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Abstract
This paper focuses on the problem of learning com-
pressed state representations for multi-agent tasks.
Under the assumption of rich observation, we pin-
point that the state representations should be com-
pressed both spatially and temporally to enable ef-
ficient prioritization of task-relevant features, while
existing works typically fail. To overcome this lim-
itation, we propose a novel method named Spatio-
Temporal stAte compRession (STAR) that explic-
itly defines both spatial and temporal compression
operations on the learned state representations to
encode per-agent task-relevant features. Specifi-
cally, we first formalize this problem by introduc-
ing Task Informed Partially Observable Stochas-
tic Game (TI-POSG). Then, we identify the spatial
representation compression in it as encoding the la-
tent states from the joint observations of all agents,
and achieve this by learning representations that ap-
proximate the latent states based on the information
theoretical principle. After that, we further extract
the task-relevant features of each agent from these
representations by aligning them based on their re-
ward similarities, which is regarded as the temporal
representation compression. Structurally, we im-
plement these two compression by learning a set
of agent-specific decoding functions and incorpo-
rate them into a critic shared by agents for scalable
learning. We evaluate our method by developing
decentralized policies on 12 maps of the StarCraft
Multi-Agent Challenge benchmark, and the supe-
rior performance demonstrates its effectiveness.

1 Introduction
A multitude of real-world problems can be naturally modeled
as multi-agent tasks and tentatively solved using multi-agent
reinforcement learning (MARL) technology. Although recent
works have achieved significant progress in both algorithms
(e.g., value decomposition methods [Sunehag et al., 2017;
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Rashid et al., 2020; Wang et al., 2020a] and multi-agent pol-
icy gradient methods [Lowe et al., 2017; Foerster et al., 2018;
Yu et al., 2022]) and applications (e.g., robot swarm con-
trol [Huang et al., 2020], autonomous vehicles [Cao et al.,
2012], traffic management [Wang et al., 2020b] and sensor
networks [Zhang and Lesser, 2011]), they heavily depend on
direct access to the states of multi-agent tasks to ensure effi-
cient policy learning. However, such direct access to states is
frequently unattainable in real-world domains, where agents
typically possess partial observations, thereby posing chal-
lenges to the efficient learning of policies in these situations.

One promising approach to this problem involves leverag-
ing inherent structures within tasks to identify efficient state
representations from the observations of agents. This neces-
sitates an inductive bias towards the underlying structures of
tasks. In this study, we assume the characteristic of rich ob-
servation. Diverging from its single-agent counterpart [Du et
al., 2019], we posit that the joint observation of all agents
can uniquely determine the underlying state and the reward
function of each agent depends on a small subset of the state
(referred to as a sub-state). This structural characteristic is
pervasive in many real-world multi-agent scenarios. For ex-
ample, in the context of traffic signal control, the joint obser-
vation of traffic conditions at all intersections determine the
state, while the reward function exclusively relies on the av-
erage waiting time of current vehicles — a small subset of the
complete state. This principle holds true in medical treatment
scenarios as well, where the diagnoses of all medical robots
collectively determine the patient’s true condition. Their re-
ward functions, in turn, hinge on several key factors related
to the true illness. Clearly, in tasks characterized by rich ob-
servations, we can construct compressed state representations
based on the observations and reward functions of agents,
thereby enhancing the efficiency of agents’ policy learning.

Motivated by this insight, this paper proposes the problem
of learning compressed state representations for multi-agent
tasks with rich observations, and identifies two sub-processes
to solve it. We refer to the first process as the spatial repre-
sentation compression, which aims to encode the latent states
from the joint observations of all agents. The second process
aims to further extract task-relevant features (i.e., sub-states
relevant to per-agent reward function) from the states, which
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needs to compress the learned representations alongside the
temporal dimension based on their reward similarities and
thus is regarded as the temporal representation compression.

