDI allows banks to deviate
to a strategy with a higher threshold value, expanding RTP
usage. Conversely, starting with FDI results in a restriction
to RTP usage and a lower payoff gain for banks. Though it
should be noted bank nodes almost always benefit from the
ability to use both mitigation techniques with the exception
of the cases where the equilibrium is to not restrict RTPs
nor offer fraud detection. The importance of initial thresh-
old setting is further supported by the results of A3 and A4.
In both cases we find a bank node in all game configurations
will choose to deviate to a strategy controlling the threshold
value when given the option to choose only one mitigation
technique.

Figure 6: The results from A1 and A2 show that a bank node benefits
the most by gaining the ability to control fraud detection investment
level (FDI) after initially controlling only the threshold value (BT).

7.3 Network Effects
Under the Nash equilibria, all bank nodes will be targeted
by the fraudster over the course of the game and at least 1/3
of customer nodes experience impersonation. The number of
victims increases as bank nodes become more concerned with
fraud and implement stricter mitigation measures, leading to
less success by the fraudster. This forces the fraudster to im-
personate more customers to accomplish its goal resulting in
up to 80% of customer nodes experiencing impersonation.

We explore the effects of banks employing fraud risk mit-
igation techniques on customer nodes by analyzing their rate

of successful payment attempts under the Nash equilibria
compared to when bank nodes do not restrict RTPs nor use
fraud detection. Figure 7 shows only a small gain in suc-
cess for customer nodes when bank nodes switch to the latter
case and a much larger gain for the fraudster. This indicates
the strategic choices of banks greatly reduce fraudster success
with minimal interruptions to customers.

Figure 7: Gain in success rate for fraudsters and customers when
banks allow unrestricted RTPs, in equilibrium comparisons.

8 Conclusion
We explore banks’ strategic mitigation of fraud risk in RTPs,
balancing benefit to customers with vulnerability to fraud.
To maintain this balance, banks often supplement the use of
fraud detection with restrictions to RTPs use. We investi-
gate how banks may strategically trade-off between the use
of these two mitigation methods and the strategic response of
fraudsters.

We study this problem in an agent-based model of a pay-
ment system in which a RTP fraud game is played among
banks and a fraudster. The game is analyzed using EGTA to
identify Nash equilibria in nine game configurations defined
by bank liability for RTPs fraud and customer demand for
RTPs. Our results indicate that with no liability, bank nodes
are willing to allow unrestricted access to RTPs and do not
invoke fraud detection. However, as banks take on more li-
ability, they become more likely to employ higher fraud de-
tection measures and restrict RTPs. In response, the fraudster
node must adjust from targeting only RTPs to a willingness
to use any payment type. We further study the strategic de-
cision of bank nodes by introducing the generalized strategic
feature gains assessment to gauge the relative and individual
importance of each risk mitigation technique. The results of
this assessment identify the importance of initial restriction
to RTPs for mitigating fraud risk. Lastly, we find bank strate-
gic decisions in equilibrium effectively lower fraud risk with
little impact on customer outcomes.

Our current work defines customer preferences stochasti-
cally, however, exploring the effect of strategic customers on
banks decisions may be an interesting avenue for future re-
search.
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