Accordingly, we divide existing MARL methods into two
major categories. The first category of works [Rashid et al.,
2020; Wang et al., 2020a; Foerster et al., 2018; Yu et al.,
2022] enjoys direct access to latent states and implicitly ac-
complishes temporal representation compression by learning
value functions conditioned on the states as supervision sig-
nals. However, the necessity for access to latent states and
the inefficiency arising from bootstrapping value updates [Fu
et al., 2021] limit these methods in practice. On the contrary,
the second category of works constructs state representations
based on the local observations of agents [Lowe et al., 2017;
Iqbal and Sha, 2019] and also uses value functions to achieve
implicit representation compression. Nevertheless, they uti-
lize the value function as sole supervision signal for both spa-
tial and temporal representation compression, rendering them
less efficient due to the laborious bootstrapping value update.

To overcome above limitations, we propose a novel method
named Spatio-Temporal stAte compRession (STAR), which
defines explicit spatial and temporal compression operations
on the learned representations to encode task-relevant fea-
tures in the states. Initially, we introduce the Task Informed
Partially Observable Stochastic Game (TI-POSG) to formal-
ize the learning of compressed state representations for tasks
with rich observations. Subsequently, leveraging the infor-
mation theoretical principle, we achieve spatial representa-
tion compression by compressing the joint observation of all
agents into representations approximating the latent states for
each agent individually. Afterwards, we further align these
representations based on their reward similarities by using
the bisimulation metric [Ferns et al., 2004]. This alignment
ensures that only task-relevant features are encoded, thereby
achieving temporal representation compression. Structurally,
we implement these two compression by learning a set of
agent-specific decoding functions and incorporate them into
a critic shared by agents to facilitate scalable learning.

Experimentally, we evaluate our method on 12 maps of the
StarCraft Multi-Agent Challenge (SMAC) [Samvelyan et al.,
2019]. The results demonstrate that STAR achieves superior
performance across all maps, highlighting its effectiveness.

2 Related Work
In this section, we divide existing MARL methods into two
major categories according to their ways of compressing state
representations and give a brief introduction to them.

The first category of approaches assumes direct access to
the states of multi-agent tasks and utilizes value functions as
supervision signals to achieve temporal representation com-
pression. Specifically, value decomposition methods, such as
QMIX [Rashid et al., 2020] and QPLEX [Wang et al., 2020a],
entail learning a factorized global action value function con-
ditioned on the utility functions of all agents and the states.
Meanwhile, multi-agent policy gradient methods, exempli-
fied by COMA [Foerster et al., 2018] and MAPPO [Yu et
al., 2022], learn value functions (critics) conditioned on the
states to optimize agents’ decentralized policies (actors). In

extending the value decomposition structure into the multi-
agent policy gradient paradigm, DOP [Wang et al., 2020c]
and FACMAC [Peng et al., 2021] adopt similar critic struc-
tures as above value decomposition methods. Despite exhibit-
ing promise in certain tasks, the necessity for direct access to
states and the inefficiency arising from bootstrapping value
updates limit these methods to more domains in practice.

In contrast, the second category of approaches constructs
state representations based on the observations of agents and
employs value functions to achieve representation compres-
sion. Independent MARL methods such as IQL [Tan, 1993],
IPPO [de Witt et al., 2020], and IAC [Christianos et al., 2020]
typically fall into this category by learning value functions
conditioned on per-agent local observations. However, these
local observations inadequately characterize the states, exac-
erbating the non-stationarity problem and resulting in poor
performance. To overcome this limitation, MADDPG [Lowe
et al., 2017] concatenates the observations of all agents as
proxy states and learns value functions conditioned on them.
MAAC [Iqbal and Sha, 2019] further extends MADDPG by
incorporating the attention module [Vaswani et al., 2017] to
selectively identify relevant features for each agent under the
supervision of value functions. However, both methods rely
solely on the value function as the supervision signal for both
spatial and temporal representation compression, introducing
inefficiencies due to the laborious bootstrapping value update.

In summary, current MARL methods exhibit inefficiencies
in learning compressed state representations, often overlook-
ing this crucial problem. To address this limitation, this paper
first formalizes the learning of compressed state representa-
tions for multi-agent tasks with rich observations and then
proposes explicit compression operations for the learned rep-
resentations to encode only task-relevant features. As a result,
our work is complementary to these MARL methods through
efficiently constructing compressed state representations and
thereby accelerating the learning of multi-agent policy.

3 Preliminary
In this section, we review some basis concepts about Partially
Observable Stochastic Game (POSG) and MARL methods.

3.1 POSG
A multi-agent task where agents receive partial observations
is usually modeled as a partially observable stochastic game
(POSG) 〈N , S,A,R, P,O,Z, γ〉, whereN = {1, 2, . . . , n}
is the agent set and S denotes the state space. A = A1×A2×
. . .×An represents the joint action space of all agents andAi
is the local action space of agent i. At each time step t, each
agent i receives its local observation oit ∈ Zi ∈ Z from its
own observation space Zi according to its observation func-
tion Oi(oit|st) ∈ O, and selects local action ait by its pol-
icy πi. Based on agents’ joint action at = (a1t , a

2
t , . . . , a

n
t ),

the environment transits to the next state st+1 according to
the state transition function P (st+1|st,at) and provides each
agent i with its local reward rit according to its reward func-
tionRi(st,at) ∈ R. And γ is a discount factor. Furthermore,
each agent i conditions its policy πi on its local action obser-
vation history τ it = (oi0, a

i
o, . . . , o

i
t−1, a

i
t−1, o

i
t) to deal with

the partial observability challenge.
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3.2 MARL
We focus on multi-agent policy gradient methods that param-
eterize each agent i’s policy πiωi by ωi, and directly optimize
it to maximize per-agent cumulative rewards using the policy
gradient∇ωiJ (ωi) = E[∇ωi log πiωi(ait|τ it )Gi], where Gi is
usually set as the action value function Qi or the advantage
function Ai of agent i. To mitigate the non-stationarity prob-
lem, Qi and Ai are conditioned on the states and joint actions
of all agents to guarantee stationary policy optimization.

4 Problem Formalization
In this section, we begin by illustrating the assumptions in-
herent in rich observation. Then we introduce the TI-POSG
to formalize the learning of compressed state representations.

4.1 Assumptions
To establish direct mappings between agents’ observations
and latent states, we introduce the following assumption:

Assumption 4.1 (State identification). For each agent i,
the joint observation ôi = (oi, o−i) comprised by its local ob-
servation oi and other agents−i’s observations o−i uniquely
determines the underlying state s that generates them.

The state identification implies the existence of a set of
perfect decoding functions q = (q1, q2, . . . , qn), where qi :

Ẑi → S maps the joint observations ôi ∈ Ẑi shaped by
agent i to their generating states s ∈ S. Here, Ẑi denotes the
joint observation space shaped by agent i. By approximat-
ing the decoding function qi for each agent i, we can recover
the latent states from the high dimensional joint observations,
which enables tractable learning on the smaller state space.

However, the state space of multi-agent task usually grows
exponentially with the number of agents, which presents chal-
lenges for efficient learning. Motivated by the fact that each
agent’s reward function typically depends on a small subset
of the state (i.e., sub-state) in many real-world domains, we
further make the following assumption about the latent state:

Assumption 4.2 (Reward relevance). For each agent i, its
reward function Ri only depends on a subset si,+ of the full
state s, while other components si,− are reward-irrelevant.

The reward relevance explicitly divides the latent state into
two components: task-relevant and task-irrelevant features.
For each agent i, its reward functionRi is entirely determined
by the task-relevant features si,+, and the task-irrelevant fea-
tures si,− carry no information about it. This introduces a
promising approach to further accelerate the policy learning:
compress the state to contain only these task-relevant features
for each agent and learn value functions conditioned on them.

4.2 TI-POSG
Building upon these assumptions, we introduce the Task In-
formed Partially Observable Stochastic Game (TI-POSG). To
enhance clarity, we present a two-agent TI-POSG example.
Fig. 1 (a) illustrates this example from the global perspective,
where agents i and j respectively possess their local rewards
rit and rjt , and receive their local observations oit and ojt from
the latent state st. This resembles a normal POSG except the
state identification property that all agents’ joint observations
uniquely determine the latent states that generate them.
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(a) Global Perspective of TI-POSG (b) Per-agent Perspective of TI-POSG 

Figure 1: The graphical models of a two-agent TI-POSG from the
global perspective (a) and the per-agent perspective (b). The sub-
scripts of all variables indicate time steps 1, 2, 3 and the superscripts
refer to agents i and j. Empty and solid circles respectively denote
unobservable and observable stochastic variables, while solid lines
represent the generative process. For agent i, the latent state st is
divided into two components: task-relevant features si,+t and task-
irrelevant features si,−t . A similar division is applied to agent j. The
objective is to learn state representations for each agent that solely
capture its own task-relevant features within the latent states, as in-
dicated by the red arrows with dashed lines. For brevity, we omit the
dependency between per-agent rewards and agents’ joint actions at.

We further describe the TI-POSG from a per-agent per-
spective. As shown in Fig. 1 (b), for agent i, its shaped joint
observation ôit is emitted from the latent state st, which is di-
vided into two components: task-relevant features si,+t that
wholly determine its local reward rit and task-irrelevant fea-
tures si,−t . Our objective is to learn state representations that
exclusively capture these task-relevant features based on the
joint observation while disregarding other irrelevant features.

Accordingly, we formalize the task of learning compressed
state representations for multi-agent tasks with rich observa-
tions as learning state representations that characterize only
the task-relevant features for each agent, while discarding
other irrelevant features. We identify two processes to ad-
dress this problem. The first process, spatial representation
compression, is dedicated to recovering latent states from
the joint observations of all agents. The second process,
termed temporal representation compression, further extracts
only task-relevant features from the states by compressing the
learned state representations based on their reward similari-
ties. Building upon this formalization, we propose a practical
method in the subsequent section to tackle this problem.

5 Methodology
This section gives a comprehensive introduction to our pro-
posed method Spatio-Temporal stAte compRession (STAR).

5.1 Spatial Representation Compression
To approximate the unknown decoding function qi : Ẑi → S
for each agent i, we consider the information bottleneck (IB)
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principle [Tishby et al., 2000]. Let X̃ denote the source mes-
sage variable and X represent the compressed representa-
tion variable of it. In contrast to classic lossless compression
where all aspects of X̃ are enforced to retain inX , IB seeks to
preserve only critical information in X̃ that is relevant to an-
other variable Y . Specifically, we formulate the optimization
objective of IB by the following equation:

min
p(x|x̃)

I(X; X̃)− βI(X;Y ),

where p(x|x̃) denotes the compression function that encodes
the original message x̃ ∈ X̃ into the representation x ∈ X .
I(· ; ·) represents the mutual information between two ran-
dom variables and β is a Lagrange multiplier that quantifies
the amount of information encoded byX from X̃ with respect
to identifying Y . This trade-off is achieved by minimizing the
encoding rate I(X; X̃) and simultaneously maximizing the
mutual information I(X;Y ) between the compressed repre-
sentation variable X and the target variable Y .

To recover the latent states s ∈ S from the joint obser-
vations ôi ∈ Ẑi shaped by agent i, we propose learning an
encoding function f i(xi|ôi) : Ẑi → Xi encoding the joint
observation ôi ∈ Ẑi into the representation xi ∈ Xi. The
goal is for the representation space Xi to be close to the true
state space S, making the learned encoding function f i an ac-
curate approximation to the unknown decoding function qi.

Motivated by the fact that the true states strictly adhere to
the task dynamics, we enforce that our learned representa-
tions xi encapsulate the most relevant information with re-
spect to the dynamics of current tasks. This ensures consistent
optimal policies [Gelada et al., 2019]. Therefore, we set the
source message variable as Ẑi and the representation variable
as Xi. 1 The target variable with respect to the task dynamics
is set as {Xi

t−1,At−1}, where Xi
t−1 and At−1 respectively

denote the representation variable and joint action variable at
the last time step t−1. 2 This leads to the following objective:

min
fi(xi|ôi)

I(Xi; Ẑi)− βI(Xi; {Xi
t−1,At−1}). (1)

We first minimize the encoding rate I(Xi; Ẑi). The encod-
ing rate measures the amount of bits transmitted per message
Ẑi, and the representation dimension resembles the number
of bits per message. Thus, minimizing the encoding rate can
be achieved by selecting small dimension for the representa-
tions [Tao et al., 2020]. We follow this by choosing the small-
est dimension for the representations with guarantees that in-
formation about task dynamics can still be recorded.

For the second term, we rewrite it as follows:
I(Xi; {Xi

t−1,At−1})

= Exi
t−1,at−1,xi log

p(xi|xit−1,at−1)

p(xi)

= H(Xi) + Exi
t−1,at−1,xi log p(xi|xit−1,at−1)

≥ H(Xi) + Exi
t−1,at−1,xi log qφ(xi|xit−1,at−1),

(2)

1In this paper we employ the same notation to denote both vari-
able and space for enhancing readability and simplifying notations.

2We again overload notations here for clarity.

where H(Xi) denotes the entropy of our learned representa-
tions and qφ(xi|xit−1,at−1) is a variational distribution used
to approximate the unknown distribution p(xi|xit−1,at−1).
Based on Eq. (2), the second term of Eq. (1) can be opti-
mized by maximizing both H(Xi) and the likelihood on dy-
namics prediction (detailed derivation can be found in Ap-
pendix A). To maximizeH(Xi), we can choose various tech-
niques, such as state entropy maximization [Seo et al., 2021],
random value functions [Osband et al., 2019], or other explo-
ration techniques, which depends on the tasks being solved.

For maximizing E log qφ(xi|xit−1,at−1), we learn a tran-
sition function fP : Xi

t−1 × At−1 → Xi parameterized by
φP and a reward function fR : Xi

t−1×At−1 → R parameter-
ized by φR. The respective objectives are defined as follows:

LP(θi, φP) = E(xi
t−1,at−1,xi)∼D[(x̄i − fP(xit−1,at−1))2]

LR(θi, φR) = E(xi
t−1,at−1,rit−1)∼D[(rit−1 − fR(xit−1,at−1))2],

(3)
where the encoding function f i is parameterized by θi and
we sample data from a replay buffer D to approximate the
expectation. During training the transition function, we de-
tach the gradient of xi (we denote it as x̄i) to prevent both
xi and xit−1 being mapped to zero variables, avoiding repre-
sentational collapse. To address this issue, we complement
the encoding rate loss in Eq. (1) with a relaxed reconstruction
task that compels xi to reconstruct the local observation oi of
agent i. By learning a reconstruction function fC : Xi → Zi

parameterized by φC, we define its loss function as follows:

LC(θi, φC) = E(xi,oi)∼D[(oi − fC(xi))2]. (4)

In summary, the maximization of I(Xi; {Xi
t−1,At−1})

based on Eq. (3) enables the learned representations to cap-
ture information crucial to task dynamics, ensuring accurate
approximation of latent states. Simultaneously, we minimize
I(Xi; Ẑi) by employing small representation dimensions and
a relaxed reconstruction. This ensures that the learned repre-
sentations are compressed concerning the joint observations
while also preventing them from collapsing to zero variables.

5.2 Temporal Representation Compression
After learning per-agent representations that approximate the
latent states, we aim to further extract task-relevant features
from these representations while discarding other irrelevance.
We propose achieving this extraction by explicitly aligning
similar state representations that exhibit similar task-relevant
features, regardless of other task-irrelevant features in them.

Consider the scenario where st is divided into (si,+t , si,−t )
from the perspective of agent i, and sk is decomposed into
(sj,+k , sj,−k ) for agent j. If we identify that their task-relevant
features, si,+t and sj,+k , are similar, we should make the cor-
responding state representations of agents i and j close in the
representation space. By doing so, the learned state represen-
tations of agents encode only task-relevant features, leading
to more compressed representations.

The key is to introduce a specific similarity function. For
all agents, this function should be task-relevant, solely char-
acterizing similarities between task-relevant features in states.
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Figure 2: Architecture of the critic shared by agents.

Under the reward relevance assumption that task-relevant
features entirely determine per-agent reward function, the
cumulative rewards of each agent depend solely on these
task-relevant features. Therefore, we propose employing the
bisimulation metric [Ferns et al., 2004] as the similarity func-
tion, measuring the distance between any two states based on
the task-relevant element: agents’ cumulative rewards. The
distance is formalized as the difference in both immediate re-
wards and one-step transition probabilities.

Specifically, we use π∗-bisimulation metric [Zhang et al.,
2020] to quantify the similarities between task-relevant fea-
tures in states and update the encoding function to generate
similar representations for states with akin task-relevant fea-
tures. The loss function of it is defined as follows:

Ltem(θi) = E(xi
t,at,rit),(x

j
k,ak,r

j
k)∼D

[(||xit − x
j
k||1−

|rit − r
j
k| − γW2(fP(x̄it,at), fP(x̄jk,ak)))2︸ ︷︷ ︸

the bisimulation metric

], (5)

where (xit,at, r
i
t) and (xjk,ak, r

j
k) are two randomly sam-

pled batches from the replay buffer D, and W2 denotes the
2-Wasserstein metric. For our learned deterministic transition
function fP, W2(fP(x̄it,at), fP(x̄jk,ak))2 = ||fP(x̄it,at) −
fP(x̄jk,ak)||22. Eq. (5) ensures that the L1 distance between
any two state representations equals the corresponding bisim-
ulation metric, compelling agent representations to be close
when possessing similar task-relevant features and thus re-
sulting in a more compressed state representation space.

5.3 Overall Learning Objective
Based on the learned state representations xi, we further learn
a state value function V (xi) : Xi → R parameterized by φV
and use the value function loss to update them as follows:

LV(θi, φV) = E(xi,R̂i)∼D[(V (xi)− R̂i)2], (6)

where R̂i denotes the discounted reward-to-go of agent i.
For scalable learning, we incorporate all agents’ encoding

functions and the state value function into a critic shared by
all agents. As depicted in Fig. 2, the critic is comprised by
two primary components: (i) the encoding function f i shared
among agents (it consists of an aggregation layer that shapes
the individual joint observation ôi for each agent, and a fully

connected layer outputting per-agent state representations),
and (ii) the value layer responsible for outputting the state
values. The overall learning objective is defined as follows:

L = LV + βLspa + λLtem, (7)

where β and λ are two weighting factors. Lspa = LP +LR +
LC denotes the spatial compression loss. And Ltem repre-
sents the temporal compression loss, as defined by Eq. (5).

Structurally, we implement the aggregation layer by an at-
tention module [Vaswani et al., 2017], facilitating the effi-
cient aggregation of local observations from all agents. In the
subsequent fully connected layer, we introduce one-hot agent
labels as additional inputs, augmenting the per-agent joint ob-
servations for agent discrimination. The value layer is imple-
mented through a two-layer MLP. More structural and train-
ing details regarding our method can be found in Appendix B.

6 Experiment
In this section, we evaluate our method by developing decen-
tralized policies for agents on 12 maps of the SMAC bench-
mark. We carry out our experiments to answer the following
questions: (i) Can STAR improve the learning efficiency of
these decentralized policies in comparison to other baselines?
(see Sec. 6.2) (ii) If so, which component contributes the most
to its performance gain? (see Sec. 6.3) (iii) Can the learned
representations succeed in characterizing task-relevant fea-
tures? (See Sec. 6.4). All experimental results are illustrated
with the median performance and the standard error over five
random seeds. More details are provided in Appendix C.

6.1 Settings
We begin by introducing basic settings of our method. Specif-
ically, we instantiate STAR by following the same paradigm
as MAPPO, where agents’ decentralized policies undergo up-
dates based on advantage functions derived from the state
value function. Furthermore, we maximize the representation
entropy (H(Xi) in Eq. (2)) by proposing a combined value
function that guides agents’ policies, defined as follows:

V i = αVl(o
i) + (1− α)V (xi),

where V i represents the ultimate value function for agent i,
and Vl(oi) denotes a local value function conditioned on the
local observation oi besides V (xi). α is a diminishing factor
that progressively reduces the influence of Vl(oi) on per-agent
policy optimization. The intuition behind this is that the local
value function Vl can provide a stable supervision signal for
agents’ policies during the initial learning process and thus
agents are able to generate informative transitions. Then we
can use these transitions to update the state representations
efficiently, which serves as a warm-up phase. Empirically we
find that this combination proves effective for the SMAC task.

6.2 Evaluation Performance
To address the first question, we compare our method against
various common baseline techniques used to shape state rep-
resentations. The selected representative methods include:

• IPPO [de Witt et al., 2020]. This method directly uses
the local observations as state representations and learns
value functions conditioned on them to update policies.
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Figure 3: Evaluation performance of our method against multiple baselines on 12 maps.

• CONCAT [Lowe et al., 2017]. In contrast, CONCAT
concatenates all agents’ local observations as state rep-
resentations and conditions the value functions on them.

• ATTENTION [Iqbal and Sha, 2019]. ATTENTION uses
an attention module within the value function to identify
useful components from the observations of all agents.

• MAPPO [Yu et al., 2022]. Unlike approximating state
representations based on agents’ observations, MAPPO
benefits from having access to latent states of tasks and
learns value functions conditioned on them.

Fig. 3 shows the comparative results of STAR against these
baselines on 12 maps of the SMAC benchmark. One can
observe that STAR achieves superior performance on almost
all maps, notably outperforming other baselines by a signifi-
cant margin on challenging maps 3s5z vs 3s6z (super hard),
corridor (super hard), MMM3 (super hard), 6h vs 8z (su-
per hard), 1c3s5z vs 1c4s6z (super hard), 3s5z (hard) and
10m vs 11m (hard). These maps are featured by a large num-
ber of units, leading to considerable overlapping information
between agents’ local observations. Therefore, construct-
ing compressed state representations from these observations
proves beneficial for multi-agent policy learning.

In addition to these maps, we find that STAR exhibits slight
performance advantages on other maps, including MMM2,
2c vs 64zg, 3s vs 5z, 1c3s5z vs 1c3s6z and 8m vs 9m. We
hypothesize that this is because all methods above are able to
quickly learn effective policies for allied agents to defeat the
enemies on these maps and generate informative transitions,
as demonstrated by their learning curves. Based on these ex-
periences, the state representations learned by these methods
can be efficiently compressed by their value functions. Thus,
the representational benefits brought by STAR is not obvious.

On the contrary, the baselines CONCAT and ATTENTION
are stuck in the redundant joint observations of all agents and
their performances are limited by the powerless supervision
signals from their value functions. Although they may over-
come this limitation by continued training, the learning effi-
ciency may be too terrible. We also notice that IPPO is ca-
pable of achieving competitive performance on several maps,
and outperforms its counterpart MAPPO. This reveals that the
local observations of agents in the SMAC benchmark may in-
clude relatively sufficient information about the latent states.

6.3 Ablation Study
For the second question, we carry out ablation studies to as-
sess the contributions of STAR’s major components: (a) the
constraints related to spatial and temporal compression, and
(b) the combined value function used to maximize the repre-
sentation entropy. Additionally, we examine the impact of (c)
the scale of the attention module in the aggregation layer.

Ablation of component (a). We compare STAR with addi-
tional baselines to verify the effectiveness of each constraint.
Specifically, these baselines include:

• STAR-No-Temporal: We remove the temporal compres-
sion loss Ltem from Eq. (7) to validate the effect of it.

• STAR-No-Reconstruct: We remove the relaxed recon-
struction loss LC from Eq. (7) to validate whether repre-
sentational collapse may occur without this constraint.

• STAR-No-Spatial: The ablation of spatial compression
is a bit different because LP is used to calculate Ltem.
Therefore, we retain only LP and Ltem in Eq. (7) to test
the effect caused by the spatial compression loss Lspa.

The results on maps 3s5z and 6h vs 8z are shown in Fig. 4
(a) and (b). STAR-No-Temporal shows a slight performance
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Figure 4: Ablation study with respect to major components of our method.

decrease compared to STAR. This demonstrates that the tem-
poral representation compression can still be achieved by us-
ing the value function as a supervision signal, but with low ef-
ficiency as evidenced by the relatively slow convergence rate
of STAR-No-Temporal on the map 6h vs 8z.

STAR-No-Reconstruct performs the worst on both maps,
which demonstrates that the relaxed reconstruction task pro-
tects the state representations from the representation collapse
by encoding per-agent local observation into it.

The performance of STAR-No-Spatial is between the per-
formance of the above two baselines. Compared to STAR-
No-Reconstruct, STAR-No-Spatial additionally removes the
reward prediction loss LR besides the reconstruction loss LC.
During the initial learning process where rewards are sparse,
LR forces the representations to predict these sparse rewards.
This prediction of zero vectors may increase the risk of repre-
sentational collapse occurring and lead to poor performance.
The better performance of STAR-No-Spatial over STAR-No-
Reconstruct further demonstrates this insight.

Ablation of component (b). To validate the effectiveness
of maximizing the representation entropy with the combined
value function, we compare STAR with a new baseline:

• COMBINE: The COMBINE method similarly employs
a combined value function V i, which is comprised by
a local value function Vl(oi) and a state value function
V (s) conditioned on the latent state s. Except for the
state value function, other components of COMBINE,
such as the decreasing factor α, are the same as STAR.

The comparison results are shown in Fig. 4 (e) - (h). We se-
lect two major categories of maps as our testbeds. On the first
category, where both IPPO and MAPPO perform well (3s5z
and 3s5z vs 3s6z), we observe that the combined value func-
tion has no discernible effect on COMBINE’s performance.

In contrast, on the second category of maps where IPPO
performs better than MAPPO (2c vs 64zg), we can find that
the warm-up facilitated by the local value function Vl sig-
nificantly improves the performance of COMBINE in com-
parison to MAPPO, which solely uses the state value func-
tion V (s) for policy updates. This demonstrates that our sug-
gested combined value function can offer useful supervision
signals in the initial phase, fostering effective policy learning.

However, the performance improvement attributed to this
combined value function is limited by the learned state rep-
resentations. On the map MMM3, although COMBINE out-
performs the baseline MAPPO, there still exist a large margin
on the performance between it and STAR. This underscores
that STAR primarily benefits from compressed state repre-
sentations, with the combined value function serving as an
auxiliary component in the learning process.

Ablation of component (c). We introduce two extra base-
lines 64DIM and 32DIM to evaluate the effect caused by the
scale of attention module in the aggregation layer. These two
methods set the units of the attention module to 64 and 32,
respectively, with the number of heads set to 1. As depicted
in Fig. 4 (c) and (d), their performances are close to that of
STAR on maps 3s5z and 3s5z vs 3s6z but are still signif-
icantly better than other baselines. This demonstrates that
STAR are robust to the scale of this attention module.

6.4 Visualization of the Representation
We give a t-SNE plot of the learned state representations of
all agents throughout an entire episode on the map 3s5z. As
illustrated in Appendix C, representations with similar cumu-
lative rewards are positioned close to each other, indicating
their ability to capture task-relevant features within the states.

7 Conclusion
Learning compressed state representations facilitates efficient
policy learning for multi-agent tasks with rich observations.
This paper formalizes this problem by introducing TI-POSG,
and presents a novel method STAR that identifies spatial and
temporal representation compression to solve it. Extensive
experiments further verify the effectiveness of this method.

Limitations and Future Work. Our method depends on
learning accurate transition functions of multi-agent tasks to
enable efficient representation compression. However, learn-
ing precise transition functions for tasks characterized by in-
tricate dynamics proves to be a challenging endeavor. To alle-
viate this issue, we intend to simplify tasks through the game
abstraction. Additionally, we plan to explore the generaliza-
tion capabilities of the representations learned by our method
across similar tasks. We leave them as our future researches.
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